Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diclspsn Structured version   Visualization version   GIF version

Theorem diclspsn 41232
Description: The value of isomorphism C is spanned by vector 𝐹. Part of proof of Lemma N of [Crawley] p. 121 line 29. (Contributed by NM, 21-Feb-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
diclspsn.l = (le‘𝐾)
diclspsn.a 𝐴 = (Atoms‘𝐾)
diclspsn.h 𝐻 = (LHyp‘𝐾)
diclspsn.p 𝑃 = ((oc‘𝐾)‘𝑊)
diclspsn.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
diclspsn.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
diclspsn.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
diclspsn.n 𝑁 = (LSpan‘𝑈)
diclspsn.f 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)
Assertion
Ref Expression
diclspsn (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}))
Distinct variable groups:   ,𝑓   𝑃,𝑓   𝐴,𝑓   𝑓,𝐻   𝑇,𝑓   𝑓,𝐾   𝑄,𝑓   𝑓,𝑊
Allowed substitution hints:   𝑈(𝑓)   𝐹(𝑓)   𝐼(𝑓)   𝑁(𝑓)

Proof of Theorem diclspsn
Dummy variables 𝑔 𝑠 𝑣 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 3396 . . 3 {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} = {𝑣 ∣ (𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))}
2 relopabv 5761 . . . . 5 Rel {⟨𝑦, 𝑧⟩ ∣ (𝑦 = (𝑧𝐹) ∧ 𝑧 ∈ ((TEndo‘𝐾)‘𝑊))}
3 diclspsn.l . . . . . . 7 = (le‘𝐾)
4 diclspsn.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
5 diclspsn.h . . . . . . 7 𝐻 = (LHyp‘𝐾)
6 diclspsn.p . . . . . . 7 𝑃 = ((oc‘𝐾)‘𝑊)
7 diclspsn.t . . . . . . 7 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 eqid 2731 . . . . . . 7 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
9 diclspsn.i . . . . . . 7 𝐼 = ((DIsoC‘𝐾)‘𝑊)
10 diclspsn.f . . . . . . 7 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑄)
113, 4, 5, 6, 7, 8, 9, 10dicval2 41217 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {⟨𝑦, 𝑧⟩ ∣ (𝑦 = (𝑧𝐹) ∧ 𝑧 ∈ ((TEndo‘𝐾)‘𝑊))})
1211releqd 5719 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (Rel (𝐼𝑄) ↔ Rel {⟨𝑦, 𝑧⟩ ∣ (𝑦 = (𝑧𝐹) ∧ 𝑧 ∈ ((TEndo‘𝐾)‘𝑊))}))
132, 12mpbiri 258 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → Rel (𝐼𝑄))
14 ssrab2 4030 . . . . . 6 {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} ⊆ (𝑇 × ((TEndo‘𝐾)‘𝑊))
15 relxp 5634 . . . . . 6 Rel (𝑇 × ((TEndo‘𝐾)‘𝑊))
16 relss 5722 . . . . . 6 ({𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} ⊆ (𝑇 × ((TEndo‘𝐾)‘𝑊)) → (Rel (𝑇 × ((TEndo‘𝐾)‘𝑊)) → Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}))
1714, 15, 16mp2 9 . . . . 5 Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}
1817a1i 11 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
19 id 22 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
20 vex 3440 . . . . . . 7 𝑔 ∈ V
21 vex 3440 . . . . . . 7 𝑠 ∈ V
223, 4, 5, 6, 7, 8, 9, 10, 20, 21dicopelval2 41219 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑔, 𝑠⟩ ∈ (𝐼𝑄) ↔ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))))
23 simprl 770 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑔 = (𝑠𝐹))
24 simpll 766 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
25 simprr 772 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))
26 simpl 482 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
273, 4, 5, 6lhpocnel2 40057 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
2827adantr 480 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
29 simpr 484 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
303, 4, 5, 7, 10ltrniotacl 40617 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
3126, 28, 29, 30syl3anc 1373 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝐹𝑇)
3231adantr 480 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝐹𝑇)
335, 7, 8tendocl 40805 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝐹𝑇) → (𝑠𝐹) ∈ 𝑇)
3424, 25, 32, 33syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑠𝐹) ∈ 𝑇)
3523, 34eqeltrd 2831 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → 𝑔𝑇)
3635, 25, 233jca 1128 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)))
37 simpr3 1197 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))) → 𝑔 = (𝑠𝐹))
38 simpr2 1196 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))) → 𝑠 ∈ ((TEndo‘𝐾)‘𝑊))
3937, 38jca 511 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))) → (𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)))
4036, 39impbida 800 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))))
41 diclspsn.u . . . . . . . . . . . . . 14 𝑈 = ((DVecH‘𝐾)‘𝑊)
42 eqid 2731 . . . . . . . . . . . . . 14 (Scalar‘𝑈) = (Scalar‘𝑈)
43 eqid 2731 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
445, 8, 41, 42, 43dvhbase 41121 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
