Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31se2 Structured version   Visualization version   GIF version

Theorem cdleme31se2 38324
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 3-Apr-2013.)
Hypotheses
Ref Expression
cdleme31se2.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑅 𝑡) 𝑊)))
cdleme31se2.y 𝑌 = ((𝑃 𝑄) (𝑆 / 𝑡𝐷 ((𝑅 𝑆) 𝑊)))
Assertion
Ref Expression
cdleme31se2 (𝑆𝐴𝑆 / 𝑡𝐸 = 𝑌)
Distinct variable groups:   𝑡,𝐴   𝑡,   𝑡,   𝑡,𝑃   𝑡,𝑄   𝑡,𝑅   𝑡,𝑆   𝑡,𝑊
Allowed substitution hints:   𝐷(𝑡)   𝐸(𝑡)   𝑌(𝑡)

Proof of Theorem cdleme31se2
StepHypRef Expression
1 nfcv 2906 . . . . 5 𝑡(𝑃 𝑄)
2 nfcv 2906 . . . . 5 𝑡
3 nfcsb1v 3853 . . . . . 6 𝑡𝑆 / 𝑡𝐷
4 nfcv 2906 . . . . . 6 𝑡
5 nfcv 2906 . . . . . 6 𝑡((𝑅 𝑆) 𝑊)
63, 4, 5nfov 7285 . . . . 5 𝑡(𝑆 / 𝑡𝐷 ((𝑅 𝑆) 𝑊))
71, 2, 6nfov 7285 . . . 4 𝑡((𝑃 𝑄) (𝑆 / 𝑡𝐷 ((𝑅 𝑆) 𝑊)))
87a1i 11 . . 3 (𝑆𝐴𝑡((𝑃 𝑄) (𝑆 / 𝑡𝐷 ((𝑅 𝑆) 𝑊))))
9 csbeq1a 3842 . . . . 5 (𝑡 = 𝑆𝐷 = 𝑆 / 𝑡𝐷)
10 oveq2 7263 . . . . . 6 (𝑡 = 𝑆 → (𝑅 𝑡) = (𝑅 𝑆))
1110oveq1d 7270 . . . . 5 (𝑡 = 𝑆 → ((𝑅 𝑡) 𝑊) = ((𝑅 𝑆) 𝑊))
129, 11oveq12d 7273 . . . 4 (𝑡 = 𝑆 → (𝐷 ((𝑅 𝑡) 𝑊)) = (𝑆 / 𝑡𝐷 ((𝑅 𝑆) 𝑊)))
1312oveq2d 7271 . . 3 (𝑡 = 𝑆 → ((𝑃 𝑄) (𝐷 ((𝑅 𝑡) 𝑊))) = ((𝑃 𝑄) (𝑆 / 𝑡𝐷 ((𝑅 𝑆) 𝑊))))
148, 13csbiegf 3862 . 2 (𝑆𝐴𝑆 / 𝑡((𝑃 𝑄) (𝐷 ((𝑅 𝑡) 𝑊))) = ((𝑃 𝑄) (𝑆 / 𝑡𝐷 ((𝑅 𝑆) 𝑊))))
15 cdleme31se2.e . . 3 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑅 𝑡) 𝑊)))
1615csbeq2i 3836 . 2 𝑆 / 𝑡𝐸 = 𝑆 / 𝑡((𝑃 𝑄) (𝐷 ((𝑅 𝑡) 𝑊)))
17 cdleme31se2.y . 2 𝑌 = ((𝑃 𝑄) (𝑆 / 𝑡𝐷 ((𝑅 𝑆) 𝑊)))
1814, 16, 173eqtr4g 2804 1 (𝑆𝐴𝑆 / 𝑡𝐸 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wnfc 2886  csb 3828  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  cdlemeg47rv2  38451
  Copyright terms: Public domain W3C validator