Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31se2 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 3-Apr-2013.) |
Ref | Expression |
---|---|
cdleme31se2.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) |
cdleme31se2.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∧ (⦋𝑆 / 𝑡⦌𝐷 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
Ref | Expression |
---|---|
cdleme31se2 | ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑡⦌𝐸 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑡(𝑃 ∨ 𝑄) | |
2 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑡 ∧ | |
3 | nfcsb1v 3853 | . . . . . 6 ⊢ Ⅎ𝑡⦋𝑆 / 𝑡⦌𝐷 | |
4 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑡 ∨ | |
5 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑡((𝑅 ∨ 𝑆) ∧ 𝑊) | |
6 | 3, 4, 5 | nfov 7285 | . . . . 5 ⊢ Ⅎ𝑡(⦋𝑆 / 𝑡⦌𝐷 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) |
7 | 1, 2, 6 | nfov 7285 | . . . 4 ⊢ Ⅎ𝑡((𝑃 ∨ 𝑄) ∧ (⦋𝑆 / 𝑡⦌𝐷 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
8 | 7 | a1i 11 | . . 3 ⊢ (𝑆 ∈ 𝐴 → Ⅎ𝑡((𝑃 ∨ 𝑄) ∧ (⦋𝑆 / 𝑡⦌𝐷 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
9 | csbeq1a 3842 | . . . . 5 ⊢ (𝑡 = 𝑆 → 𝐷 = ⦋𝑆 / 𝑡⦌𝐷) | |
10 | oveq2 7263 | . . . . . 6 ⊢ (𝑡 = 𝑆 → (𝑅 ∨ 𝑡) = (𝑅 ∨ 𝑆)) | |
11 | 10 | oveq1d 7270 | . . . . 5 ⊢ (𝑡 = 𝑆 → ((𝑅 ∨ 𝑡) ∧ 𝑊) = ((𝑅 ∨ 𝑆) ∧ 𝑊)) |
12 | 9, 11 | oveq12d 7273 | . . . 4 ⊢ (𝑡 = 𝑆 → (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊)) = (⦋𝑆 / 𝑡⦌𝐷 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
13 | 12 | oveq2d 7271 | . . 3 ⊢ (𝑡 = 𝑆 → ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (⦋𝑆 / 𝑡⦌𝐷 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
14 | 8, 13 | csbiegf 3862 | . 2 ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑡⦌((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (⦋𝑆 / 𝑡⦌𝐷 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
15 | cdleme31se2.e | . . 3 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) | |
16 | 15 | csbeq2i 3836 | . 2 ⊢ ⦋𝑆 / 𝑡⦌𝐸 = ⦋𝑆 / 𝑡⦌((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) |
17 | cdleme31se2.y | . 2 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∧ (⦋𝑆 / 𝑡⦌𝐷 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) | |
18 | 14, 16, 17 | 3eqtr4g 2804 | 1 ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑡⦌𝐸 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 ⦋csb 3828 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: cdlemeg47rv2 38451 |
Copyright terms: Public domain | W3C validator |