Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diclspsn Structured version   Visualization version   GIF version

Theorem diclspsn 40369
Description: The value of isomorphism C is spanned by vector 𝐹. Part of proof of Lemma N of [Crawley] p. 121 line 29. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
diclspsn.l ≀ = (leβ€˜πΎ)
diclspsn.a 𝐴 = (Atomsβ€˜πΎ)
diclspsn.h 𝐻 = (LHypβ€˜πΎ)
diclspsn.p 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š)
diclspsn.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
diclspsn.i 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
diclspsn.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
diclspsn.n 𝑁 = (LSpanβ€˜π‘ˆ)
diclspsn.f 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘ƒ) = 𝑄)
Assertion
Ref Expression
diclspsn (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = (π‘β€˜{⟨𝐹, ( I β†Ύ 𝑇)⟩}))
Distinct variable groups:   ≀ ,𝑓   𝑃,𝑓   𝐴,𝑓   𝑓,𝐻   𝑇,𝑓   𝑓,𝐾   𝑄,𝑓   𝑓,π‘Š
Allowed substitution hints:   π‘ˆ(𝑓)   𝐹(𝑓)   𝐼(𝑓)   𝑁(𝑓)

Proof of Theorem diclspsn
Dummy variables 𝑔 𝑠 𝑣 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3432 . . 3 {𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)} = {𝑣 ∣ (𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩))}
2 relopabv 5821 . . . . 5 Rel {βŸ¨π‘¦, π‘§βŸ© ∣ (𝑦 = (π‘§β€˜πΉ) ∧ 𝑧 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))}
3 diclspsn.l . . . . . . 7 ≀ = (leβ€˜πΎ)
4 diclspsn.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
5 diclspsn.h . . . . . . 7 𝐻 = (LHypβ€˜πΎ)
6 diclspsn.p . . . . . . 7 𝑃 = ((ocβ€˜πΎ)β€˜π‘Š)
7 diclspsn.t . . . . . . 7 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
8 eqid 2731 . . . . . . 7 ((TEndoβ€˜πΎ)β€˜π‘Š) = ((TEndoβ€˜πΎ)β€˜π‘Š)
9 diclspsn.i . . . . . . 7 𝐼 = ((DIsoCβ€˜πΎ)β€˜π‘Š)
10 diclspsn.f . . . . . . 7 𝐹 = (℩𝑓 ∈ 𝑇 (π‘“β€˜π‘ƒ) = 𝑄)
113, 4, 5, 6, 7, 8, 9, 10dicval2 40354 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = {βŸ¨π‘¦, π‘§βŸ© ∣ (𝑦 = (π‘§β€˜πΉ) ∧ 𝑧 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))})
1211releqd 5778 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (Rel (πΌβ€˜π‘„) ↔ Rel {βŸ¨π‘¦, π‘§βŸ© ∣ (𝑦 = (π‘§β€˜πΉ) ∧ 𝑧 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))}))
132, 12mpbiri 258 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ Rel (πΌβ€˜π‘„))
14 ssrab2 4077 . . . . . 6 {𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)} βŠ† (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š))
15 relxp 5694 . . . . . 6 Rel (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š))
16 relss 5781 . . . . . 6 ({𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)} βŠ† (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ (Rel (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ Rel {𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)}))
1714, 15, 16mp2 9 . . . . 5 Rel {𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)}
1817a1i 11 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ Rel {𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)})
19 id 22 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
20 vex 3477 . . . . . . 7 𝑔 ∈ V
21 vex 3477 . . . . . . 7 𝑠 ∈ V
223, 4, 5, 6, 7, 8, 9, 10, 20, 21dicopelval2 40356 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (βŸ¨π‘”, π‘ βŸ© ∈ (πΌβ€˜π‘„) ↔ (𝑔 = (π‘ β€˜πΉ) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))))
23 simprl 768 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑔 = (π‘ β€˜πΉ) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))) β†’ 𝑔 = (π‘ β€˜πΉ))
24 simpll 764 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑔 = (π‘ β€˜πΉ) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
