Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diclspsn Structured version   Visualization version   GIF version

Theorem diclspsn 38490
Description: The value of isomorphism C is spanned by vector 𝐹. Part of proof of Lemma N of [Crawley] p. 121 line 29. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
diclspsn.l = (le‘𝐾)
diclspsn.a 𝐴 = (Atoms‘𝐾)
diclspsn.h 𝐻 = (LHyp‘𝐾)
diclspsn.p 𝑃 = ((oc‘𝐾)‘𝑊)
diclspsn.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diclspsn.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
diclspsn.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
diclspsn.n 𝑁 = (LSpan‘𝑈)
diclspsn.f 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)
Assertion
Ref Expression
diclspsn (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}))
Distinct variable groups:   ,𝑓   𝑃,𝑓   𝐴,𝑓   𝑓,𝐻   𝑇,𝑓   𝑓,𝐾   𝑄,𝑓   𝑓,𝑊
Allowed substitution hints:   𝑈(𝑓)   𝐹(𝑓)   𝐼(𝑓)   𝑁(𝑓)

Proof of Theorem diclspsn
Dummy variables 𝑔 𝑠 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3115 . . 3 {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} = {𝑣 ∣ (𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))}
2 relopab 5660 . . . . 5 Rel {⟨𝑦, 𝑧⟩ ∣ (𝑦 = (𝑧𝐹) ∧ 𝑧 ∈ ((TEndo‘𝐾)‘𝑊))}
3 diclspsn.l . . . . . . 7 = (le‘𝐾)
4 diclspsn.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 diclspsn.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
6 diclspsn.p . . . . . . 7 𝑃 = ((oc‘𝐾)‘𝑊)
7 diclspsn.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 eqid 2798 . . . . . . 7 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
9 diclspsn.i . . . . . . 7 𝐼 = ((DIsoC‘𝐾)‘𝑊)
10 diclspsn.f . . . . . . 7 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)
113, 4, 5, 6, 7, 8, 9, 10dicval2 38475 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑦, 𝑧⟩ ∣ (𝑦 = (𝑧𝐹) ∧ 𝑧 ∈ ((TEndo‘𝐾)‘𝑊))})
1211releqd 5617 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (Rel (𝐼𝑄) ↔ Rel {⟨𝑦, 𝑧⟩ ∣ (𝑦 = (𝑧𝐹) ∧ 𝑧 ∈ ((TEndo‘𝐾)‘𝑊))}))
132, 12mpbiri 261 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → Rel (𝐼𝑄))
14 ssrab2 4007 . . . . . 6 {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} ⊆ (𝑇 × ((TEndo‘𝐾)‘𝑊))
15 relxp 5537 . . . . . 6 Rel (𝑇 × ((TEndo‘𝐾)‘𝑊))
16 relss 5620 . . . . . 6 ({𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} ⊆ (𝑇 × ((TEndo‘𝐾)‘𝑊)) → (Rel (𝑇 × ((TEndo‘𝐾)‘𝑊)) → Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}))
1714, 15, 16mp2 9 . . . . 5 Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}
1817a1i 11 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
19 id 22 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
20 vex 3444 . . . . . . 7 𝑔 ∈ V
21 vex 3444 . . . . . . 7 𝑠 ∈ V
223, 4, 5, 6, 7, 8, 9, 10, 20, 21dicopelval2 38477 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑔, 𝑠⟩ ∈ (𝐼𝑄) ↔ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))))
23 simprl 770 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑔 = (𝑠𝐹))
24 simpll 766 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
25 simprr 772 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))
26 simpl 486 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
273, 4, 5, 6lhpocnel2 37315 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
2827adantr 484 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
29 simpr 488 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
303, 4, 5, 7, 10ltrniotacl 37875 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
3126, 28, 29, 30syl3anc 1368 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
3231adantr 484 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝐹𝑇)
335, 7, 8tendocl 38063 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
3424, 25, 32, 33syl3anc 1368 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑠𝐹) ∈ 𝑇)
3523, 34eqeltrd 2890 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑔𝑇)
3635, 25, 233jca 1125 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)))
37 simpr3 1193 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))) → 𝑔 = (𝑠𝐹))
38 simpr2 1192 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))) → 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))
3937, 38jca 515 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))) → (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)))
4036, 39impbida 800 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))))
