Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme27b Structured version   Visualization version   GIF version

Theorem cdleme27b 40335
Description: Lemma for cdleme27N 40336. (Contributed by NM, 3-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme27.f 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme27.z 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme27.n 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
cdleme27.d 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme27.c 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
cdleme27.g 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme27.o 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
cdleme27.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
cdleme27.y 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
Assertion
Ref Expression
cdleme27b (𝑠 = 𝑡𝐶 = 𝑌)
Distinct variable groups:   𝑡,𝑠,𝑢,𝑧,𝐴   𝐵,𝑠,𝑡,𝑢,𝑧   𝑢,𝐹   𝑢,𝐺   𝐻,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝐾,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝑡,𝑁,𝑢   𝑂,𝑠,𝑢   𝑃,𝑠,𝑡,𝑢,𝑧   𝑄,𝑠,𝑡,𝑢,𝑧   𝑈,𝑠,𝑡,𝑢,𝑧   𝑊,𝑠,𝑡,𝑢,𝑧
Allowed substitution hints:   𝐶(𝑧,𝑢,𝑡,𝑠)   𝐷(𝑧,𝑢,𝑡,𝑠)   𝐸(𝑧,𝑢,𝑡,𝑠)   𝐹(𝑧,𝑡,𝑠)   𝐺(𝑧,𝑡,𝑠)   𝐻(𝑢)   𝐾(𝑢)   𝑁(𝑧,𝑠)   𝑂(𝑧,𝑡)   𝑌(𝑧,𝑢,𝑡,𝑠)   𝑍(𝑧,𝑢,𝑡,𝑠)

Proof of Theorem cdleme27b
StepHypRef Expression
1 breq1 5105 . . 3 (𝑠 = 𝑡 → (𝑠 (𝑃 𝑄) ↔ 𝑡 (𝑃 𝑄)))
2 oveq1 7376 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (𝑠 𝑧) = (𝑡 𝑧))
32oveq1d 7384 . . . . . . . . . . 11 (𝑠 = 𝑡 → ((𝑠 𝑧) 𝑊) = ((𝑡 𝑧) 𝑊))
43oveq2d 7385 . . . . . . . . . 10 (𝑠 = 𝑡 → (𝑍 ((𝑠 𝑧) 𝑊)) = (𝑍 ((𝑡 𝑧) 𝑊)))
54oveq2d 7385 . . . . . . . . 9 (𝑠 = 𝑡 → ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊))) = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))
6 cdleme27.n . . . . . . . . 9 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
7 cdleme27.o . . . . . . . . 9 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
85, 6, 73eqtr4g 2789 . . . . . . . 8 (𝑠 = 𝑡𝑁 = 𝑂)
98eqeq2d 2740 . . . . . . 7 (𝑠 = 𝑡 → (𝑢 = 𝑁𝑢 = 𝑂))
109imbi2d 340 . . . . . 6 (𝑠 = 𝑡 → (((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁) ↔ ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂)))
1110ralbidv 3156 . . . . 5 (𝑠 = 𝑡 → (∀𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁) ↔ ∀𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂)))
1211riotabidv 7328 . . . 4 (𝑠 = 𝑡 → (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁)) = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂)))
13 cdleme27.d . . . 4 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
14 cdleme27.e . . . 4 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
1512, 13, 143eqtr4g 2789 . . 3 (𝑠 = 𝑡𝐷 = 𝐸)
16 oveq1 7376 . . . . 5 (𝑠 = 𝑡 → (𝑠 𝑈) = (𝑡 𝑈))
17 oveq2 7377 . . . . . . 7 (𝑠 = 𝑡 → (𝑃 𝑠) = (𝑃 𝑡))
1817oveq1d 7384 . . . . . 6 (𝑠 = 𝑡 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑡) 𝑊))
1918oveq2d 7385 . . . . 5 (𝑠 = 𝑡 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑡) 𝑊)))
2016, 19oveq12d 7387 . . . 4 (𝑠 = 𝑡 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))))
21 cdleme27.f . . . 4 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
22 cdleme27.g . . . 4 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
2320, 21, 223eqtr4g 2789 . . 3 (𝑠 = 𝑡𝐹 = 𝐺)
241, 15, 23ifbieq12d 4513 . 2 (𝑠 = 𝑡 → if(𝑠 (𝑃 𝑄), 𝐷, 𝐹) = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺))
25 cdleme27.c . 2 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
26 cdleme27.y . 2 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
2724, 25, 263eqtr4g 2789 1 (𝑠 = 𝑡𝐶 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wral 3044  ifcif 4484   class class class wbr 5102  cfv 6499  crio 7325  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  Atomscatm 39229  LHypclh 39951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507  df-riota 7326  df-ov 7372
This theorem is referenced by:  cdleme27N  40336  cdleme28c  40339
  Copyright terms: Public domain W3C validator