4544adantr 480 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
4645rexeqdv 3293 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)))
47 simpll 766 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
48 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))
4931adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → 𝐹𝑇)
505, 7, 8tendoidcl 40807 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
5150ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
52 eqid 2731 . . . . . . . . . . . . . . . . . 18 ( ·𝑠𝑈) = ( ·𝑠𝑈)
535, 7, 8, 41, 52dvhopvsca 41140 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝐹𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) = ⟨(𝑥𝐹), (𝑥 ∘ ( I ↾ 𝑇))⟩)
5447, 48, 49, 51, 53syl13anc 1374 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) = ⟨(𝑥𝐹), (𝑥 ∘ ( I ↾ 𝑇))⟩)
5554eqeq2d 2742 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ⟨𝑔, 𝑠⟩ = ⟨(𝑥𝐹), (𝑥 ∘ ( I ↾ 𝑇))⟩))
5620, 21opth 5416 . . . . . . . . . . . . . . 15 (⟨𝑔, 𝑠⟩ = ⟨(𝑥𝐹), (𝑥 ∘ ( I ↾ 𝑇))⟩ ↔ (𝑔 = (𝑥𝐹) ∧ 𝑠 = (𝑥 ∘ ( I ↾ 𝑇))))
5755, 56bitrdi 287 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ (𝑔 = (𝑥𝐹) ∧ 𝑠 = (𝑥 ∘ ( I ↾ 𝑇)))))
585, 7, 8tendo1mulr 40809 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ ( I ↾ 𝑇)) = 𝑥)
5958adantlr 715 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑥 ∘ ( I ↾ 𝑇)) = 𝑥)
6059eqeq2d 2742 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑠 = (𝑥 ∘ ( I ↾ 𝑇)) ↔ 𝑠 = 𝑥))
61 equcom 2019 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑥𝑥 = 𝑠)
6260, 61bitrdi 287 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑠 = (𝑥 ∘ ( I ↾ 𝑇)) ↔ 𝑥 = 𝑠))
6362anbi2d 630 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → ((𝑔 = (𝑥𝐹) ∧ 𝑠 = (𝑥 ∘ ( I ↾ 𝑇))) ↔ (𝑔 = (𝑥𝐹) ∧ 𝑥 = 𝑠)))
6457, 63bitrd 279 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ (𝑔 = (𝑥𝐹) ∧ 𝑥 = 𝑠)))
65 ancom 460 . . . . . . . . . . . . 13 ((𝑔 = (𝑥𝐹) ∧ 𝑥 = 𝑠) ↔ (𝑥 = 𝑠𝑔 = (𝑥𝐹)))
6664, 65bitrdi 287 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) → (⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ (𝑥 = 𝑠𝑔 = (𝑥𝐹))))
6766rexbidva 3154 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))))
6846, 67bitrd 279 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))))
69683anbi3d 1444 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹)))))
70 fveq1 6821 . . . . . . . . . . . . . 14 (𝑥 = 𝑠 → (𝑥𝐹) = (𝑠𝐹))
7170eqeq2d 2742 . . . . . . . . . . . . 13 (𝑥 = 𝑠 → (𝑔 = (𝑥𝐹) ↔ 𝑔 = (𝑠𝐹)))
7271ceqsrexv 3610 . . . . . . . . . . . 12 (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) → (∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹)) ↔ 𝑔 = (𝑠𝐹)))
7372pm5.32i 574 . . . . . . . . . . 11 ((𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))) ↔ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)))
7473anbi2i 623 . . . . . . . . . 10 ((𝑔𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹)))) ↔ (𝑔𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))))
75 3anass 1094 . . . . . . . . . 10 ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))) ↔ (𝑔𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹)))))
76 3anass 1094 . . . . . . . . . 10 ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)) ↔ (𝑔𝑇 ∧ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹))))
7774, 75, 763bitr4i 303 . . . . . . . . 9 ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ ((TEndo‘𝐾)‘𝑊)(𝑥 = 𝑠𝑔 = (𝑥𝐹))) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)))
7869, 77bitr2di 288 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑔 = (𝑠𝐹)) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))))
7940, 78bitrd 279 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))))
80 eqeq1 2735 . . . . . . . . . . 11 (𝑣 = ⟨𝑔, 𝑠⟩ → (𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)))
8180rexbidv 3156 . . . . . . . . . 10 (𝑣 = ⟨𝑔, 𝑠⟩ → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)))
8281rabxp 5664 . . . . . . . . 9 {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} = {⟨𝑔, 𝑠⟩ ∣ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))}
8382eleq2i 2823 . . . . . . . 8 (⟨𝑔, 𝑠⟩ ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} ↔ ⟨𝑔, 𝑠⟩ ∈ {⟨𝑔, 𝑠⟩ ∣ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))})
84 opabidw 5464 . . . . . . . 8 (⟨𝑔, 𝑠⟩ ∈ {⟨𝑔, 𝑠⟩ ∣ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))} ↔ (𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)))
8583, 84bitr2i 276 . . . . . . 7 ((𝑔𝑇𝑠 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))⟨𝑔, 𝑠⟩ = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)) ↔ ⟨𝑔, 𝑠⟩ ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
8679, 85bitrdi 287 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((𝑔 = (𝑠𝐹) ∧ 𝑠 ∈ ((TEndo‘𝐾)‘𝑊)) ↔ ⟨𝑔, 𝑠⟩ ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}))
