![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31se2 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 3-Apr-2013.) |
Ref | Expression |
---|---|
cdleme31se2.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) |
cdleme31se2.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∧ (⦋𝑆 / 𝑡⦌𝐷 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
Ref | Expression |
---|---|
cdleme31se2 | ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑡⦌𝐸 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑡(𝑃 ∨ 𝑄) | |
2 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑡 ∧ | |
3 | nfcsb1v 3914 | . . . . . 6 ⊢ Ⅎ𝑡⦋𝑆 / 𝑡⦌𝐷 | |
4 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑡 ∨ | |
5 | nfcv 2898 | . . . . . 6 ⊢ Ⅎ𝑡((𝑅 ∨ 𝑆) ∧ 𝑊) | |
6 | 3, 4, 5 | nfov 7444 | . . . . 5 ⊢ Ⅎ𝑡(⦋𝑆 / 𝑡⦌𝐷 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) |
7 | 1, 2, 6 | nfov 7444 | . . . 4 ⊢ Ⅎ𝑡((𝑃 ∨ 𝑄) ∧ (⦋𝑆 / 𝑡⦌𝐷 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
8 | 7 | a1i 11 | . . 3 ⊢ (𝑆 ∈ 𝐴 → Ⅎ𝑡((𝑃 ∨ 𝑄) ∧ (⦋𝑆 / 𝑡⦌𝐷 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
9 | csbeq1a 3903 | . . . . 5 ⊢ (𝑡 = 𝑆 → 𝐷 = ⦋𝑆 / 𝑡⦌𝐷) | |
10 | oveq2 7422 | . . . . . 6 ⊢ (𝑡 = 𝑆 → (𝑅 ∨ 𝑡) = (𝑅 ∨ 𝑆)) | |
11 | 10 | oveq1d 7429 | . . . . 5 ⊢ (𝑡 = 𝑆 → ((𝑅 ∨ 𝑡) ∧ 𝑊) = ((𝑅 ∨ 𝑆) ∧ 𝑊)) |
12 | 9, 11 | oveq12d 7432 | . . . 4 ⊢ (𝑡 = 𝑆 → (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊)) = (⦋𝑆 / 𝑡⦌𝐷 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
13 | 12 | oveq2d 7430 | . . 3 ⊢ (𝑡 = 𝑆 → ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (⦋𝑆 / 𝑡⦌𝐷 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
14 | 8, 13 | csbiegf 3923 | . 2 ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑡⦌((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (⦋𝑆 / 𝑡⦌𝐷 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
15 | cdleme31se2.e | . . 3 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) | |
16 | 15 | csbeq2i 3897 | . 2 ⊢ ⦋𝑆 / 𝑡⦌𝐸 = ⦋𝑆 / 𝑡⦌((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑡) ∧ 𝑊))) |
17 | cdleme31se2.y | . 2 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∧ (⦋𝑆 / 𝑡⦌𝐷 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) | |
18 | 14, 16, 17 | 3eqtr4g 2792 | 1 ⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑡⦌𝐸 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Ⅎwnfc 2878 ⦋csb 3889 (class class class)co 7414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-iota 6494 df-fv 6550 df-ov 7417 |
This theorem is referenced by: cdlemeg47rv2 39907 |
Copyright terms: Public domain | W3C validator |