Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme27b Structured version   Visualization version   GIF version

Theorem cdleme27b 40350
Description: Lemma for cdleme27N 40351. (Contributed by NM, 3-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐵 = (Base‘𝐾)
cdleme26.l = (le‘𝐾)
cdleme26.j = (join‘𝐾)
cdleme26.m = (meet‘𝐾)
cdleme26.a 𝐴 = (Atoms‘𝐾)
cdleme26.h 𝐻 = (LHyp‘𝐾)
cdleme27.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme27.f 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme27.z 𝑍 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme27.n 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
cdleme27.d 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
cdleme27.c 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
cdleme27.g 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme27.o 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
cdleme27.e 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
cdleme27.y 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
Assertion
Ref Expression
cdleme27b (𝑠 = 𝑡𝐶 = 𝑌)
Distinct variable groups:   𝑡,𝑠,𝑢,𝑧,𝐴   𝐵,𝑠,𝑡,𝑢,𝑧   𝑢,𝐹   𝑢,𝐺   𝐻,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝐾,𝑠,𝑡,𝑧   ,𝑠,𝑡,𝑢,𝑧   ,𝑠,𝑡,𝑢,𝑧   𝑡,𝑁,𝑢   𝑂,𝑠,𝑢   𝑃,𝑠,𝑡,𝑢,𝑧   𝑄,𝑠,𝑡,𝑢,𝑧   𝑈,𝑠,𝑡,𝑢,𝑧   𝑊,𝑠,𝑡,𝑢,𝑧
Allowed substitution hints:   𝐶(𝑧,𝑢,𝑡,𝑠)   𝐷(𝑧,𝑢,𝑡,𝑠)   𝐸(𝑧,𝑢,𝑡,𝑠)   𝐹(𝑧,𝑡,𝑠)   𝐺(𝑧,𝑡,𝑠)   𝐻(𝑢)   𝐾(𝑢)   𝑁(𝑧,𝑠)   𝑂(𝑧,𝑡)   𝑌(𝑧,𝑢,𝑡,𝑠)   𝑍(𝑧,𝑢,𝑡,𝑠)

Proof of Theorem cdleme27b
StepHypRef Expression
1 breq1 5150 . . 3 (𝑠 = 𝑡 → (𝑠 (𝑃 𝑄) ↔ 𝑡 (𝑃 𝑄)))
2 oveq1 7437 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (𝑠 𝑧) = (𝑡 𝑧))
32oveq1d 7445 . . . . . . . . . . 11 (𝑠 = 𝑡 → ((𝑠 𝑧) 𝑊) = ((𝑡 𝑧) 𝑊))
43oveq2d 7446 . . . . . . . . . 10 (𝑠 = 𝑡 → (𝑍 ((𝑠 𝑧) 𝑊)) = (𝑍 ((𝑡 𝑧) 𝑊)))
54oveq2d 7446 . . . . . . . . 9 (𝑠 = 𝑡 → ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊))) = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊))))
6 cdleme27.n . . . . . . . . 9 𝑁 = ((𝑃 𝑄) (𝑍 ((𝑠 𝑧) 𝑊)))
7 cdleme27.o . . . . . . . . 9 𝑂 = ((𝑃 𝑄) (𝑍 ((𝑡 𝑧) 𝑊)))
85, 6, 73eqtr4g 2799 . . . . . . . 8 (𝑠 = 𝑡𝑁 = 𝑂)
98eqeq2d 2745 . . . . . . 7 (𝑠 = 𝑡 → (𝑢 = 𝑁𝑢 = 𝑂))
109imbi2d 340 . . . . . 6 (𝑠 = 𝑡 → (((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁) ↔ ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂)))
1110ralbidv 3175 . . . . 5 (𝑠 = 𝑡 → (∀𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁) ↔ ∀𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂)))
1211riotabidv 7389 . . . 4 (𝑠 = 𝑡 → (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁)) = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂)))
13 cdleme27.d . . . 4 𝐷 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑁))
14 cdleme27.e . . . 4 𝐸 = (𝑢𝐵𝑧𝐴 ((¬ 𝑧 𝑊 ∧ ¬ 𝑧 (𝑃 𝑄)) → 𝑢 = 𝑂))
1512, 13, 143eqtr4g 2799 . . 3 (𝑠 = 𝑡𝐷 = 𝐸)
16 oveq1 7437 . . . . 5 (𝑠 = 𝑡 → (𝑠 𝑈) = (𝑡 𝑈))
17 oveq2 7438 . . . . . . 7 (𝑠 = 𝑡 → (𝑃 𝑠) = (𝑃 𝑡))
1817oveq1d 7445 . . . . . 6 (𝑠 = 𝑡 → ((𝑃 𝑠) 𝑊) = ((𝑃 𝑡) 𝑊))
1918oveq2d 7446 . . . . 5 (𝑠 = 𝑡 → (𝑄 ((𝑃 𝑠) 𝑊)) = (𝑄 ((𝑃 𝑡) 𝑊)))
2016, 19oveq12d 7448 . . . 4 (𝑠 = 𝑡 → ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊))) = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊))))
21 cdleme27.f . . . 4 𝐹 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
22 cdleme27.g . . . 4 𝐺 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
2320, 21, 223eqtr4g 2799 . . 3 (𝑠 = 𝑡𝐹 = 𝐺)
241, 15, 23ifbieq12d 4558 . 2 (𝑠 = 𝑡 → if(𝑠 (𝑃 𝑄), 𝐷, 𝐹) = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺))
25 cdleme27.c . 2 𝐶 = if(𝑠 (𝑃 𝑄), 𝐷, 𝐹)
26 cdleme27.y . 2 𝑌 = if(𝑡 (𝑃 𝑄), 𝐸, 𝐺)
2724, 25, 263eqtr4g 2799 1 (𝑠 = 𝑡𝐶 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wral 3058  ifcif 4530   class class class wbr 5147  cfv 6562  crio 7386  (class class class)co 7430  Basecbs 17244  lecple 17304  joincjn 18368  meetcmee 18369  Atomscatm 39244  LHypclh 39966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-iota 6515  df-fv 6570  df-riota 7387  df-ov 7433
This theorem is referenced by:  cdleme27N  40351  cdleme28c  40354
  Copyright terms: Public domain W3C validator