Step | Hyp | Ref
| Expression |
1 | | df-rab 3432 |
. . 3
β’ {π£ β (π Γ ((TEndoβπΎ)βπ)) β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)} = {π£ β£ (π£ β (π Γ ((TEndoβπΎ)βπ)) β§ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©))} |
2 | | relopabv 5821 |
. . . . 5
β’ Rel
{β¨π¦, π§β© β£ (π¦ = (π§βπΉ) β§ π§ β ((TEndoβπΎ)βπ))} |
3 | | diclspsn.l |
. . . . . . 7
β’ β€ =
(leβπΎ) |
4 | | diclspsn.a |
. . . . . . 7
β’ π΄ = (AtomsβπΎ) |
5 | | diclspsn.h |
. . . . . . 7
β’ π» = (LHypβπΎ) |
6 | | diclspsn.p |
. . . . . . 7
β’ π = ((ocβπΎ)βπ) |
7 | | diclspsn.t |
. . . . . . 7
β’ π = ((LTrnβπΎ)βπ) |
8 | | eqid 2731 |
. . . . . . 7
β’
((TEndoβπΎ)βπ) = ((TEndoβπΎ)βπ) |
9 | | diclspsn.i |
. . . . . . 7
β’ πΌ = ((DIsoCβπΎ)βπ) |
10 | | diclspsn.f |
. . . . . . 7
β’ πΉ = (β©π β π (πβπ) = π) |
11 | 3, 4, 5, 6, 7, 8, 9, 10 | dicval2 40354 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) = {β¨π¦, π§β© β£ (π¦ = (π§βπΉ) β§ π§ β ((TEndoβπΎ)βπ))}) |
12 | 11 | releqd 5778 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (Rel (πΌβπ) β Rel {β¨π¦, π§β© β£ (π¦ = (π§βπΉ) β§ π§ β ((TEndoβπΎ)βπ))})) |
13 | 2, 12 | mpbiri 258 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β Rel (πΌβπ)) |
14 | | ssrab2 4077 |
. . . . . 6
β’ {π£ β (π Γ ((TEndoβπΎ)βπ)) β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)} β (π Γ ((TEndoβπΎ)βπ)) |
15 | | relxp 5694 |
. . . . . 6
β’ Rel
(π Γ
((TEndoβπΎ)βπ)) |
16 | | relss 5781 |
. . . . . 6
β’ ({π£ β (π Γ ((TEndoβπΎ)βπ)) β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)} β (π Γ ((TEndoβπΎ)βπ)) β (Rel (π Γ ((TEndoβπΎ)βπ)) β Rel {π£ β (π Γ ((TEndoβπΎ)βπ)) β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)})) |
17 | 14, 15, 16 | mp2 9 |
. . . . 5
β’ Rel
{π£ β (π Γ ((TEndoβπΎ)βπ)) β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)} |
18 | 17 | a1i 11 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β Rel {π£ β (π Γ ((TEndoβπΎ)βπ)) β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)}) |
19 | | id 22 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β ((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π))) |
20 | | vex 3477 |
. . . . . . 7
β’ π β V |
21 | | vex 3477 |
. . . . . . 7
β’ π β V |
22 | 3, 4, 5, 6, 7, 8, 9, 10, 20, 21 | dicopelval2 40356 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (β¨π, π β© β (πΌβπ) β (π = (π βπΉ) β§ π β ((TEndoβπΎ)βπ)))) |
23 | | simprl 768 |
. . . . . . . . . . 11
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π = (π βπΉ) β§ π β ((TEndoβπΎ)βπ))) β π = (π βπΉ)) |
24 | | simpll 764 |
. . . . . . . . . . . 12
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π = (π βπΉ) β§ π β ((TEndoβπΎ)βπ))) β (πΎ β HL β§ π β π»)) |
25 | | simprr 770 |
. . . . . . . . . . . 12
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π = (π βπΉ) β§ π β ((TEndoβπΎ)βπ))) β π β ((TEndoβπΎ)βπ)) |
26 | | simpl 482 |
. . . . . . . . . . . . . 14