25 simprr 770 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑔 = (π‘ β€˜πΉ) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))) β†’ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))
26 simpl 482 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
273, 4, 5, 6lhpocnel2 39194 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
2827adantr 480 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
29 simpr 484 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
303, 4, 5, 7, 10ltrniotacl 39754 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
3126, 28, 29, 30syl3anc 1370 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ 𝐹 ∈ 𝑇)
3231adantr 480 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑔 = (π‘ β€˜πΉ) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))) β†’ 𝐹 ∈ 𝑇)
335, 7, 8tendocl 39942 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ 𝐹 ∈ 𝑇) β†’ (π‘ β€˜πΉ) ∈ 𝑇)
3424, 25, 32, 33syl3anc 1370 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑔 = (π‘ β€˜πΉ) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))) β†’ (π‘ β€˜πΉ) ∈ 𝑇)
3523, 34eqeltrd 2832 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑔 = (π‘ β€˜πΉ) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))) β†’ 𝑔 ∈ 𝑇)
3635, 25, 233jca 1127 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑔 = (π‘ β€˜πΉ) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))) β†’ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ 𝑔 = (π‘ β€˜πΉ)))
37 simpr3 1195 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ 𝑔 = (π‘ β€˜πΉ))) β†’ 𝑔 = (π‘ β€˜πΉ))
38 simpr2 1194 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ 𝑔 = (π‘ β€˜πΉ))) β†’ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))
3937, 38jca 511 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ 𝑔 = (π‘ β€˜πΉ))) β†’ (𝑔 = (π‘ β€˜πΉ) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)))
4036, 39impbida 798 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((𝑔 = (π‘ β€˜πΉ) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) ↔ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ 𝑔 = (π‘ β€˜πΉ))))
41 diclspsn.u . . . . . . . . . . . . . 14 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
42 eqid 2731 . . . . . . . . . . . . . 14 (Scalarβ€˜π‘ˆ) = (Scalarβ€˜π‘ˆ)
43 eqid 2731 . . . . . . . . . . . . . 14 (Baseβ€˜(Scalarβ€˜π‘ˆ)) = (Baseβ€˜(Scalarβ€˜π‘ˆ))
445, 8, 41, 42, 43dvhbase 40258 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (Baseβ€˜(Scalarβ€˜π‘ˆ)) = ((TEndoβ€˜πΎ)β€˜π‘Š))
4544adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (Baseβ€˜(Scalarβ€˜π‘ˆ)) = ((TEndoβ€˜πΎ)β€˜π‘Š))
4645rexeqdv 3325 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) ↔ βˆƒπ‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)))
47 simpll 764 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
48 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))
4931adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ 𝐹 ∈ 𝑇)
505, 7, 8tendoidcl 39944 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ( I β†Ύ 𝑇) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))
5150ad2antrr 723 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ ( I β†Ύ 𝑇) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))
52 eqid 2731 . . . . . . . . . . . . . . . . . 18 ( ·𝑠 β€˜π‘ˆ) = ( ·𝑠 β€˜π‘ˆ)
535, 7, 8, 41, 52dvhopvsca 40277 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ 𝐹 ∈ 𝑇 ∧ ( I β†Ύ 𝑇) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))) β†’ (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) = ⟨(π‘₯β€˜πΉ), (π‘₯ ∘ ( I β†Ύ 𝑇))⟩)
5447, 48, 49, 51, 53syl13anc 1371 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) = ⟨(π‘₯β€˜πΉ), (π‘₯ ∘ ( I β†Ύ 𝑇))⟩)
5554eqeq2d 2742 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ (βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) ↔ βŸ¨π‘”, π‘ βŸ© = ⟨(π‘₯β€˜πΉ), (π‘₯ ∘ ( I β†Ύ 𝑇))⟩))
