Proof of Theorem cdleme28c
Step | Hyp | Ref
| Expression |
1 | | cdleme26.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
2 | | cdleme26.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
3 | | cdleme26.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
4 | | cdleme26.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
5 | | cdleme26.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
6 | | cdleme26.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
7 | | cdleme27.u |
. . . . 5
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
8 | | cdleme27.f |
. . . . 5
⊢ 𝐹 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) |
9 | | cdleme27.z |
. . . . 5
⊢ 𝑍 = ((𝑧 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ 𝑊))) |
10 | | cdleme27.n |
. . . . 5
⊢ 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑠 ∨ 𝑧) ∧ 𝑊))) |
11 | | cdleme27.d |
. . . . 5
⊢ 𝐷 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑁)) |
12 | | cdleme27.c |
. . . . 5
⊢ 𝐶 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐷, 𝐹) |
13 | | cdleme27.g |
. . . . 5
⊢ 𝐺 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) |
14 | | cdleme27.o |
. . . . 5
⊢ 𝑂 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑡 ∨ 𝑧) ∧ 𝑊))) |
15 | | cdleme27.e |
. . . . 5
⊢ 𝐸 = (℩𝑢 ∈ 𝐵 ∀𝑧 ∈ 𝐴 ((¬ 𝑧 ≤ 𝑊 ∧ ¬ 𝑧 ≤ (𝑃 ∨ 𝑄)) → 𝑢 = 𝑂)) |
16 | | cdleme27.y |
. . . . 5
⊢ 𝑌 = if(𝑡 ≤ (𝑃 ∨ 𝑄), 𝐸, 𝐺) |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16 | cdleme27b 38309 |
. . . 4
⊢ (𝑠 = 𝑡 → 𝐶 = 𝑌) |
18 | 17 | oveq1d 7270 |
. . 3
⊢ (𝑠 = 𝑡 → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (𝑌 ∨ (𝑋 ∧ 𝑊))) |
19 | 18 | adantl 481 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) ∧ 𝑠 = 𝑡) → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (𝑌 ∨ (𝑋 ∧ 𝑊))) |
20 | | simpl11 1246 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
21 | | simpl12 1247 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
22 | | simpl13 1248 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
23 | | simpl21 1249 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → 𝑃 ≠ 𝑄) |
24 | | simpl22 1250 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊)) |
25 | | simpl23 1251 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) |
26 | | simpr 484 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → 𝑠 ≠ 𝑡) |
27 | | simpl31 1252 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → (𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
28 | | simpl32 1253 |
. . . 4
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) |
29 | 27, 28 | jca 511 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋)) |
30 | | simpl33 1254 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊)) |
31 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16 | cdleme28b 38312 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ (𝑠 ≠ 𝑡 ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (𝑌 ∨ (𝑋 ∧ 𝑊))) |
32 | 20, 21, 22, 23, 24, 25, 26, 29, 30, 31 | syl333anc 1400 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) ∧ 𝑠 ≠ 𝑡) → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (𝑌 ∨ (𝑋 ∧ 𝑊))) |
33 | 19, 32 | pm2.61dane 3031 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊) ∧ (𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊)) ∧ ((𝑠 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑡 ∨ (𝑋 ∧ 𝑊)) = 𝑋 ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊))) → (𝐶 ∨ (𝑋 ∧ 𝑊)) = (𝑌 ∨ (𝑋 ∧ 𝑊))) |