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΎ β HL β§ π β π»)) |
27 | 3, 4, 5, 6 | lhpocnel2 39194 |
. . . . . . . . . . . . . . 15
β’ ((πΎ β HL β§ π β π») β (π β π΄ β§ Β¬ π β€ π)) |
28 | 27 | adantr 480 |
. . . . . . . . . . . . . 14
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β π΄ β§ Β¬ π β€ π)) |
29 | | simpr 484 |
. . . . . . . . . . . . . 14
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π β π΄ β§ Β¬ π β€ π)) |
30 | 3, 4, 5, 7, 10 | ltrniotacl 39754 |
. . . . . . . . . . . . . 14
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β πΉ β π) |
31 | 26, 28, 29, 30 | syl3anc 1370 |
. . . . . . . . . . . . 13
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β πΉ β π) |
32 | 31 | adantr 480 |
. . . . . . . . . . . 12
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π = (π βπΉ) β§ π β ((TEndoβπΎ)βπ))) β πΉ β π) |
33 | 5, 7, 8 | tendocl 39942 |
. . . . . . . . . . . 12
β’ (((πΎ β HL β§ π β π») β§ π β ((TEndoβπΎ)βπ) β§ πΉ β π) β (π βπΉ) β π) |
34 | 24, 25, 32, 33 | syl3anc 1370 |
. . . . . . . . . . 11
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π = (π βπΉ) β§ π β ((TEndoβπΎ)βπ))) β (π βπΉ) β π) |
35 | 23, 34 | eqeltrd 2832 |
. . . . . . . . . 10
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π = (π βπΉ) β§ π β ((TEndoβπΎ)βπ))) β π β π) |
36 | 35, 25, 23 | 3jca 1127 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π = (π βπΉ) β§ π β ((TEndoβπΎ)βπ))) β (π β π β§ π β ((TEndoβπΎ)βπ) β§ π = (π βπΉ))) |
37 | | simpr3 1195 |
. . . . . . . . . 10
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π β ((TEndoβπΎ)βπ) β§ π = (π βπΉ))) β π = (π βπΉ)) |
38 | | simpr2 1194 |
. . . . . . . . . 10
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π β ((TEndoβπΎ)βπ) β§ π = (π βπΉ))) β π β ((TEndoβπΎ)βπ)) |
39 | 37, 38 | jca 511 |
. . . . . . . . 9
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ π β ((TEndoβπΎ)βπ) β§ π = (π βπΉ))) β (π = (π βπΉ) β§ π β ((TEndoβπΎ)βπ))) |
40 | 36, 39 | impbida 798 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β ((π = (π βπΉ) β§ π β ((TEndoβπΎ)βπ)) β (π β π β§ π β ((TEndoβπΎ)βπ) β§ π = (π βπΉ)))) |
41 | | diclspsn.u |
. . . . . . . . . . . . . 14
β’ π = ((DVecHβπΎ)βπ) |
42 | | eqid 2731 |
. . . . . . . . . . . . . 14
β’
(Scalarβπ) =
(Scalarβπ) |
43 | | eqid 2731 |
. . . . . . . . . . . . . 14
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
44 | 5, 8, 41, 42, 43 | dvhbase 40258 |
. . . . . . . . . . . . 13
β’ ((πΎ β HL β§ π β π») β (Baseβ(Scalarβπ)) = ((TEndoβπΎ)βπ)) |
45 | 44 | adantr 480 |
. . . . . . . . . . . 12
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (Baseβ(Scalarβπ)) = ((TEndoβπΎ)βπ)) |
46 | 45 | rexeqdv 3325 |
. . . . . . . . . . 11
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (βπ₯ β (Baseβ(Scalarβπ))β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) β βπ₯ β ((TEndoβπΎ)βπ)β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©))) |