41 diclspsn.u . . . . . . . . . . . . . 14 𝑈 = ((DVecH‘𝐾)‘𝑊)
42 eqid 2798 . . . . . . . . . . . . . 14 (Scalar‘𝑈) = (Scalar‘𝑈)
43 eqid 2798 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
445, 8, 41, 42, 43dvhbase 38379 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
4544adantr 484 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
4645rexeqdv 3365 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)))
47 simpll 766 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
48 simpr 488 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))
4931adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → 𝐹𝑇)
505, 7, 8tendoidcl 38065 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
5150ad2antrr 725 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
52 eqid 2798 . . . . . . . . . . . . . . . . . 18 ( ·𝑠𝑈) = ( ·𝑠𝑈)
535, 7, 8, 41, 52dvhopvsca 38398 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝐹𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) = ⟨(𝑥𝐹), (𝑥 ∘ ( I ↾ 𝑇))⟩)
5447, 48, 49, 51, 53syl13anc 1369 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) = ⟨(𝑥𝐹), (𝑥 ∘ ( I ↾ 𝑇))⟩)
5554eqeq2d 2809 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ⟨𝑔, 𝑠⟩ = ⟨(𝑥𝐹), (𝑥 ∘ ( I ↾ 𝑇))⟩))
5620, 21opth 5333 . . . . . . . . . . . . . . 15 (⟨𝑔, 𝑠⟩ = ⟨(𝑥𝐹), (𝑥 ∘ ( I ↾ 𝑇))⟩ ↔ (𝑔 = (𝑥𝐹) ∧ 𝑠 = (𝑥 ∘ ( I ↾ 𝑇))))
5755, 56syl6bb 290 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ (𝑔 = (𝑥𝐹) ∧ 𝑠 = (𝑥 ∘ ( I ↾ 𝑇)))))
585, 7, 8tendo1mulr 38067 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ ( I ↾ 𝑇)) = 𝑥)
5958adantlr 714 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ ( I ↾ 𝑇)) = 𝑥)
6059eqeq2d 2809 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑠 = (𝑥 ∘ ( I ↾ 𝑇)) ↔ 𝑠 = 𝑥))
61 equcom 2025 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑥𝑥 = 𝑠)
6260, 61syl6bb 290 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑠 = (𝑥 ∘ ( I ↾ 𝑇)) ↔ 𝑥 = 𝑠))
6362anbi2d 631 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → ((𝑔 = (𝑥𝐹) ∧ 𝑠 = (𝑥 ∘ ( I ↾ 𝑇))) ↔ (𝑔 = (𝑥𝐹) ∧ 𝑥 = 𝑠)))
6457, 63bitrd 282 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ (𝑔 = (𝑥𝐹) ∧ 𝑥 = 𝑠)))
65 ancom 464 . . . . . . . . . . . . 13 ((𝑔 = (𝑥𝐹) ∧ 𝑥 = 𝑠) ↔ (𝑥 = 𝑠𝑔 = (𝑥𝐹)))
6664, 65syl6bb 290 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ (𝑥 = 𝑠𝑔 = (𝑥𝐹))))
6766rexbidva 3255 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))))
6846, 67bitrd 282 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))))
69683anbi3d 1439 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹)))))
70 fveq1 6644 . . . . . . . . . . . . . 14 (𝑥 = 𝑠 → (𝑥𝐹) = (𝑠𝐹))
7170eqeq2d 2809 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (𝑔 = (𝑥𝐹) ↔ 𝑔 = (𝑠𝐹)))
7271ceqsrexv 3597 . . . . . . . . . . . 12 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) → (∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹)) ↔ 𝑔 = (𝑠𝐹)))
7372pm5.32i 578 . . . . . . . . . . 11 ((𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))) ↔ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)))
7473anbi2i 625 . . . . . . . . . 10 ((𝑔𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹)))) ↔ (𝑔𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))))
75 3anass 1092 . . . . . . . . . 10 ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))) ↔ (𝑔𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹)))))
76 3anass 1092 . . . . . . . . . 10 ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)) ↔ (𝑔𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))))
7774, 75, 763bitr4i 306 . . . . . . . . 9 ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)))
7869, 77syl6rbb 291 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))))
7940, 78bitrd 282 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))))
80 eqeq1 2802 . . . . . . . . . . 11 (𝑣 = ⟨𝑔, 𝑠⟩ → (𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)))
8180rexbidv 3256 . . . . . . . . . 10 (𝑣 = ⟨𝑔, 𝑠⟩ → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)))
8281rabxp 5564 . . . . . . . . 9 {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} = {⟨𝑔, 𝑠⟩ ∣ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))}
8382eleq2i 2881 . . . . . . . 8 (⟨𝑔, 𝑠⟩ ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} ↔ ⟨𝑔, 𝑠⟩ ∈ {⟨𝑔, 𝑠⟩ ∣ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))})
84 opabidw 5377 . . . . . . . 8 (⟨𝑔, 𝑠⟩ ∈ {⟨𝑔, 𝑠⟩ ∣ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))} ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)))