5620, 21opth 5476 . . . . . . . . . . . . . . 15 (βŸ¨π‘”, π‘ βŸ© = ⟨(π‘₯β€˜πΉ), (π‘₯ ∘ ( I β†Ύ 𝑇))⟩ ↔ (𝑔 = (π‘₯β€˜πΉ) ∧ 𝑠 = (π‘₯ ∘ ( I β†Ύ 𝑇))))
5755, 56bitrdi 287 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ (βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) ↔ (𝑔 = (π‘₯β€˜πΉ) ∧ 𝑠 = (π‘₯ ∘ ( I β†Ύ 𝑇)))))
585, 7, 8tendo1mulr 39946 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ (π‘₯ ∘ ( I β†Ύ 𝑇)) = π‘₯)
5958adantlr 712 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ (π‘₯ ∘ ( I β†Ύ 𝑇)) = π‘₯)
6059eqeq2d 2742 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ (𝑠 = (π‘₯ ∘ ( I β†Ύ 𝑇)) ↔ 𝑠 = π‘₯))
61 equcom 2020 . . . . . . . . . . . . . . . 16 (𝑠 = π‘₯ ↔ π‘₯ = 𝑠)
6260, 61bitrdi 287 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ (𝑠 = (π‘₯ ∘ ( I β†Ύ 𝑇)) ↔ π‘₯ = 𝑠))
6362anbi2d 628 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ ((𝑔 = (π‘₯β€˜πΉ) ∧ 𝑠 = (π‘₯ ∘ ( I β†Ύ 𝑇))) ↔ (𝑔 = (π‘₯β€˜πΉ) ∧ π‘₯ = 𝑠)))
6457, 63bitrd 279 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ (βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) ↔ (𝑔 = (π‘₯β€˜πΉ) ∧ π‘₯ = 𝑠)))
65 ancom 460 . . . . . . . . . . . . 13 ((𝑔 = (π‘₯β€˜πΉ) ∧ π‘₯ = 𝑠) ↔ (π‘₯ = 𝑠 ∧ 𝑔 = (π‘₯β€˜πΉ)))
6664, 65bitrdi 287 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ (βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) ↔ (π‘₯ = 𝑠 ∧ 𝑔 = (π‘₯β€˜πΉ))))
6766rexbidva 3175 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (βˆƒπ‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) ↔ βˆƒπ‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)(π‘₯ = 𝑠 ∧ 𝑔 = (π‘₯β€˜πΉ))))
6846, 67bitrd 279 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) ↔ βˆƒπ‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)(π‘₯ = 𝑠 ∧ 𝑔 = (π‘₯β€˜πΉ))))
69683anbi3d 1441 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)) ↔ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ βˆƒπ‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)(π‘₯ = 𝑠 ∧ 𝑔 = (π‘₯β€˜πΉ)))))
70 fveq1 6890 . . . . . . . . . . . . . 14 (π‘₯ = 𝑠 β†’ (π‘₯β€˜πΉ) = (π‘ β€˜πΉ))
7170eqeq2d 2742 . . . . . . . . . . . . 13 (π‘₯ = 𝑠 β†’ (𝑔 = (π‘₯β€˜πΉ) ↔ 𝑔 = (π‘ β€˜πΉ)))
7271ceqsrexv 3643 . . . . . . . . . . . 12 (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) β†’ (βˆƒπ‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)(π‘₯ = 𝑠 ∧ 𝑔 = (π‘₯β€˜πΉ)) ↔ 𝑔 = (π‘ β€˜πΉ)))
7372pm5.32i 574 . . . . . . . . . . 11 ((𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ βˆƒπ‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)(π‘₯ = 𝑠 ∧ 𝑔 = (π‘₯β€˜πΉ))) ↔ (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ 𝑔 = (π‘ β€˜πΉ)))
7473anbi2i 622 . . . . . . . . . 10 ((𝑔 ∈ 𝑇 ∧ (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ βˆƒπ‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)(π‘₯ = 𝑠 ∧ 𝑔 = (π‘₯β€˜πΉ)))) ↔ (𝑔 ∈ 𝑇 ∧ (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ 𝑔 = (π‘ β€˜πΉ))))
75 3anass 1094 . . . . . . . . . 10 ((𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ βˆƒπ‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)(π‘₯ = 𝑠 ∧ 𝑔 = (π‘₯β€˜πΉ))) ↔ (𝑔 ∈ 𝑇 ∧ (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ βˆƒπ‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)(π‘₯ = 𝑠 ∧ 𝑔 = (π‘₯β€˜πΉ)))))
76 3anass 1094 . . . . . . . . . 10 ((𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ 𝑔 = (π‘ β€˜πΉ)) ↔ (𝑔 ∈ 𝑇 ∧ (𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ 𝑔 = (π‘ β€˜πΉ))))
7774, 75, 763bitr4i 303 . . . . . . . . 9 ((𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ βˆƒπ‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)(π‘₯ = 𝑠 ∧ 𝑔 = (π‘₯β€˜πΉ))) ↔ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ 𝑔 = (π‘ β€˜πΉ)))
