Proof of Theorem cdlemeg47rv2
| Step | Hyp | Ref
| Expression |
| 1 | | cdlemef47.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
| 2 | | cdlemef47.l |
. . 3
⊢ ≤ =
(le‘𝐾) |
| 3 | | cdlemef47.j |
. . 3
⊢ ∨ =
(join‘𝐾) |
| 4 | | cdlemef47.m |
. . 3
⊢ ∧ =
(meet‘𝐾) |
| 5 | | cdlemef47.a |
. . 3
⊢ 𝐴 = (Atoms‘𝐾) |
| 6 | | cdlemef47.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
| 7 | | cdlemef47.v |
. . 3
⊢ 𝑉 = ((𝑄 ∨ 𝑃) ∧ 𝑊) |
| 8 | | cdlemef47.n |
. . 3
⊢ 𝑁 = ((𝑣 ∨ 𝑉) ∧ (𝑃 ∨ ((𝑄 ∨ 𝑣) ∧ 𝑊))) |
| 9 | | cdlemefs47.o |
. . 3
⊢ 𝑂 = ((𝑄 ∨ 𝑃) ∧ (𝑁 ∨ ((𝑢 ∨ 𝑣) ∧ 𝑊))) |
| 10 | | cdlemef47.g |
. . 3
⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ if((𝑄 ≠ 𝑃 ∧ ¬ 𝑎 ≤ 𝑊), (℩𝑐 ∈ 𝐵 ∀𝑢 ∈ 𝐴 ((¬ 𝑢 ≤ 𝑊 ∧ (𝑢 ∨ (𝑎 ∧ 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 ≤ (𝑄 ∨ 𝑃), (℩𝑏 ∈ 𝐵 ∀𝑣 ∈ 𝐴 ((¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ (𝑄 ∨ 𝑃)) → 𝑏 = 𝑂)), ⦋𝑢 / 𝑣⦌𝑁) ∨ (𝑎 ∧ 𝑊)))), 𝑎)) |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdlemeg47rv 40486 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝐺‘𝑅) = ⦋𝑅 / 𝑢⦌⦋𝑆 / 𝑣⦌𝑂) |
| 12 | | simp22l 1292 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑅 ∈ 𝐴) |
| 13 | | nfcvd 2898 |
. . . . 5
⊢ (𝑅 ∈ 𝐴 → Ⅎ𝑢((𝑄 ∨ 𝑃) ∧ (⦋𝑆 / 𝑣⦌𝑁 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
| 14 | | oveq1 7420 |
. . . . . . . 8
⊢ (𝑢 = 𝑅 → (𝑢 ∨ 𝑆) = (𝑅 ∨ 𝑆)) |
| 15 | 14 | oveq1d 7428 |
. . . . . . 7
⊢ (𝑢 = 𝑅 → ((𝑢 ∨ 𝑆) ∧ 𝑊) = ((𝑅 ∨ 𝑆) ∧ 𝑊)) |
| 16 | 15 | oveq2d 7429 |
. . . . . 6
⊢ (𝑢 = 𝑅 → (⦋𝑆 / 𝑣⦌𝑁 ∨ ((𝑢 ∨ 𝑆) ∧ 𝑊)) = (⦋𝑆 / 𝑣⦌𝑁 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
| 17 | 16 | oveq2d 7429 |
. . . . 5
⊢ (𝑢 = 𝑅 → ((𝑄 ∨ 𝑃) ∧ (⦋𝑆 / 𝑣⦌𝑁 ∨ ((𝑢 ∨ 𝑆) ∧ 𝑊))) = ((𝑄 ∨ 𝑃) ∧ (⦋𝑆 / 𝑣⦌𝑁 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
| 18 | 13, 17 | csbiegf 3912 |
. . . 4
⊢ (𝑅 ∈ 𝐴 → ⦋𝑅 / 𝑢⦌((𝑄 ∨ 𝑃) ∧ (⦋𝑆 / 𝑣⦌𝑁 ∨ ((𝑢 ∨ 𝑆) ∧ 𝑊))) = ((𝑄 ∨ 𝑃) ∧ (⦋𝑆 / 𝑣⦌𝑁 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
| 19 | 12, 18 | syl 17 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ⦋𝑅 / 𝑢⦌((𝑄 ∨ 𝑃) ∧ (⦋𝑆 / 𝑣⦌𝑁 ∨ ((𝑢 ∨ 𝑆) ∧ 𝑊))) = ((𝑄 ∨ 𝑃) ∧ (⦋𝑆 / 𝑣⦌𝑁 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
| 20 | | simp23l 1294 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ∈ 𝐴) |
| 21 | | eqid 2734 |
. . . . . 6
⊢ ((𝑄 ∨ 𝑃) ∧ (⦋𝑆 / 𝑣⦌𝑁 ∨ ((𝑢 ∨ 𝑆) ∧ 𝑊))) = ((𝑄 ∨ 𝑃) ∧ (⦋𝑆 / 𝑣⦌𝑁 ∨ ((𝑢 ∨ 𝑆) ∧ 𝑊))) |
| 22 | 9, 21 | cdleme31se2 40360 |
. . . . 5
⊢ (𝑆 ∈ 𝐴 → ⦋𝑆 / 𝑣⦌𝑂 = ((𝑄 ∨ 𝑃) ∧ (⦋𝑆 / 𝑣⦌𝑁 ∨ ((𝑢 ∨ 𝑆) ∧ 𝑊)))) |
| 23 | 20, 22 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ⦋𝑆 / 𝑣⦌𝑂 = ((𝑄 ∨ 𝑃) ∧ (⦋𝑆 / 𝑣⦌𝑁 ∨ ((𝑢 ∨ 𝑆) ∧ 𝑊)))) |
| 24 | 23 | csbeq2dv 3886 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ⦋𝑅 / 𝑢⦌⦋𝑆 / 𝑣⦌𝑂 = ⦋𝑅 / 𝑢⦌((𝑄 ∨ 𝑃) ∧ (⦋𝑆 / 𝑣⦌𝑁 ∨ ((𝑢 ∨ 𝑆) ∧ 𝑊)))) |
| 25 | | simp1 1136 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
| 26 | | simp21 1206 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑃 ≠ 𝑄) |
| 27 | | simp23 1208 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) |
| 28 | | simp3r 1202 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
| 29 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | cdlemeg47b 40485 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝐺‘𝑆) = ⦋𝑆 / 𝑣⦌𝑁) |
| 30 | 25, 26, 27, 28, 29 | syl121anc 1376 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝐺‘𝑆) = ⦋𝑆 / 𝑣⦌𝑁) |
| 31 | 30 | oveq1d 7428 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ((𝐺‘𝑆) ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)) = (⦋𝑆 / 𝑣⦌𝑁 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) |
| 32 | 31 | oveq2d 7429 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ((𝑄 ∨ 𝑃) ∧ ((𝐺‘𝑆) ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) = ((𝑄 ∨ 𝑃) ∧ (⦋𝑆 / 𝑣⦌𝑁 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
| 33 | 19, 24, 32 | 3eqtr4d 2779 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ⦋𝑅 / 𝑢⦌⦋𝑆 / 𝑣⦌𝑂 = ((𝑄 ∨ 𝑃) ∧ ((𝐺‘𝑆) ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |
| 34 | 11, 33 | eqtrd 2769 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → (𝐺‘𝑅) = ((𝑄 ∨ 𝑃) ∧ ((𝐺‘𝑆) ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊)))) |