8583, 84bitr2i 279 . . . . . . 7 ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)) ↔ ⟨𝑔, 𝑠⟩ ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
8679, 85syl6bb 290 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ⟨𝑔, 𝑠⟩ ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}))
8722, 86bitrd 282 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑔, 𝑠⟩ ∈ (𝐼𝑄) ↔ ⟨𝑔, 𝑠⟩ ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}))
8887eqrelrdv2 5632 . . . 4 (((Rel (𝐼𝑄) ∧ Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}) ∧ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐼𝑄) = {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
8913, 18, 19, 88syl21anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
90 simpll 766 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9145eleq2d 2875 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑥 ∈ (Base‘(Scalar‘𝑈)) ↔ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)))
9291biimpa 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))
9350adantr 484 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
94 opelxpi 5556 . . . . . . . . . 10 ((𝐹𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
9531, 93, 94syl2anc 587 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
9695adantr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
975, 7, 8, 41, 52dvhvscacl 38399 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))) → (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
9890, 92, 96, 97syl12anc 835 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
99 eleq1a 2885 . . . . . . 7 ((𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) → (𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) → 𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))))
10098, 99syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → (𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) → 𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))))
101100rexlimdva 3243 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) → 𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))))
102101pm4.71rd 566 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ (𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))))
103102abbidv 2862 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} = {𝑣 ∣ (𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))})
1041, 89, 1033eqtr4a 2859 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
1055, 41, 26dvhlmod 38406 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑈 ∈ LMod)
106 eqid 2798 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
1075, 7, 8, 41, 106dvhelvbasei 38384 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈))
10826, 31, 93, 107syl12anc 835 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈))
109 diclspsn.n . . . 4 𝑁 = (LSpan‘𝑈)
11042, 43, 106, 52, 109lspsn 19767 . . 3 ((𝑈 ∈ LMod ∧ ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈)) → (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) = {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
111105, 108, 110syl2anc 587 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) = {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
112104, 111eqtr4d 2836 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  {cab 2776  wrex 3107  {crab 3110  wss 3881  {csn 4525  cop 4531   class class class wbr 5030  {copab 5092   I cid 5424   × cxp 5517  cres 5521  ccom 5523  Rel wrel 5524  cfv 6324  crio 7092  (class class class)co 7135  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  lecple 16564  occoc 16565  LModclmod 19627  LSpanclspn 19736  Atomscatm 36559  HLchlt 36646  LHypclh 37280  LTrncltrn 37397  TEndoctendo 38048  DVecHcdvh 38374  DIsoCcdic 38468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-riotaBAD 36249
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-undef 7922  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-0g 16707  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795  df-lvols 36796  df-lines 36797  df-psubsp 36799  df-pmap 36800  df-padd 37092  df-lhyp 37284  df-laut 37285  df-ldil 37400  df-ltrn 37401  df-trl 37455  df-tendo 38051  df-edring 38053  df-dvech 38375  df-dic 38469
This theorem is referenced by:  cdlemn5pre  38496  dih1dimc  38538
  Copyright terms: Public domain W3C validator