7869, 77bitr2di 288 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ 𝑔 = (π‘ β€˜πΉ)) ↔ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩))))
7940, 78bitrd 279 . . . . . . 7 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((𝑔 = (π‘ β€˜πΉ) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) ↔ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩))))
80 eqeq1 2735 . . . . . . . . . . 11 (𝑣 = βŸ¨π‘”, π‘ βŸ© β†’ (𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) ↔ βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)))
8180rexbidv 3177 . . . . . . . . . 10 (𝑣 = βŸ¨π‘”, π‘ βŸ© β†’ (βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) ↔ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)))
8281rabxp 5724 . . . . . . . . 9 {𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)} = {βŸ¨π‘”, π‘ βŸ© ∣ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩))}
8382eleq2i 2824 . . . . . . . 8 (βŸ¨π‘”, π‘ βŸ© ∈ {𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)} ↔ βŸ¨π‘”, π‘ βŸ© ∈ {βŸ¨π‘”, π‘ βŸ© ∣ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩))})
84 opabidw 5524 . . . . . . . 8 (βŸ¨π‘”, π‘ βŸ© ∈ {βŸ¨π‘”, π‘ βŸ© ∣ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩))} ↔ (𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)))
8583, 84bitr2i 276 . . . . . . 7 ((𝑔 ∈ 𝑇 ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))βŸ¨π‘”, π‘ βŸ© = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)) ↔ βŸ¨π‘”, π‘ βŸ© ∈ {𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)})
8679, 85bitrdi 287 . . . . . 6 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ((𝑔 = (π‘ β€˜πΉ) ∧ 𝑠 ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) ↔ βŸ¨π‘”, π‘ βŸ© ∈ {𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)}))
8722, 86bitrd 279 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (βŸ¨π‘”, π‘ βŸ© ∈ (πΌβ€˜π‘„) ↔ βŸ¨π‘”, π‘ βŸ© ∈ {𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)}))
8887eqrelrdv2 5795 . . . 4 (((Rel (πΌβ€˜π‘„) ∧ Rel {𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)}) ∧ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))) β†’ (πΌβ€˜π‘„) = {𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)})
8913, 18, 19, 88syl21anc 835 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = {𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)})
90 simpll 764 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
9145eleq2d 2818 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ)) ↔ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)))
9291biimpa 476 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))) β†’ π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))
9350adantr 480 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ( I β†Ύ 𝑇) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))
94 opelxpi 5713 . . . . . . . . . 10 ((𝐹 ∈ 𝑇 ∧ ( I β†Ύ 𝑇) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ ⟨𝐹, ( I β†Ύ 𝑇)⟩ ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)))
9531, 93, 94syl2anc 583 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ⟨𝐹, ( I β†Ύ 𝑇)⟩ ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)))
9695adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))) β†’ ⟨𝐹, ( I β†Ύ 𝑇)⟩ ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)))
975, 7, 8, 41, 52dvhvscacl 40278 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (π‘₯ ∈ ((TEndoβ€˜πΎ)β€˜π‘Š) ∧ ⟨𝐹, ( I β†Ύ 𝑇)⟩ ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)))) β†’ (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)))
9890, 92, 96, 97syl12anc 834 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))) β†’ (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)))
