Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdiophlem1 Structured version   Visualization version   GIF version

Theorem expdiophlem1 41331
Description: Lemma for expdioph 41333. Fully expanded expression for exponential. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdiophlem1 (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴𝐵)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))))
Distinct variable groups:   𝐴,𝑑,𝑒,𝑓   𝐵,𝑑,𝑒,𝑓   𝐶,𝑑,𝑒,𝑓

Proof of Theorem expdiophlem1
StepHypRef Expression
1 2re 12227 . . . . . . . . . . 11 2 ∈ ℝ
21a1i 11 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 2 ∈ ℝ)
3 nnre 12160 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
4 peano2re 11328 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
53, 4syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ ℝ)
65adantl 482 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐵 + 1) ∈ ℝ)
7 nnz 12520 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
87peano2zd 12610 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ ℤ)
9 frmy 41224 . . . . . . . . . . . . 13 Yrm :((ℤ‘2) × ℤ)⟶ℤ
109fovcl 7484 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝐵 + 1) ∈ ℤ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℤ)
118, 10sylan2 593 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℤ)
1211zred 12607 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℝ)
13 elnnuz 12807 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ ↔ 𝐵 ∈ (ℤ‘1))
14 eluzp1p1 12791 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℤ‘1) → (𝐵 + 1) ∈ (ℤ‘(1 + 1)))
15 df-2 12216 . . . . . . . . . . . . . . 15 2 = (1 + 1)
1615fveq2i 6845 . . . . . . . . . . . . . 14 (ℤ‘2) = (ℤ‘(1 + 1))
1714, 16eleqtrrdi 2849 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ‘1) → (𝐵 + 1) ∈ (ℤ‘2))
1813, 17sylbi 216 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ (ℤ‘2))
19 eluzle 12776 . . . . . . . . . . . 12 ((𝐵 + 1) ∈ (ℤ‘2) → 2 ≤ (𝐵 + 1))
2018, 19syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 2 ≤ (𝐵 + 1))
2120adantl 482 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 2 ≤ (𝐵 + 1))
22 nnnn0 12420 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
23 peano2nn0 12453 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0)
2422, 23syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ ℕ0)
25 rmygeid 41274 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝐵 + 1) ∈ ℕ0) → (𝐵 + 1) ≤ (𝐴 Yrm (𝐵 + 1)))
2624, 25sylan2 593 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐵 + 1) ≤ (𝐴 Yrm (𝐵 + 1)))
272, 6, 12, 21, 26letrd 11312 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 2 ≤ (𝐴 Yrm (𝐵 + 1)))
28 2z 12535 . . . . . . . . . 10 2 ∈ ℤ
29 eluz 12777 . . . . . . . . . 10 ((2 ∈ ℤ ∧ (𝐴 Yrm (𝐵 + 1)) ∈ ℤ) → ((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ↔ 2 ≤ (𝐴 Yrm (𝐵 + 1))))
3028, 11, 29sylancr 587 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ↔ 2 ≤ (𝐴 Yrm (𝐵 + 1))))
3127, 30mpbird 256 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2))
3231adantl 482 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2))
33 simprl 769 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐴 ∈ (ℤ‘2))
34 simprr 771 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐵 ∈ ℕ)
3512leidd 11721 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ≤ (𝐴 Yrm (𝐵 + 1)))
3635adantl 482 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴 Yrm (𝐵 + 1)) ≤ (𝐴 Yrm (𝐵 + 1)))
37 jm3.1 41330 . . . . . . 7 ((((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ (𝐴 Yrm (𝐵 + 1)) ≤ (𝐴 Yrm (𝐵 + 1))) → (𝐴𝐵) = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)))
3832, 33, 34, 36, 37syl31anc 1373 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴𝐵) = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)))
3938eqeq2d 2747 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = (𝐴𝐵) ↔ 𝐶 = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1))))
407adantl 482 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
41 frmx 41223 . . . . . . . . . . 11 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
4241fovcl 7484 . . . . . . . . . 10 (((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0)
4331, 40, 42syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0)
4443nn0zd 12525 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℤ)
45 eluzelz 12773 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
4645adantr 481 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
4711, 46zsubcld 12612 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) − 𝐴) ∈ ℤ)
489fovcl 7484 . . . . . . . . . 10 (((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℤ)
4931, 40, 48syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℤ)
5047, 49zmulcld 12613 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵)) ∈ ℤ)
5144, 50zsubcld 12612 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) ∈ ℤ)
5251adantl 482 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) ∈ ℤ)
5332, 33, 34, 36jm3.1lem3 41329 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∈ ℕ)
54 simpl 483 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐶 ∈ ℕ0)
55 divalgmodcl 16289 . . . . . 6 (((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) ∈ ℤ ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (𝐶 = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
