| Step | Hyp | Ref
| Expression |
| 1 | | df-rab 3437 |
. . 3
⊢ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)} = {𝑣 ∣ (𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉))} |
| 2 | | relopabv 5831 |
. . . . 5
⊢ Rel
{〈𝑦, 𝑧〉 ∣ (𝑦 = (𝑧‘𝐹) ∧ 𝑧 ∈ ((TEndo‘𝐾)‘𝑊))} |
| 3 | | diclspsn.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
| 4 | | diclspsn.a |
. . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) |
| 5 | | diclspsn.h |
. . . . . . 7
⊢ 𝐻 = (LHyp‘𝐾) |
| 6 | | diclspsn.p |
. . . . . . 7
⊢ 𝑃 = ((oc‘𝐾)‘𝑊) |
| 7 | | diclspsn.t |
. . . . . . 7
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 8 | | eqid 2737 |
. . . . . . 7
⊢
((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) |
| 9 | | diclspsn.i |
. . . . . . 7
⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
| 10 | | diclspsn.f |
. . . . . . 7
⊢ 𝐹 = (℩𝑓 ∈ 𝑇 (𝑓‘𝑃) = 𝑄) |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | dicval2 41181 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {〈𝑦, 𝑧〉 ∣ (𝑦 = (𝑧‘𝐹) ∧ 𝑧 ∈ ((TEndo‘𝐾)‘𝑊))}) |
| 12 | 11 | releqd 5788 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (Rel (𝐼‘𝑄) ↔ Rel {〈𝑦, 𝑧〉 ∣ (𝑦 = (𝑧‘𝐹) ∧ 𝑧 ∈ ((TEndo‘𝐾)‘𝑊))})) |
| 13 | 2, 12 | mpbiri 258 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → Rel (𝐼‘𝑄)) |
| 14 | | ssrab2 4080 |
. . . . . 6
⊢ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)} ⊆ (𝑇 × ((TEndo‘𝐾)‘𝑊)) |
| 15 | | relxp 5703 |
. . . . . 6
⊢ Rel
(𝑇 ×
((TEndo‘𝐾)‘𝑊)) |
| 16 | | relss 5791 |
. . . . . 6
⊢ ({𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)} ⊆ (𝑇 × ((TEndo‘𝐾)‘𝑊)) → (Rel (𝑇 × ((TEndo‘𝐾)‘𝑊)) → Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)})) |
| 17 | 14, 15, 16 | mp2 9 |
. . . . 5
⊢ Rel
{𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)} |
| 18 | 17 | a1i 11 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)}) |
| 19 | | id 22 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
| 20 | | vex 3484 |
. . . . . . 7
⊢ 𝑔 ∈ V |
| 21 | | vex 3484 |
. . . . . . 7
⊢ 𝑠 ∈ V |
| 22 | 3, 4, 5, 6, 7, 8, 9, 10, 20, 21 | dicopelval2 41183 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑔, 𝑠〉 ∈ (𝐼‘𝑄) ↔ (𝑔 = (𝑠‘𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)))) |
| 23 | | simprl 771 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑔 = (𝑠‘𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑔 = (𝑠‘𝐹)) |
| 24 | | simpll 767 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑔 = (𝑠‘𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 25 | | simprr 773 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑔 = (𝑠‘𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) |
| 26 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 27 | 3, 4, 5, 6 | lhpocnel2 40021 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 28 | 27 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 29 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 30 | 3, 4, 5, 7, 10 | ltrniotacl 40581 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
| 31 | 26, 28, 29, 30 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝐹 ∈ 𝑇) |
| 32 | 31 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑔 = (𝑠‘𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝐹 ∈ 𝑇) |
| 33 | 5, 7, 8 | tendocl 40769 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝐹 ∈ 𝑇) → (𝑠‘𝐹) ∈ 𝑇) |
| 34 | 24, 25, 32, 33 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑔 = (𝑠‘𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑠‘𝐹) ∈ 𝑇) |
| 35 | 23, 34 | eqeltrd 2841 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑔 = (𝑠‘𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑔 ∈ 𝑇) |
| 36 | 35, 25, 23 | 3jca 1129 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑔 = (𝑠‘𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠‘𝐹))) |
| 37 | | simpr3 1197 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠‘𝐹))) → 𝑔 = (𝑠‘𝐹)) |
| 38 | | simpr2 1196 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠‘𝐹))) → 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) |
| 39 | 37, 38 | jca 511 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠‘𝐹))) → (𝑔 = (𝑠‘𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) |
| 40 | 36, 39 | impbida 801 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑔 = (𝑠‘𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠‘𝐹)))) |
| 41 | | diclspsn.u |
. . . . . . . . . . . . . 14
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 42 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
| 43 | | eqid 2737 |
. . . . . . . . . . . . . 14
⊢
(Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) |
| 44 | 5, 8, 41, 42, 43 | dvhbase 41085 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊)) |
