Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diclspsn Structured version   Visualization version   GIF version

Theorem diclspsn 41195
Description: The value of isomorphism C is spanned by vector 𝐹. Part of proof of Lemma N of [Crawley] p. 121 line 29. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
diclspsn.l = (le‘𝐾)
diclspsn.a 𝐴 = (Atoms‘𝐾)
diclspsn.h 𝐻 = (LHyp‘𝐾)
diclspsn.p 𝑃 = ((oc‘𝐾)‘𝑊)
diclspsn.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diclspsn.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
diclspsn.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
diclspsn.n 𝑁 = (LSpan‘𝑈)
diclspsn.f 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)
Assertion
Ref Expression
diclspsn (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}))
Distinct variable groups:   ,𝑓   𝑃,𝑓   𝐴,𝑓   𝑓,𝐻   𝑇,𝑓   𝑓,𝐾   𝑄,𝑓   𝑓,𝑊
Allowed substitution hints:   𝑈(𝑓)   𝐹(𝑓)   𝐼(𝑓)   𝑁(𝑓)

Proof of Theorem diclspsn
Dummy variables 𝑔 𝑠 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3409 . . 3 {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} = {𝑣 ∣ (𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))}
2 relopabv 5787 . . . . 5 Rel {⟨𝑦, 𝑧⟩ ∣ (𝑦 = (𝑧𝐹) ∧ 𝑧 ∈ ((TEndo‘𝐾)‘𝑊))}
3 diclspsn.l . . . . . . 7 = (le‘𝐾)
4 diclspsn.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 diclspsn.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
6 diclspsn.p . . . . . . 7 𝑃 = ((oc‘𝐾)‘𝑊)
7 diclspsn.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 eqid 2730 . . . . . . 7 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
9 diclspsn.i . . . . . . 7 𝐼 = ((DIsoC‘𝐾)‘𝑊)
10 diclspsn.f . . . . . . 7 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)
113, 4, 5, 6, 7, 8, 9, 10dicval2 41180 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑦, 𝑧⟩ ∣ (𝑦 = (𝑧𝐹) ∧ 𝑧 ∈ ((TEndo‘𝐾)‘𝑊))})
1211releqd 5744 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (Rel (𝐼𝑄) ↔ Rel {⟨𝑦, 𝑧⟩ ∣ (𝑦 = (𝑧𝐹) ∧ 𝑧 ∈ ((TEndo‘𝐾)‘𝑊))}))
132, 12mpbiri 258 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → Rel (𝐼𝑄))
14 ssrab2 4046 . . . . . 6 {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} ⊆ (𝑇 × ((TEndo‘𝐾)‘𝑊))
15 relxp 5659 . . . . . 6 Rel (𝑇 × ((TEndo‘𝐾)‘𝑊))
16 relss 5747 . . . . . 6 ({𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} ⊆ (𝑇 × ((TEndo‘𝐾)‘𝑊)) → (Rel (𝑇 × ((TEndo‘𝐾)‘𝑊)) → Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}))
1714, 15, 16mp2 9 . . . . 5 Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}
1817a1i 11 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
19 id 22 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
20 vex 3454 . . . . . . 7 𝑔 ∈ V
21 vex 3454 . . . . . . 7 𝑠 ∈ V
223, 4, 5, 6, 7, 8, 9, 10, 20, 21dicopelval2 41182 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑔, 𝑠⟩ ∈ (𝐼𝑄) ↔ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))))
23 simprl 770 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑔 = (𝑠𝐹))
24 simpll 766 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
25 simprr 772 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))
26 simpl 482 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
273, 4, 5, 6lhpocnel2 40020 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
2827adantr 480 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
29 simpr 484 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
303, 4, 5, 7, 10ltrniotacl 40580 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
3126, 28, 29, 30syl3anc 1373 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
3231adantr 480 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝐹𝑇)
335, 7, 8tendocl 40768 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
3424, 25, 32, 33syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑠𝐹) ∈ 𝑇)
3523, 34eqeltrd 2829 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑔𝑇)
3635, 25, 233jca 1128 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)))
37 simpr3 1197 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))) → 𝑔 = (𝑠𝐹))
38 simpr2 1196 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))) → 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))
3937, 38jca 511 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))) → (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)))
4036, 39impbida 800 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))))
