![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31se | Structured version Visualization version GIF version |
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.) |
Ref | Expression |
---|---|
cdleme31se.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑇) ∧ 𝑊))) |
cdleme31se.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑇) ∧ 𝑊))) |
Ref | Expression |
---|---|
cdleme31se | ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝐸 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvd 2909 | . . 3 ⊢ (𝑅 ∈ 𝐴 → Ⅎ𝑠((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑇) ∧ 𝑊)))) | |
2 | oveq1 7369 | . . . . . 6 ⊢ (𝑠 = 𝑅 → (𝑠 ∨ 𝑇) = (𝑅 ∨ 𝑇)) | |
3 | 2 | oveq1d 7377 | . . . . 5 ⊢ (𝑠 = 𝑅 → ((𝑠 ∨ 𝑇) ∧ 𝑊) = ((𝑅 ∨ 𝑇) ∧ 𝑊)) |
4 | 3 | oveq2d 7378 | . . . 4 ⊢ (𝑠 = 𝑅 → (𝐷 ∨ ((𝑠 ∨ 𝑇) ∧ 𝑊)) = (𝐷 ∨ ((𝑅 ∨ 𝑇) ∧ 𝑊))) |
5 | 4 | oveq2d 7378 | . . 3 ⊢ (𝑠 = 𝑅 → ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑇) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑇) ∧ 𝑊)))) |
6 | 1, 5 | csbiegf 3894 | . 2 ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑇) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑇) ∧ 𝑊)))) |
7 | cdleme31se.e | . . 3 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑇) ∧ 𝑊))) | |
8 | 7 | csbeq2i 3868 | . 2 ⊢ ⦋𝑅 / 𝑠⦌𝐸 = ⦋𝑅 / 𝑠⦌((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑇) ∧ 𝑊))) |
9 | cdleme31se.y | . 2 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑇) ∧ 𝑊))) | |
10 | 6, 8, 9 | 3eqtr4g 2802 | 1 ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝐸 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ⦋csb 3860 (class class class)co 7362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-iota 6453 df-fv 6509 df-ov 7365 |
This theorem is referenced by: cdleme31sde 38877 cdleme31sn1c 38880 |
Copyright terms: Public domain | W3C validator |