| 45 | 44 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊)) |
| 46 | 45 | rexeqdv 3327 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) ↔ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉))) |
| 47 | | simpll 767 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 48 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) |
| 49 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → 𝐹 ∈ 𝑇) |
| 50 | 5, 7, 8 | tendoidcl 40771 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) |
| 51 | 50 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) |
| 52 | | eqid 2737 |
. . . . . . . . . . . . . . . . . 18
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) |
| 53 | 5, 7, 8, 41, 52 | dvhopvsca 41104 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝐹 ∈ 𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) = 〈(𝑥‘𝐹), (𝑥 ∘ ( I ↾ 𝑇))〉) |
| 54 | 47, 48, 49, 51, 53 | syl13anc 1374 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) = 〈(𝑥‘𝐹), (𝑥 ∘ ( I ↾ 𝑇))〉) |
| 55 | 54 | eqeq2d 2748 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) ↔ 〈𝑔, 𝑠〉 = 〈(𝑥‘𝐹), (𝑥 ∘ ( I ↾ 𝑇))〉)) |
| 56 | 20, 21 | opth 5481 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑔, 𝑠〉 = 〈(𝑥‘𝐹), (𝑥 ∘ ( I ↾ 𝑇))〉 ↔ (𝑔 = (𝑥‘𝐹) ∧ 𝑠 = (𝑥 ∘ ( I ↾ 𝑇)))) |
| 57 | 55, 56 | bitrdi 287 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) ↔ (𝑔 = (𝑥‘𝐹) ∧ 𝑠 = (𝑥 ∘ ( I ↾ 𝑇))))) |
| 58 | 5, 7, 8 | tendo1mulr 40773 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ ( I ↾ 𝑇)) = 𝑥) |
| 59 | 58 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ ( I ↾ 𝑇)) = 𝑥) |
| 60 | 59 | eqeq2d 2748 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑠 = (𝑥 ∘ ( I ↾ 𝑇)) ↔ 𝑠 = 𝑥)) |
| 61 | | equcom 2017 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 = 𝑥 ↔ 𝑥 = 𝑠) |
| 62 | 60, 61 | bitrdi 287 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑠 = (𝑥 ∘ ( I ↾ 𝑇)) ↔ 𝑥 = 𝑠)) |
| 63 | 62 | anbi2d 630 |
. . . . . . . . . . . . . 14
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → ((𝑔 = (𝑥‘𝐹) ∧ 𝑠 = (𝑥 ∘ ( I ↾ 𝑇))) ↔ (𝑔 = (𝑥‘𝐹) ∧ 𝑥 = 𝑠))) |
| 64 | 57, 63 | bitrd 279 |
. . . . . . . . . . . . 13
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) ↔ (𝑔 = (𝑥‘𝐹) ∧ 𝑥 = 𝑠))) |
| 65 | | ancom 460 |
. . . . . . . . . . . . 13
⊢ ((𝑔 = (𝑥‘𝐹) ∧ 𝑥 = 𝑠) ↔ (𝑥 = 𝑠 ∧ 𝑔 = (𝑥‘𝐹))) |
| 66 | 64, 65 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) ↔ (𝑥 = 𝑠 ∧ 𝑔 = (𝑥‘𝐹)))) |
| 67 | 66 | rexbidva 3177 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) ↔ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠 ∧ 𝑔 = (𝑥‘𝐹)))) |
| 68 | 46, 67 | bitrd 279 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) ↔ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠 ∧ 𝑔 = (𝑥‘𝐹)))) |
| 69 | 68 | 3anbi3d 1444 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)) ↔ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠 ∧ 𝑔 = (𝑥‘𝐹))))) |
| 70 | | fveq1 6905 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑠 → (𝑥‘𝐹) = (𝑠‘𝐹)) |
| 71 | 70 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑠 → (𝑔 = (𝑥‘𝐹) ↔ 𝑔 = (𝑠‘𝐹))) |
| 72 | 71 | ceqsrexv 3655 |
. . . . . . . . . . . 12
⊢ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) → (∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠 ∧ 𝑔 = (𝑥‘𝐹)) ↔ 𝑔 = (𝑠‘𝐹))) |
| 73 | 72 | pm5.32i 574 |
. . . . . . . . . . 11
⊢ ((𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠 ∧ 𝑔 = (𝑥‘𝐹))) ↔ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠‘𝐹))) |
| 74 | 73 | anbi2i 623 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ 𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠 ∧ 𝑔 = (𝑥‘𝐹)))) ↔ (𝑔 ∈ 𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠‘𝐹)))) |
| 75 | | 3anass 1095 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠 ∧ 𝑔 = (𝑥‘𝐹))) ↔ (𝑔 ∈ 𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠 ∧ 𝑔 = (𝑥‘𝐹))))) |
| 76 | | 3anass 1095 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠‘𝐹)) ↔ (𝑔 ∈ 𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠‘𝐹)))) |
| 77 | 74, 75, 76 | 3bitr4i 303 |
. . . . . . . . 9
⊢ ((𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠 ∧ 𝑔 = (𝑥‘𝐹))) ↔ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠‘𝐹))) |
| 78 | 69, 77 | bitr2di 288 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠‘𝐹)) ↔ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)))) |
| 79 | 40, 78 | bitrd 279 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑔 = (𝑠‘𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)))) |
| 80 | | eqeq1 2741 |
. . . . . . . . . . 11
⊢ (𝑣 = 〈𝑔, 𝑠〉 → (𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) ↔ 〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉))) |
| 81 | 80 | rexbidv 3179 |
. . . . . . . . . 10