41 diclspsn.u . . . . . . . . . . . . . 14 𝑈 = ((DVecH‘𝐾)‘𝑊)
42 eqid 2730 . . . . . . . . . . . . . 14 (Scalar‘𝑈) = (Scalar‘𝑈)
43 eqid 2730 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
445, 8, 41, 42, 43dvhbase 41084 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
4544adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
4645rexeqdv 3302 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)))
47 simpll 766 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
48 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))
4931adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → 𝐹𝑇)
505, 7, 8tendoidcl 40770 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
5150ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
52 eqid 2730 . . . . . . . . . . . . . . . . . 18 ( ·𝑠𝑈) = ( ·𝑠𝑈)
535, 7, 8, 41, 52dvhopvsca 41103 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝐹𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) = ⟨(𝑥𝐹), (𝑥 ∘ ( I ↾ 𝑇))⟩)
5447, 48, 49, 51, 53syl13anc 1374 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) = ⟨(𝑥𝐹), (𝑥 ∘ ( I ↾ 𝑇))⟩)
5554eqeq2d 2741 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ⟨𝑔, 𝑠⟩ = ⟨(𝑥𝐹), (𝑥 ∘ ( I ↾ 𝑇))⟩))
5620, 21opth 5439 . . . . . . . . . . . . . . 15 (⟨𝑔, 𝑠⟩ = ⟨(𝑥𝐹), (𝑥 ∘ ( I ↾ 𝑇))⟩ ↔ (𝑔 = (𝑥𝐹) ∧ 𝑠 = (𝑥 ∘ ( I ↾ 𝑇))))
5755, 56bitrdi 287 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ (𝑔 = (𝑥𝐹) ∧ 𝑠 = (𝑥 ∘ ( I ↾ 𝑇)))))
585, 7, 8tendo1mulr 40772 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ ( I ↾ 𝑇)) = 𝑥)
5958adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ ( I ↾ 𝑇)) = 𝑥)
6059eqeq2d 2741 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑠 = (𝑥 ∘ ( I ↾ 𝑇)) ↔ 𝑠 = 𝑥))
61 equcom 2018 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑥𝑥 = 𝑠)
6260, 61bitrdi 287 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑠 = (𝑥 ∘ ( I ↾ 𝑇)) ↔ 𝑥 = 𝑠))
6362anbi2d 630 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → ((𝑔 = (𝑥𝐹) ∧ 𝑠 = (𝑥 ∘ ( I ↾ 𝑇))) ↔ (𝑔 = (𝑥𝐹) ∧ 𝑥 = 𝑠)))
6457, 63bitrd 279 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ (𝑔 = (𝑥𝐹) ∧ 𝑥 = 𝑠)))
65 ancom 460 . . . . . . . . . . . . 13 ((𝑔 = (𝑥𝐹) ∧ 𝑥 = 𝑠) ↔ (𝑥 = 𝑠𝑔 = (𝑥𝐹)))
6664, 65bitrdi 287 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ (𝑥 = 𝑠𝑔 = (𝑥𝐹))))
6766rexbidva 3156 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))))
6846, 67bitrd 279 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))))
69683anbi3d 1444 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹)))))
70 fveq1 6860 . . . . . . . . . . . . . 14 (𝑥 = 𝑠 → (𝑥𝐹) = (𝑠𝐹))
7170eqeq2d 2741 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (𝑔 = (𝑥𝐹) ↔ 𝑔 = (𝑠𝐹)))
7271ceqsrexv 3624 . . . . . . . . . . . 12 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) → (∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹)) ↔ 𝑔 = (𝑠𝐹)))
7372pm5.32i 574 . . . . . . . . . . 11 ((𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))) ↔ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)))
7473anbi2i 623 . . . . . . . . . 10 ((𝑔𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹)))) ↔ (𝑔𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))))
75 3anass 1094 . . . . . . . . . 10 ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))) ↔ (𝑔𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹)))))
76 3anass 1094 . . . . . . . . . 10 ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)) ↔ (𝑔𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))))
7774, 75, 763bitr4i 303 . . . . . . . . 9 ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)))
7869, 77bitr2di 288 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))))
7940, 78bitrd 279 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))))
80 eqeq1 2734 . . . . . . . . . . 11 (𝑣 = ⟨𝑔, 𝑠⟩ → (𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)))
8180rexbidv 3158 . . . . . . . . . 10 (𝑣 = ⟨𝑔, 𝑠⟩ → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)))
8281rabxp 5689 . . . . . . . . 9 {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} = {⟨𝑔, 𝑠⟩ ∣ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))}
8382eleq2i 2821 . . . . . . . 8 (⟨𝑔, 𝑠⟩ ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} ↔ ⟨𝑔, 𝑠⟩ ∈ {⟨𝑔, 𝑠⟩ ∣ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))})