47 | | simpll 764 |
. . . . . . . . . . . . . . . . 17
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β ((TEndoβπΎ)βπ)) β (πΎ β HL β§ π β π»)) |
48 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β ((TEndoβπΎ)βπ)) β π₯ β ((TEndoβπΎ)βπ)) |
49 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . 17
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β ((TEndoβπΎ)βπ)) β πΉ β π) |
50 | 5, 7, 8 | tendoidcl 39944 |
. . . . . . . . . . . . . . . . . 18
β’ ((πΎ β HL β§ π β π») β ( I βΎ π) β ((TEndoβπΎ)βπ)) |
51 | 50 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β ((TEndoβπΎ)βπ)) β ( I βΎ π) β ((TEndoβπΎ)βπ)) |
52 | | eqid 2731 |
. . . . . . . . . . . . . . . . . 18
β’ (
Β·π βπ) = ( Β·π
βπ) |
53 | 5, 7, 8, 41, 52 | dvhopvsca 40277 |
. . . . . . . . . . . . . . . . 17
β’ (((πΎ β HL β§ π β π») β§ (π₯ β ((TEndoβπΎ)βπ) β§ πΉ β π β§ ( I βΎ π) β ((TEndoβπΎ)βπ))) β (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) = β¨(π₯βπΉ), (π₯ β ( I βΎ π))β©) |
54 | 47, 48, 49, 51, 53 | syl13anc 1371 |
. . . . . . . . . . . . . . . 16
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β ((TEndoβπΎ)βπ)) β (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) = β¨(π₯βπΉ), (π₯ β ( I βΎ π))β©) |
55 | 54 | eqeq2d 2742 |
. . . . . . . . . . . . . . 15
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β ((TEndoβπΎ)βπ)) β (β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) β β¨π, π β© = β¨(π₯βπΉ), (π₯ β ( I βΎ π))β©)) |
56 | 20, 21 | opth 5476 |
. . . . . . . . . . . . . . 15
β’
(β¨π, π β© = β¨(π₯βπΉ), (π₯ β ( I βΎ π))β© β (π = (π₯βπΉ) β§ π = (π₯ β ( I βΎ π)))) |
57 | 55, 56 | bitrdi 287 |
. . . . . . . . . . . . . 14
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β ((TEndoβπΎ)βπ)) β (β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) β (π = (π₯βπΉ) β§ π = (π₯ β ( I βΎ π))))) |
58 | 5, 7, 8 | tendo1mulr 39946 |
. . . . . . . . . . . . . . . . . 18
β’ (((πΎ β HL β§ π β π») β§ π₯ β ((TEndoβπΎ)βπ)) β (π₯ β ( I βΎ π)) = π₯) |
59 | 58 | adantlr 712 |
. . . . . . . . . . . . . . . . 17
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β ((TEndoβπΎ)βπ)) β (π₯ β ( I βΎ π)) = π₯) |
60 | 59 | eqeq2d 2742 |
. . . . . . . . . . . . . . . 16
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β ((TEndoβπΎ)βπ)) β (π = (π₯ β ( I βΎ π)) β π = π₯)) |
61 | | equcom 2020 |
. . . . . . . . . . . . . . . 16
β’ (π = π₯ β π₯ = π ) |
62 | 60, 61 | bitrdi 287 |
. . . . . . . . . . . . . . 15
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β ((TEndoβπΎ)βπ)) β (π = (π₯ β ( I βΎ π)) β π₯ = π )) |
63 | 62 | anbi2d 628 |
. . . . . . . . . . . . . 14
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β ((TEndoβπΎ)βπ)) β ((π = (π₯βπΉ) β§ π = (π₯ β ( I βΎ π))) β (π = (π₯βπΉ) β§ π₯ = π ))) |
64 | 57, 63 | bitrd 279 |
. . . . . . . . . . . . 13
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β ((TEndoβπΎ)βπ)) β (β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) β (π = (π₯βπΉ) β§ π₯ = π ))) |