⊢ (𝑣 = 〈𝑔, 𝑠〉 → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) ↔ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉))) |
| 82 | 81 | rabxp 5733 |
. . . . . . . . 9
⊢ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)} = {〈𝑔, 𝑠〉 ∣ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉))} |
| 83 | 82 | eleq2i 2833 |
. . . . . . . 8
⊢
(〈𝑔, 𝑠〉 ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)} ↔ 〈𝑔, 𝑠〉 ∈ {〈𝑔, 𝑠〉 ∣ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉))}) |
| 84 | | opabidw 5529 |
. . . . . . . 8
⊢
(〈𝑔, 𝑠〉 ∈ {〈𝑔, 𝑠〉 ∣ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉))} ↔ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉))) |
| 85 | 83, 84 | bitr2i 276 |
. . . . . . 7
⊢ ((𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))〈𝑔, 𝑠〉 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)) ↔ 〈𝑔, 𝑠〉 ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)}) |
| 86 | 79, 85 | bitrdi 287 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝑔 = (𝑠‘𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ 〈𝑔, 𝑠〉 ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)})) |
| 87 | 22, 86 | bitrd 279 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (〈𝑔, 𝑠〉 ∈ (𝐼‘𝑄) ↔ 〈𝑔, 𝑠〉 ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)})) |
| 88 | 87 | eqrelrdv2 5805 |
. . . 4
⊢ (((Rel
(𝐼‘𝑄) ∧ Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)}) ∧ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝐼‘𝑄) = {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)}) |
| 89 | 13, 18, 19, 88 | syl21anc 838 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)}) |
| 90 | | simpll 767 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 91 | 45 | eleq2d 2827 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑥 ∈ (Base‘(Scalar‘𝑈)) ↔ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))) |
| 92 | 91 | biimpa 476 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) |
| 93 | 50 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) |
| 94 | | opelxpi 5722 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ 𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) → 〈𝐹, ( I ↾ 𝑇)〉 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))) |
| 95 | 31, 93, 94 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 〈𝐹, ( I ↾ 𝑇)〉 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))) |
| 96 | 95 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → 〈𝐹, ( I ↾ 𝑇)〉 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))) |
| 97 | 5, 7, 8, 41, 52 | dvhvscacl 41105 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 〈𝐹, ( I ↾ 𝑇)〉 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))) → (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))) |
| 98 | 90, 92, 96, 97 | syl12anc 837 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))) |
| 99 | | eleq1a 2836 |
. . . . . . 7
⊢ ((𝑥(
·𝑠 ‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) → (𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) → 𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))) |
| 100 | 98, 99 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → (𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) → 𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))) |
| 101 | 100 | rexlimdva 3155 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) → 𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))) |
| 102 | 101 | pm4.71rd 562 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉) ↔ (𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)))) |
| 103 | 102 | abbidv 2808 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)} = {𝑣 ∣ (𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉))}) |
| 104 | 1, 89, 103 | 3eqtr4a 2803 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)}) |
| 105 | 5, 41, 26 | dvhlmod 41112 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑈 ∈ LMod) |
| 106 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 107 | 5, 7, 8, 41, 106 | dvhelvbasei 41090 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → 〈𝐹, ( I ↾ 𝑇)〉 ∈ (Base‘𝑈)) |
| 108 | 26, 31, 93, 107 | syl12anc 837 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 〈𝐹, ( I ↾ 𝑇)〉 ∈ (Base‘𝑈)) |
| 109 | | diclspsn.n |
. . . 4
⊢ 𝑁 = (LSpan‘𝑈) |
| 110 | 42, 43, 106, 52, 109 | lspsn 21000 |
. . 3
⊢ ((𝑈 ∈ LMod ∧ 〈𝐹, ( I ↾ 𝑇)〉 ∈ (Base‘𝑈)) → (𝑁‘{〈𝐹, ( I ↾ 𝑇)〉}) = {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)}) |
| 111 | 105, 108,
110 | syl2anc 584 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑁‘{〈𝐹, ( I ↾ 𝑇)〉}) = {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠
‘𝑈)〈𝐹, ( I ↾ 𝑇)〉)}) |
| 112 | 104, 111 | eqtr4d 2780 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) = (𝑁‘{〈𝐹, ( I ↾ 𝑇)〉})) |