Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diclspsn Structured version   Visualization version   GIF version

Theorem diclspsn 41173
Description: The value of isomorphism C is spanned by vector 𝐹. Part of proof of Lemma N of [Crawley] p. 121 line 29. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
diclspsn.l = (le‘𝐾)
diclspsn.a 𝐴 = (Atoms‘𝐾)
diclspsn.h 𝐻 = (LHyp‘𝐾)
diclspsn.p 𝑃 = ((oc‘𝐾)‘𝑊)
diclspsn.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diclspsn.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
diclspsn.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
diclspsn.n 𝑁 = (LSpan‘𝑈)
diclspsn.f 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)
Assertion
Ref Expression
diclspsn (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}))
Distinct variable groups:   ,𝑓   𝑃,𝑓   𝐴,𝑓   𝑓,𝐻   𝑇,𝑓   𝑓,𝐾   𝑄,𝑓   𝑓,𝑊
Allowed substitution hints:   𝑈(𝑓)   𝐹(𝑓)   𝐼(𝑓)   𝑁(𝑓)

Proof of Theorem diclspsn
Dummy variables 𝑔 𝑠 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3397 . . 3 {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} = {𝑣 ∣ (𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))}
2 relopabv 5768 . . . . 5 Rel {⟨𝑦, 𝑧⟩ ∣ (𝑦 = (𝑧𝐹) ∧ 𝑧 ∈ ((TEndo‘𝐾)‘𝑊))}
3 diclspsn.l . . . . . . 7 = (le‘𝐾)
4 diclspsn.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 diclspsn.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
6 diclspsn.p . . . . . . 7 𝑃 = ((oc‘𝐾)‘𝑊)
7 diclspsn.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 eqid 2729 . . . . . . 7 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
9 diclspsn.i . . . . . . 7 𝐼 = ((DIsoC‘𝐾)‘𝑊)
10 diclspsn.f . . . . . . 7 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)
113, 4, 5, 6, 7, 8, 9, 10dicval2 41158 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑦, 𝑧⟩ ∣ (𝑦 = (𝑧𝐹) ∧ 𝑧 ∈ ((TEndo‘𝐾)‘𝑊))})
1211releqd 5726 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (Rel (𝐼𝑄) ↔ Rel {⟨𝑦, 𝑧⟩ ∣ (𝑦 = (𝑧𝐹) ∧ 𝑧 ∈ ((TEndo‘𝐾)‘𝑊))}))
132, 12mpbiri 258 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → Rel (𝐼𝑄))
14 ssrab2 4033 . . . . . 6 {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} ⊆ (𝑇 × ((TEndo‘𝐾)‘𝑊))
15 relxp 5641 . . . . . 6 Rel (𝑇 × ((TEndo‘𝐾)‘𝑊))
16 relss 5729 . . . . . 6 ({𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} ⊆ (𝑇 × ((TEndo‘𝐾)‘𝑊)) → (Rel (𝑇 × ((TEndo‘𝐾)‘𝑊)) → Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}))
1714, 15, 16mp2 9 . . . . 5 Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}
1817a1i 11 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
19 id 22 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
20 vex 3442 . . . . . . 7 𝑔 ∈ V
21 vex 3442 . . . . . . 7 𝑠 ∈ V
223, 4, 5, 6, 7, 8, 9, 10, 20, 21dicopelval2 41160 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑔, 𝑠⟩ ∈ (𝐼𝑄) ↔ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))))
23 simprl 770 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑔 = (𝑠𝐹))
24 simpll 766 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
25 simprr 772 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))
26 simpl 482 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
273, 4, 5, 6lhpocnel2 39998 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
2827adantr 480 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
29 simpr 484 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
303, 4, 5, 7, 10ltrniotacl 40558 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
3126, 28, 29, 30syl3anc 1373 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
3231adantr 480 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝐹𝑇)
335, 7, 8tendocl 40746 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
3424, 25, 32, 33syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑠𝐹) ∈ 𝑇)
3523, 34eqeltrd 2828 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑔𝑇)
3635, 25, 233jca 1128 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)))
37 simpr3 1197 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))) → 𝑔 = (𝑠𝐹))
38 simpr2 1196 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))) → 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))
3937, 38jca 511 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))) → (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)))
4036, 39impbida 800 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))))