65 | | ancom 460 |
. . . . . . . . . . . . 13
β’ ((π = (π₯βπΉ) β§ π₯ = π ) β (π₯ = π β§ π = (π₯βπΉ))) |
66 | 64, 65 | bitrdi 287 |
. . . . . . . . . . . 12
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β ((TEndoβπΎ)βπ)) β (β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) β (π₯ = π β§ π = (π₯βπΉ)))) |
67 | 66 | rexbidva 3175 |
. . . . . . . . . . 11
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (βπ₯ β ((TEndoβπΎ)βπ)β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) β βπ₯ β ((TEndoβπΎ)βπ)(π₯ = π β§ π = (π₯βπΉ)))) |
68 | 46, 67 | bitrd 279 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (βπ₯ β (Baseβ(Scalarβπ))β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) β βπ₯ β ((TEndoβπΎ)βπ)(π₯ = π β§ π = (π₯βπΉ)))) |
69 | 68 | 3anbi3d 1441 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β ((π β π β§ π β ((TEndoβπΎ)βπ) β§ βπ₯ β (Baseβ(Scalarβπ))β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)) β (π β π β§ π β ((TEndoβπΎ)βπ) β§ βπ₯ β ((TEndoβπΎ)βπ)(π₯ = π β§ π = (π₯βπΉ))))) |
70 | | fveq1 6890 |
. . . . . . . . . . . . . 14
β’ (π₯ = π β (π₯βπΉ) = (π βπΉ)) |
71 | 70 | eqeq2d 2742 |
. . . . . . . . . . . . 13
β’ (π₯ = π β (π = (π₯βπΉ) β π = (π βπΉ))) |
72 | 71 | ceqsrexv 3643 |
. . . . . . . . . . . 12
β’ (π β ((TEndoβπΎ)βπ) β (βπ₯ β ((TEndoβπΎ)βπ)(π₯ = π β§ π = (π₯βπΉ)) β π = (π βπΉ))) |
73 | 72 | pm5.32i 574 |
. . . . . . . . . . 11
β’ ((π β ((TEndoβπΎ)βπ) β§ βπ₯ β ((TEndoβπΎ)βπ)(π₯ = π β§ π = (π₯βπΉ))) β (π β ((TEndoβπΎ)βπ) β§ π = (π βπΉ))) |
74 | 73 | anbi2i 622 |
. . . . . . . . . 10
β’ ((π β π β§ (π β ((TEndoβπΎ)βπ) β§ βπ₯ β ((TEndoβπΎ)βπ)(π₯ = π β§ π = (π₯βπΉ)))) β (π β π β§ (π β ((TEndoβπΎ)βπ) β§ π = (π βπΉ)))) |
75 | | 3anass 1094 |
. . . . . . . . . 10
β’ ((π β π β§ π β ((TEndoβπΎ)βπ) β§ βπ₯ β ((TEndoβπΎ)βπ)(π₯ = π β§ π = (π₯βπΉ))) β (π β π β§ (π β ((TEndoβπΎ)βπ) β§ βπ₯ β ((TEndoβπΎ)βπ)(π₯ = π β§ π = (π₯βπΉ))))) |
76 | | 3anass 1094 |
. . . . . . . . . 10
β’ ((π β π β§ π β ((TEndoβπΎ)βπ) β§ π = (π βπΉ)) β (π β π β§ (π β ((TEndoβπΎ)βπ) β§ π = (π βπΉ)))) |
77 | 74, 75, 76 | 3bitr4i 303 |
. . . . . . . . 9
β’ ((π β π β§ π β ((TEndoβπΎ)βπ) β§ βπ₯ β ((TEndoβπΎ)βπ)(π₯ = π β§ π = (π₯βπΉ))) β (π β π β§ π β ((TEndoβπΎ)βπ) β§ π = (π βπΉ))) |
78 | 69, 77 | bitr2di 288 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β ((π β π β§ π β ((TEndoβπΎ)βπ) β§ π = (π βπΉ)) β (π β π β§ π β ((TEndoβπΎ)βπ) β§ βπ₯ β (Baseβ(Scalarβπ))β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)))) |
79 | 40, 78 | bitrd 279 |
. . . . . . 7
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β ((π = (π βπΉ) β§ π β ((TEndoβπΎ)βπ)) β (π β π β§ π β ((TEndoβπΎ)βπ) β§ βπ₯ β (Baseβ(Scalarβπ))β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)))) |
80 | | eqeq1 2735 |
. . . . . . . . . . 11