99 eleq1a 2827 . . . . . . 7 ((π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) β†’ (𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) β†’ 𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š))))
10098, 99syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))) β†’ (𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) β†’ 𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š))))
101100rexlimdva 3154 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) β†’ 𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š))))
102101pm4.71rd 562 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩) ↔ (𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩))))
103102abbidv 2800 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ {𝑣 ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)} = {𝑣 ∣ (𝑣 ∈ (𝑇 Γ— ((TEndoβ€˜πΎ)β€˜π‘Š)) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩))})
1041, 89, 1033eqtr4a 2797 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = {𝑣 ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)})
1055, 41, 26dvhlmod 40285 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ π‘ˆ ∈ LMod)
106 eqid 2731 . . . . 5 (Baseβ€˜π‘ˆ) = (Baseβ€˜π‘ˆ)
1075, 7, 8, 41, 106dvhelvbasei 40263 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ( I β†Ύ 𝑇) ∈ ((TEndoβ€˜πΎ)β€˜π‘Š))) β†’ ⟨𝐹, ( I β†Ύ 𝑇)⟩ ∈ (Baseβ€˜π‘ˆ))
10826, 31, 93, 107syl12anc 834 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ ⟨𝐹, ( I β†Ύ 𝑇)⟩ ∈ (Baseβ€˜π‘ˆ))
109 diclspsn.n . . . 4 𝑁 = (LSpanβ€˜π‘ˆ)
11042, 43, 106, 52, 109lspsn 20758 . . 3 ((π‘ˆ ∈ LMod ∧ ⟨𝐹, ( I β†Ύ 𝑇)⟩ ∈ (Baseβ€˜π‘ˆ)) β†’ (π‘β€˜{⟨𝐹, ( I β†Ύ 𝑇)⟩}) = {𝑣 ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)})
111105, 108, 110syl2anc 583 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (π‘β€˜{⟨𝐹, ( I β†Ύ 𝑇)⟩}) = {𝑣 ∣ βˆƒπ‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘ˆ))𝑣 = (π‘₯( ·𝑠 β€˜π‘ˆ)⟨𝐹, ( I β†Ύ 𝑇)⟩)})
112104, 111eqtr4d 2774 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) β†’ (πΌβ€˜π‘„) = (π‘β€˜{⟨𝐹, ( I β†Ύ 𝑇)⟩}))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105  {cab 2708  βˆƒwrex 3069  {crab 3431   βŠ† wss 3948  {csn 4628  βŸ¨cop 4634   class class class wbr 5148  {copab 5210   I cid 5573   Γ— cxp 5674   β†Ύ cres 5678   ∘ ccom 5680  Rel wrel 5681  β€˜cfv 6543  β„©crio 7367  (class class class)co 7412  Basecbs 17149  Scalarcsca 17205   ·𝑠 cvsca 17206  lecple 17209  occoc 17210  LModclmod 20615  LSpanclspn 20727  Atomscatm 38437  HLchlt 38524  LHypclh 39159  LTrncltrn 39276  TEndoctendo 39927  DVecHcdvh 40253  DIsoCcdic 40347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191  ax-riotaBAD 38127
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-tpos 8215  df-undef 8262  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-0g 17392  df-proset 18253  df-poset 18271  df-plt 18288  df-lub 18304  df-glb 18305  df-join 18306  df-meet 18307  df-p0 18383  df-p1 18384  df-lat 18390  df-clat 18457  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-grp 18859  df-minusg 18860  df-sbg 18861  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-oppr 20226  df-dvdsr 20249  df-unit 20250  df-invr 20280  df-dvr 20293  df-drng 20503  df-lmod 20617  df-lss 20688  df-lsp 20728  df-lvec 20859  df-oposet 38350  df-ol 38352  df-oml 38353  df-covers 38440  df-ats 38441  df-atl 38472  df-cvlat 38496  df-hlat 38525  df-llines 38673  df-lplanes 38674  df-lvols 38675  df-lines 38676  df-psubsp 38678  df-pmap 38679  df-padd 38971  df-lhyp 39163  df-laut 39164  df-ldil 39279  df-ltrn 39280  df-trl 39334  df-tendo 39930  df-edring 39932  df-dvech 40254  df-dic 40348
This theorem is referenced by:  cdlemn5pre  40375  dih1dimc  40417
  Copyright terms: Public domain W3C validator