41 diclspsn.u . . . . . . . . . . . . . 14 𝑈 = ((DVecH‘𝐾)‘𝑊)
42 eqid 2729 . . . . . . . . . . . . . 14 (Scalar‘𝑈) = (Scalar‘𝑈)
43 eqid 2729 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
445, 8, 41, 42, 43dvhbase 41062 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
4544adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
4645rexeqdv 3291 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)))
47 simpll 766 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
48 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))
4931adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → 𝐹𝑇)
505, 7, 8tendoidcl 40748 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
5150ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
52 eqid 2729 . . . . . . . . . . . . . . . . . 18 ( ·𝑠𝑈) = ( ·𝑠𝑈)
535, 7, 8, 41, 52dvhopvsca 41081 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝐹𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) = ⟨(𝑥𝐹), (𝑥 ∘ ( I ↾ 𝑇))⟩)
5447, 48, 49, 51, 53syl13anc 1374 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) = ⟨(𝑥𝐹), (𝑥 ∘ ( I ↾ 𝑇))⟩)
5554eqeq2d 2740 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ⟨𝑔, 𝑠⟩ = ⟨(𝑥𝐹), (𝑥 ∘ ( I ↾ 𝑇))⟩))
5620, 21opth 5423 . . . . . . . . . . . . . . 15 (⟨𝑔, 𝑠⟩ = ⟨(𝑥𝐹), (𝑥 ∘ ( I ↾ 𝑇))⟩ ↔ (𝑔 = (𝑥𝐹) ∧ 𝑠 = (𝑥 ∘ ( I ↾ 𝑇))))
5755, 56bitrdi 287 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ (𝑔 = (𝑥𝐹) ∧ 𝑠 = (𝑥 ∘ ( I ↾ 𝑇)))))
585, 7, 8tendo1mulr 40750 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ ( I ↾ 𝑇)) = 𝑥)
5958adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ ( I ↾ 𝑇)) = 𝑥)
6059eqeq2d 2740 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑠 = (𝑥 ∘ ( I ↾ 𝑇)) ↔ 𝑠 = 𝑥))
61 equcom 2018 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑥𝑥 = 𝑠)
6260, 61bitrdi 287 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑠 = (𝑥 ∘ ( I ↾ 𝑇)) ↔ 𝑥 = 𝑠))
6362anbi2d 630 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → ((𝑔 = (𝑥𝐹) ∧ 𝑠 = (𝑥 ∘ ( I ↾ 𝑇))) ↔ (𝑔 = (𝑥𝐹) ∧ 𝑥 = 𝑠)))
6457, 63bitrd 279 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ (𝑔 = (𝑥𝐹) ∧ 𝑥 = 𝑠)))
65 ancom 460 . . . . . . . . . . . . 13 ((𝑔 = (𝑥𝐹) ∧ 𝑥 = 𝑠) ↔ (𝑥 = 𝑠𝑔 = (𝑥𝐹)))
6664, 65bitrdi 287 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ (𝑥 = 𝑠𝑔 = (𝑥𝐹))))
6766rexbidva 3151 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))))
6846, 67bitrd 279 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))))
69683anbi3d 1444 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹)))))
70 fveq1 6825 . . . . . . . . . . . . . 14 (𝑥 = 𝑠 → (𝑥𝐹) = (𝑠𝐹))
7170eqeq2d 2740 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (𝑔 = (𝑥𝐹) ↔ 𝑔 = (𝑠𝐹)))
7271ceqsrexv 3612 . . . . . . . . . . . 12 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) → (∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹)) ↔ 𝑔 = (𝑠𝐹)))
7372pm5.32i 574 . . . . . . . . . . 11 ((𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))) ↔ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)))
7473anbi2i 623 . . . . . . . . . 10 ((𝑔𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹)))) ↔ (𝑔𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))))
75 3anass 1094 . . . . . . . . . 10 ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))) ↔ (𝑔𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹)))))
76 3anass 1094 . . . . . . . . . 10 ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)) ↔ (𝑔𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))))
7774, 75, 763bitr4i 303 . . . . . . . . 9 ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)))
7869, 77bitr2di 288 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))))
7940, 78bitrd 279 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))))
80 eqeq1 2733 . . . . . . . . . . 11 (𝑣 = ⟨𝑔, 𝑠⟩ → (𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)))
8180rexbidv 3153 . . . . . . . . . 10 (𝑣 = ⟨𝑔, 𝑠⟩ → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)))
8281rabxp 5671 . . . . . . . . 9 {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} = {⟨𝑔, 𝑠⟩ ∣ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))}
8382eleq2i 2820 . . . . . . . 8 (⟨𝑔, 𝑠⟩ ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} ↔ ⟨𝑔, 𝑠⟩ ∈ {⟨𝑔, 𝑠⟩ ∣ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))})