β’ (π£ = β¨π, π β© β (π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) β β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©))) |
81 | 80 | rexbidv 3177 |
. . . . . . . . . 10
β’ (π£ = β¨π, π β© β (βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) β βπ₯ β (Baseβ(Scalarβπ))β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©))) |
82 | 81 | rabxp 5724 |
. . . . . . . . 9
β’ {π£ β (π Γ ((TEndoβπΎ)βπ)) β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)} = {β¨π, π β© β£ (π β π β§ π β ((TEndoβπΎ)βπ) β§ βπ₯ β (Baseβ(Scalarβπ))β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©))} |
83 | 82 | eleq2i 2824 |
. . . . . . . 8
β’
(β¨π, π β© β {π£ β (π Γ ((TEndoβπΎ)βπ)) β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)} β β¨π, π β© β {β¨π, π β© β£ (π β π β§ π β ((TEndoβπΎ)βπ) β§ βπ₯ β (Baseβ(Scalarβπ))β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©))}) |
84 | | opabidw 5524 |
. . . . . . . 8
β’
(β¨π, π β© β {β¨π, π β© β£ (π β π β§ π β ((TEndoβπΎ)βπ) β§ βπ₯ β (Baseβ(Scalarβπ))β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©))} β (π β π β§ π β ((TEndoβπΎ)βπ) β§ βπ₯ β (Baseβ(Scalarβπ))β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©))) |
85 | 83, 84 | bitr2i 276 |
. . . . . . 7
β’ ((π β π β§ π β ((TEndoβπΎ)βπ) β§ βπ₯ β (Baseβ(Scalarβπ))β¨π, π β© = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)) β β¨π, π β© β {π£ β (π Γ ((TEndoβπΎ)βπ)) β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)}) |
86 | 79, 85 | bitrdi 287 |
. . . . . 6
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β ((π = (π βπΉ) β§ π β ((TEndoβπΎ)βπ)) β β¨π, π β© β {π£ β (π Γ ((TEndoβπΎ)βπ)) β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)})) |
87 | 22, 86 | bitrd 279 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (β¨π, π β© β (πΌβπ) β β¨π, π β© β {π£ β (π Γ ((TEndoβπΎ)βπ)) β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)})) |
88 | 87 | eqrelrdv2 5795 |
. . . 4
β’ (((Rel
(πΌβπ) β§ Rel {π£ β (π Γ ((TEndoβπΎ)βπ)) β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)}) β§ ((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π))) β (πΌβπ) = {π£ β (π Γ ((TEndoβπΎ)βπ)) β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)}) |
89 | 13, 18, 19, 88 | syl21anc 835 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) = {π£ β (π Γ ((TEndoβπΎ)βπ)) β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)}) |
90 | | simpll 764 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β (Baseβ(Scalarβπ))) β (πΎ β HL β§ π β π»)) |
91 | 45 | eleq2d 2818 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (π₯ β (Baseβ(Scalarβπ)) β π₯ β ((TEndoβπΎ)βπ))) |
92 | 91 | biimpa 476 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β (Baseβ(Scalarβπ))) β π₯ β ((TEndoβπΎ)βπ)) |
93 | 50 | adantr 480 |
. . . . . . . . . 10
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β ( I βΎ π) β ((TEndoβπΎ)βπ)) |
94 | | opelxpi 5713 |
. . . . . . . . . 10