5652, 53, 54, 55syl3anc 1371 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
5739, 56bitrd 278 . . . 4 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = (𝐴𝐵) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
58 rmynn0 41267 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝐵 + 1) ∈ ℕ0) → (𝐴 Yrm (𝐵 + 1)) ∈ ℕ0)
5924, 58sylan2 593 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℕ0)
6059adantl 482 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴 Yrm (𝐵 + 1)) ∈ ℕ0)
61 oveq1 7364 . . . . . . . . . . . 12 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑 Yrm 𝐵) = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))
6261eqeq2d 2747 . . . . . . . . . . 11 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑒 = (𝑑 Yrm 𝐵) ↔ 𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵)))
63 oveq1 7364 . . . . . . . . . . . . . 14 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑 Xrm 𝐵) = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵))
6463eqeq2d 2747 . . . . . . . . . . . . 13 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑓 = (𝑑 Xrm 𝐵) ↔ 𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵)))
65 oveq2 7365 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (2 · 𝑑) = (2 · (𝐴 Yrm (𝐵 + 1))))
6665oveq1d 7372 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((2 · 𝑑) · 𝐴) = ((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴))
6766oveq1d 7372 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (((2 · 𝑑) · 𝐴) − (𝐴↑2)) = (((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)))
6867oveq1d 7372 . . . . . . . . . . . . . . 15 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) = ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1))
6968breq2d 5117 . . . . . . . . . . . . . 14 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ↔ 𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)))
70 oveq1 7364 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑𝐴) = ((𝐴 Yrm (𝐵 + 1)) − 𝐴))
7170oveq1d 7372 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑑𝐴) · 𝑒) = (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒))
7271oveq2d 7373 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑓 − ((𝑑𝐴) · 𝑒)) = (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)))
7372oveq1d 7372 . . . . . . . . . . . . . . 15 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶) = ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))
7468, 73breq12d 5118 . . . . . . . . . . . . . 14 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶) ↔ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))
7569, 74anbi12d 631 . . . . . . . . . . . . 13 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))
7664, 75anbi12d 631 . . . . . . . . . . . 12 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))) ↔ (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))))
7776rexbidv 3175 . . . . . . . . . . 11 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))))
7862, 77anbi12d 631 . . . . . . . . . 10 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
7978rexbidv 3175 . . . . . . . . 9 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ ∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
8079ceqsrexv 3605 . . . . . . . 8 ((𝐴 Yrm (𝐵 + 1)) ∈ ℕ0 → (∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
8160, 80syl 17 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
8222ad2antll 727 . . . . . . . . 9 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐵 ∈ ℕ0)
83 rmynn0 41267 . . . . . . . . 9 (((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ0) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℕ0)
8432, 82, 83syl2anc 584 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℕ0)
85 oveq2 7365 . . . . . . . . . . . . . . 15 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒) = (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵)))
8685oveq2d 7373 . . . . . . . . . . . . . 14 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) = (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))))
8786oveq1d 7372 . . . . . . . . . . . . 13 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶) = ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))
8887breq2d 5117 . . . . . . . . . . . 12 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶) ↔ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))
8988anbi2d 629 . . . . . . . . . . 11 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
9089anbi2d 629 . . . . . . . . . 10 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → ((𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))) ↔ (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
9190rexbidv 3175 . . . . . . . . 9 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
9291ceqsrexv 3605 . . . . . . . 8 (((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℕ0 → (∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
9384, 92syl 17 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
947ad2antll 727 . . . . . . . . 9 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐵 ∈ ℤ)
9532, 94, 42syl2anc 584 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0)