84 opabidw 5471 . . . . . . . 8 (⟨𝑔, 𝑠⟩ ∈ {⟨𝑔, 𝑠⟩ ∣ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))} ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)))
8583, 84bitr2i 276 . . . . . . 7 ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)) ↔ ⟨𝑔, 𝑠⟩ ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
8679, 85bitrdi 287 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ⟨𝑔, 𝑠⟩ ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}))
8722, 86bitrd 279 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑔, 𝑠⟩ ∈ (𝐼𝑄) ↔ ⟨𝑔, 𝑠⟩ ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}))
8887eqrelrdv2 5742 . . . 4 (((Rel (𝐼𝑄) ∧ Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}) ∧ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐼𝑄) = {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
8913, 18, 19, 88syl21anc 837 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
90 simpll 766 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9145eleq2d 2814 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑥 ∈ (Base‘(Scalar‘𝑈)) ↔ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)))
9291biimpa 476 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))
9350adantr 480 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
94 opelxpi 5660 . . . . . . . . . 10 ((𝐹𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
9531, 93, 94syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
9695adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
975, 7, 8, 41, 52dvhvscacl 41082 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))) → (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
9890, 92, 96, 97syl12anc 836 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
99 eleq1a 2823 . . . . . . 7 ((𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) → (𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) → 𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))))
10098, 99syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → (𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) → 𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))))
101100rexlimdva 3130 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) → 𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))))
102101pm4.71rd 562 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ (𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))))
103102abbidv 2795 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} = {𝑣 ∣ (𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))})
1041, 89, 1033eqtr4a 2790 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
1055, 41, 26dvhlmod 41089 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑈 ∈ LMod)
106 eqid 2729 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
1075, 7, 8, 41, 106dvhelvbasei 41067 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈))
10826, 31, 93, 107syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈))
109 diclspsn.n . . . 4 𝑁 = (LSpan‘𝑈)
11042, 43, 106, 52, 109lspsn 20923 . . 3 ((𝑈 ∈ LMod ∧ ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈)) → (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) = {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
111105, 108, 110syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) = {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
112104, 111eqtr4d 2767 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {crab 3396  wss 3905  {csn 4579  cop 4585   class class class wbr 5095  {copab 5157   I cid 5517   × cxp 5621  cres 5625  ccom 5627  Rel wrel 5628  cfv 6486  crio 7309  (class class class)co 7353  Basecbs 17138  Scalarcsca 17182   ·𝑠 cvsca 17183  lecple 17186  occoc 17187  LModclmod 20781  LSpanclspn 20892  Atomscatm 39241  HLchlt 39328  LHypclh 39963  LTrncltrn 40080  TEndoctendo 40731  DVecHcdvh 41057  DIsoCcdic 41151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38931
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17363  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lvec 21025  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478  df-lvols 39479  df-lines 39480  df-psubsp 39482  df-pmap 39483  df-padd 39775  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084  df-trl 40138  df-tendo 40734  df-edring 40736  df-dvech 41058  df-dic 41152
This theorem is referenced by:  cdlemn5pre  41179  dih1dimc  41221
  Copyright terms: Public domain W3C validator