84 opabidw 5487 . . . . . . . 8 (⟨𝑔, 𝑠⟩ ∈ {⟨𝑔, 𝑠⟩ ∣ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))} ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)))
8583, 84bitr2i 276 . . . . . . 7 ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)) ↔ ⟨𝑔, 𝑠⟩ ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
8679, 85bitrdi 287 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ⟨𝑔, 𝑠⟩ ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}))
8722, 86bitrd 279 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑔, 𝑠⟩ ∈ (𝐼𝑄) ↔ ⟨𝑔, 𝑠⟩ ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}))
8887eqrelrdv2 5761 . . . 4 (((Rel (𝐼𝑄) ∧ Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}) ∧ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐼𝑄) = {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
8913, 18, 19, 88syl21anc 837 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
90 simpll 766 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9145eleq2d 2815 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑥 ∈ (Base‘(Scalar‘𝑈)) ↔ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)))
9291biimpa 476 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))
9350adantr 480 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
94 opelxpi 5678 . . . . . . . . . 10 ((𝐹𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
9531, 93, 94syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
9695adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
975, 7, 8, 41, 52dvhvscacl 41104 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))) → (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
9890, 92, 96, 97syl12anc 836 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
99 eleq1a 2824 . . . . . . 7 ((𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) → (𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) → 𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))))
10098, 99syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → (𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) → 𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))))
101100rexlimdva 3135 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) → 𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))))
102101pm4.71rd 562 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ (𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))))
103102abbidv 2796 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} = {𝑣 ∣ (𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))})
1041, 89, 1033eqtr4a 2791 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
1055, 41, 26dvhlmod 41111 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑈 ∈ LMod)
106 eqid 2730 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
1075, 7, 8, 41, 106dvhelvbasei 41089 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈))
10826, 31, 93, 107syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈))
109 diclspsn.n . . . 4 𝑁 = (LSpan‘𝑈)
11042, 43, 106, 52, 109lspsn 20915 . . 3 ((𝑈 ∈ LMod ∧ ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈)) → (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) = {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
111105, 108, 110syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) = {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
112104, 111eqtr4d 2768 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  {crab 3408  wss 3917  {csn 4592  cop 4598   class class class wbr 5110  {copab 5172   I cid 5535   × cxp 5639  cres 5643  ccom 5645  Rel wrel 5646  cfv 6514  crio 7346  (class class class)co 7390  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  lecple 17234  occoc 17235  LModclmod 20773  LSpanclspn 20884  Atomscatm 39263  HLchlt 39350  LHypclh 39985  LTrncltrn 40102  TEndoctendo 40753  DVecHcdvh 41079  DIsoCcdic 41173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-riotaBAD 38953
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-undef 8255  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17411  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lvols 39501  df-lines 39502  df-psubsp 39504  df-pmap 39505  df-padd 39797  df-lhyp 39989  df-laut 39990  df-ldil 40105  df-ltrn 40106  df-trl 40160  df-tendo 40756  df-edring 40758  df-dvech 41080  df-dic 41174
This theorem is referenced by:  cdlemn5pre  41201  dih1dimc  41243
  Copyright terms: Public domain W3C validator