![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme31se | Structured version Visualization version GIF version |
Description: Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 26-Feb-2013.) |
Ref | Expression |
---|---|
cdleme31se.e | ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑇) ∧ 𝑊))) |
cdleme31se.y | ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑇) ∧ 𝑊))) |
Ref | Expression |
---|---|
cdleme31se | ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝐸 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvd 2904 | . . 3 ⊢ (𝑅 ∈ 𝐴 → Ⅎ𝑠((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑇) ∧ 𝑊)))) | |
2 | oveq1 7415 | . . . . . 6 ⊢ (𝑠 = 𝑅 → (𝑠 ∨ 𝑇) = (𝑅 ∨ 𝑇)) | |
3 | 2 | oveq1d 7423 | . . . . 5 ⊢ (𝑠 = 𝑅 → ((𝑠 ∨ 𝑇) ∧ 𝑊) = ((𝑅 ∨ 𝑇) ∧ 𝑊)) |
4 | 3 | oveq2d 7424 | . . . 4 ⊢ (𝑠 = 𝑅 → (𝐷 ∨ ((𝑠 ∨ 𝑇) ∧ 𝑊)) = (𝐷 ∨ ((𝑅 ∨ 𝑇) ∧ 𝑊))) |
5 | 4 | oveq2d 7424 | . . 3 ⊢ (𝑠 = 𝑅 → ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑇) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑇) ∧ 𝑊)))) |
6 | 1, 5 | csbiegf 3927 | . 2 ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑇) ∧ 𝑊))) = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑇) ∧ 𝑊)))) |
7 | cdleme31se.e | . . 3 ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑇) ∧ 𝑊))) | |
8 | 7 | csbeq2i 3901 | . 2 ⊢ ⦋𝑅 / 𝑠⦌𝐸 = ⦋𝑅 / 𝑠⦌((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑇) ∧ 𝑊))) |
9 | cdleme31se.y | . 2 ⊢ 𝑌 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑇) ∧ 𝑊))) | |
10 | 6, 8, 9 | 3eqtr4g 2797 | 1 ⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑠⦌𝐸 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ⦋csb 3893 (class class class)co 7408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 df-ov 7411 |
This theorem is referenced by: cdleme31sde 39251 cdleme31sn1c 39254 |
Copyright terms: Public domain | W3C validator |