96 oveq1 7364 . . . . . . . . . . . 12 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) = (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))))
9796oveq1d 7372 . . . . . . . . . . 11 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶) = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))
9897breq2d 5117 . . . . . . . . . 10 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → (((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶) ↔ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))
9998anbi2d 629 . . . . . . . . 9 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
10099ceqsrexv 3605 . . . . . . . 8 (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0 → (∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
10195, 100syl 17 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
10281, 93, 1013bitrrd 305 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
103 r19.42v 3187 . . . . . . . . . 10 (∃𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑓 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
104 r19.42v 3187 . . . . . . . . . . 11 (∃𝑓 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))
105104anbi2i 623 . . . . . . . . . 10 ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑓 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
106103, 105bitri 274 . . . . . . . . 9 (∃𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
107106rexbii 3097 . . . . . . . 8 (∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑒 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
108 r19.42v 3187 . . . . . . . 8 (∃𝑒 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
109107, 108bitri 274 . . . . . . 7 (∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
110109rexbii 3097 . . . . . 6 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
111102, 110bitr4di 288 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
112 eleq1 2825 . . . . . . . . . . . 12 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑 ∈ (ℤ‘2) ↔ (𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2)))
11332, 112syl5ibrcom 246 . . . . . . . . . . 11 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝑑 = (𝐴 Yrm (𝐵 + 1)) → 𝑑 ∈ (ℤ‘2)))
114113imp 407 . . . . . . . . . 10 (((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) → 𝑑 ∈ (ℤ‘2))
115 ibar 529 . . . . . . . . . . 11 (𝑑 ∈ (ℤ‘2) → (𝑒 = (𝑑 Yrm 𝐵) ↔ (𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵))))
116 ibar 529 . . . . . . . . . . . 12 (𝑑 ∈ (ℤ‘2) → (𝑓 = (𝑑 Xrm 𝐵) ↔ (𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵))))
117116anbi1d 630 . . . . . . . . . . 11 (𝑑 ∈ (ℤ‘2) → ((𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))) ↔ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))
118115, 117anbi12d 631 . . . . . . . . . 10 (𝑑 ∈ (ℤ‘2) → ((𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
119114, 118syl 17 . . . . . . . . 9 (((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) → ((𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
120119pm5.32da 579 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
121 ibar 529 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝑑 = (𝐴 Yrm (𝐵 + 1)) ↔ (𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1)))))
122121ad2antrl 726 . . . . . . . . 9 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝑑 = (𝐴 Yrm (𝐵 + 1)) ↔ (𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1)))))
123122anbi1d 630 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
124120, 123bitrd 278 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
125124rexbidv 3175 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
1261252rexbidv 3213 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
127111, 126bitrd 278 . . . 4 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
12857, 127bitrd 278 . . 3 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = (𝐴𝐵) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
129128pm5.32da 579 . 2 (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴𝐵)) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))))
130 r19.42v 3187 . . . 4 (∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
1311302rexbii 3128 . . 3 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
132 r19.42v 3187 . . . . 5 (∃𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
133132rexbii 3097 . . . 4 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ∃𝑑 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
134 r19.42v 3187 . . . 4 (∃𝑑 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
135133, 134bitri 274 . . 3 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
136131, 135bitri 274 . 2 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
137129, 136bitr4di 288 1 (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴𝐵)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385  cn 12153  2c2 12208  0cn0 12413  cz 12499  cuz 12763   mod cmo 13774  cexp 13967  cdvds 16136   Xrm crmx 41209   Yrm crmy 41210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-gcd 16375  df-numer 16610  df-denom 16611  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-squarenn 41150  df-pell1qr 41151  df-pell14qr 41152  df-pell1234qr 41153  df-pellfund 41154  df-rmx 41211  df-rmy 41212
This theorem is referenced by:  expdiophlem2  41332
  Copyright terms: Public domain W3C validator