8722, 86bitrd 279 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (⟨𝑔, 𝑠⟩ ∈ (𝐼𝑄) ↔ ⟨𝑔, 𝑠⟩ ∈ {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}))
8887eqrelrdv2 5735 . . . 4 (((Rel (𝐼𝑄) ∧ Rel {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)}) ∧ ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊))) → (𝐼𝑄) = {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
8913, 18, 19, 88syl21anc 837 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
90 simpll 766 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
9145eleq2d 2817 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑥 ∈ (Base‘(Scalar‘𝑈)) ↔ 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)))
9291biimpa 476 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))
9350adantr 480 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))
94 opelxpi 5653 . . . . . . . . . 10 ((𝐹𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
9531, 93, 94syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
9695adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
975, 7, 8, 41, 52dvhvscacl 41141 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))) → (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
9890, 92, 96, 97syl12anc 836 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)))
99 eleq1a 2826 . . . . . . 7 ((𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) → (𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) → 𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))))
10098, 99syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑈))) → (𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) → 𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))))
101100rexlimdva 3133 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) → 𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊))))
102101pm4.71rd 562 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩) ↔ (𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))))
103102abbidv 2797 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)} = {𝑣 ∣ (𝑣 ∈ (𝑇 × ((TEndo‘𝐾)‘𝑊)) ∧ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩))})
1041, 89, 1033eqtr4a 2792 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
1055, 41, 26dvhlmod 41148 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑈 ∈ LMod)
106 eqid 2731 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
1075, 7, 8, 41, 106dvhelvbasei 41126 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇 ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈))
10826, 31, 93, 107syl12anc 836 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈))
109 diclspsn.n . . . 4 𝑁 = (LSpan‘𝑈)
11042, 43, 106, 52, 109lspsn 20933 . . 3 ((𝑈 ∈ LMod ∧ ⟨𝐹, ( I ↾ 𝑇)⟩ ∈ (Base‘𝑈)) → (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) = {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
111105, 108, 110syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}) = {𝑣 ∣ ∃𝑥 ∈ (Base‘(Scalar‘𝑈))𝑣 = (𝑥( ·𝑠𝑈)⟨𝐹, ( I ↾ 𝑇)⟩)})
112104, 111eqtr4d 2769 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) = (𝑁‘{⟨𝐹, ( I ↾ 𝑇)⟩}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  {crab 3395  wss 3902  {csn 4576  cop 4582   class class class wbr 5091  {copab 5153   I cid 5510   × cxp 5614  cres 5618  ccom 5620  Rel wrel 5621  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17117  Scalarcsca 17161   ·𝑠 cvsca 17162  lecple 17165  occoc 17166  LModclmod 20791  LSpanclspn 20902  Atomscatm 39301  HLchlt 39388  LHypclh 40022  LTrncltrn 40139  TEndoctendo 40790  DVecHcdvh 41116  DIsoCcdic 41210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-riotaBAD 38991
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-undef 8203  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-0g 17342  df-proset 18197  df-poset 18216  df-plt 18231  df-lub 18247  df-glb 18248  df-join 18249  df-meet 18250  df-p0 18326  df-p1 18327  df-lat 18335  df-clat 18402  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847  df-sbg 18848  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-drng 20644  df-lmod 20793  df-lss 20863  df-lsp 20903  df-lvec 21035  df-oposet 39214  df-ol 39216  df-oml 39217  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360  df-hlat 39389  df-llines 39536  df-lplanes 39537  df-lvols 39538  df-lines 39539  df-psubsp 39541  df-pmap 39542  df-padd 39834  df-lhyp 40026  df-laut 40027  df-ldil 40142  df-ltrn 40143  df-trl 40197  df-tendo 40793  df-edring 40795  df-dvech 41117  df-dic 41211
This theorem is referenced by:  cdlemn5pre  41238  dih1dimc  41280
  Copyright terms: Public domain W3C validator