Proof of Theorem cdleme27N
Step | Hyp | Ref
| Expression |
1 | | cdleme26.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
2 | | cdleme26.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
3 | | cdleme26.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
4 | | cdleme26.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
5 | | cdleme26.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
6 | | cdleme26.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | cdleme27.u |
. . . . 5
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
8 | | cdleme27.f |
. . . . 5
⊢ 𝐹 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
9 | | cdleme27.z |
. . . . 5
⊢ 𝑍 = ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) |
10 | | cdleme27.n |
. . . . 5
⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑠 ∨ 𝑧) ∧ 𝑊))) |
11 | | cdleme27.d |
. . . . 5
⊢ 𝐷 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) |
12 | | cdleme27.c |
. . . . 5
⊢ 𝐶 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐷, 𝐹) |
13 | | cdleme27.g |
. . . . 5
⊢ 𝐺 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
14 | | cdleme27.o |
. . . . 5
⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))) |
15 | | cdleme27.e |
. . . . 5
⊢ 𝐸 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑂)) |
16 | | cdleme27.y |
. . . . 5
⊢ 𝑌 = if(𝑡 ≤ (𝑃 ∨ 𝑄), 𝐸, 𝐺) |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16 | cdleme27b 38309 |
. . . 4
⊢ (𝑠 = 𝑡 → 𝐶 = 𝑌) |
18 | 17 | adantl 481 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ 𝑠 = 𝑡) → 𝐶 = 𝑌) |
19 | | simp11l 1282 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐾 ∈ HL) |
20 | 19 | hllatd 37305 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐾 ∈ Lat) |
21 | | simp11r 1283 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑊 ∈ 𝐻) |
22 | | simp21 1204 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
23 | | simp22 1205 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
24 | | simp23 1206 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) |
25 | | simp12 1202 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑃 ≠ 𝑄) |
26 | 1, 2, 3, 4, 5, 6, 7, 13, 9, 14, 15, 16 | cdleme27cl 38307 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄)) → 𝑌 ∈ 𝐵) |
27 | 19, 21, 22, 23, 24, 25, 26 | syl222anc 1384 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑌 ∈ 𝐵) |
28 | | simp3rl 1244 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑉 ∈ 𝐴) |
29 | 1, 5 | atbase 37230 |
. . . . . 6
⊢ (𝑉 ∈ 𝐴 → 𝑉 ∈ 𝐵) |
30 | 28, 29 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑉 ∈ 𝐵) |
31 | 1, 2, 3 | latlej1 18081 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵) → 𝑌 ≤ (𝑌 ∨ 𝑉)) |
32 | 20, 27, 30, 31 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝑌 ≤ (𝑌 ∨ 𝑉)) |
33 | 32 | adantr 480 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ 𝑠 = 𝑡) → 𝑌 ≤ (𝑌 ∨ 𝑉)) |
34 | 18, 33 | eqbrtrd 5092 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ 𝑠 = 𝑡) → 𝐶 ≤ (𝑌 ∨ 𝑉)) |
35 | | simpl11 1246 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
36 | | simpl12 1247 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → 𝑃 ≠ 𝑄) |
37 | | simpl13 1248 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) |
38 | | simpl21 1249 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
39 | | simpl22 1250 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
40 | | simpl23 1251 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) |
41 | | simpr 484 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → 𝑠 ≠ 𝑡) |
42 | | simpl3l 1226 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → 𝑠 ≤ (𝑡 ∨ 𝑉)) |
43 | 41, 42 | jca 511 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → (𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉))) |
44 | | simpl3r 1227 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊)) |
45 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16 | cdleme27a 38308 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ≠ 𝑡 ∧ 𝑠 ≤ (𝑡 ∨ 𝑉)) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐶 ≤ (𝑌 ∨ 𝑉)) |
46 | 35, 36, 37, 38, 39, 40, 43, 44, 45 | syl332anc 1399 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → 𝐶 ≤ (𝑌 ∨ 𝑉)) |
47 | 34, 46 | pm2.61dane 3031 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≤ (𝑡 ∨ 𝑉) ∧ (𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊))) → 𝐶 ≤ (𝑌 ∨ 𝑉)) |