β’ ((πΉ β π β§ ( I βΎ π) β ((TEndoβπΎ)βπ)) β β¨πΉ, ( I βΎ π)β© β (π Γ ((TEndoβπΎ)βπ))) |
95 | 31, 93, 94 | syl2anc 583 |
. . . . . . . . 9
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β β¨πΉ, ( I βΎ π)β© β (π Γ ((TEndoβπΎ)βπ))) |
96 | 95 | adantr 480 |
. . . . . . . 8
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β (Baseβ(Scalarβπ))) β β¨πΉ, ( I βΎ π)β© β (π Γ ((TEndoβπΎ)βπ))) |
97 | 5, 7, 8, 41, 52 | dvhvscacl 40278 |
. . . . . . . 8
β’ (((πΎ β HL β§ π β π») β§ (π₯ β ((TEndoβπΎ)βπ) β§ β¨πΉ, ( I βΎ π)β© β (π Γ ((TEndoβπΎ)βπ)))) β (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) β (π Γ ((TEndoβπΎ)βπ))) |
98 | 90, 92, 96, 97 | syl12anc 834 |
. . . . . . 7
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β (Baseβ(Scalarβπ))) β (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) β (π Γ ((TEndoβπΎ)βπ))) |
99 | | eleq1a 2827 |
. . . . . . 7
β’ ((π₯(
Β·π βπ)β¨πΉ, ( I βΎ π)β©) β (π Γ ((TEndoβπΎ)βπ)) β (π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) β π£ β (π Γ ((TEndoβπΎ)βπ)))) |
100 | 98, 99 | syl 17 |
. . . . . 6
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ π₯ β (Baseβ(Scalarβπ))) β (π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) β π£ β (π Γ ((TEndoβπΎ)βπ)))) |
101 | 100 | rexlimdva 3154 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) β π£ β (π Γ ((TEndoβπΎ)βπ)))) |
102 | 101 | pm4.71rd 562 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©) β (π£ β (π Γ ((TEndoβπΎ)βπ)) β§ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)))) |
103 | 102 | abbidv 2800 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β {π£ β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)} = {π£ β£ (π£ β (π Γ ((TEndoβπΎ)βπ)) β§ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©))}) |
104 | 1, 89, 103 | 3eqtr4a 2797 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) = {π£ β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)}) |
105 | 5, 41, 26 | dvhlmod 40285 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β π β LMod) |
106 | | eqid 2731 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
107 | 5, 7, 8, 41, 106 | dvhelvbasei 40263 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ ( I βΎ π) β ((TEndoβπΎ)βπ))) β β¨πΉ, ( I βΎ π)β© β (Baseβπ)) |
108 | 26, 31, 93, 107 | syl12anc 834 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β β¨πΉ, ( I βΎ π)β© β (Baseβπ)) |
109 | | diclspsn.n |
. . . 4
β’ π = (LSpanβπ) |
110 | 42, 43, 106, 52, 109 | lspsn 20758 |
. . 3
β’ ((π β LMod β§ β¨πΉ, ( I βΎ π)β© β (Baseβπ)) β (πβ{β¨πΉ, ( I βΎ π)β©}) = {π£ β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)}) |
111 | 105, 108,
110 | syl2anc 583 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πβ{β¨πΉ, ( I βΎ π)β©}) = {π£ β£ βπ₯ β (Baseβ(Scalarβπ))π£ = (π₯( Β·π
βπ)β¨πΉ, ( I βΎ π)β©)}) |
112 | 104, 111 | eqtr4d 2774 |
1
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) = (πβ{β¨πΉ, ( I βΎ π)β©})) |