Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdiophlem1 Structured version   Visualization version   GIF version

Theorem expdiophlem1 38424
Description: Lemma for expdioph 38426. Fully expanded expression for exponential. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdiophlem1 (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴𝐵)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))))
Distinct variable groups:   𝐴,𝑑,𝑒,𝑓   𝐵,𝑑,𝑒,𝑓   𝐶,𝑑,𝑒,𝑓

Proof of Theorem expdiophlem1
StepHypRef Expression
1 2re 11425 . . . . . . . . . . 11 2 ∈ ℝ
21a1i 11 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 2 ∈ ℝ)
3 nnre 11358 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
4 peano2re 10528 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
53, 4syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ ℝ)
65adantl 475 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐵 + 1) ∈ ℝ)
7 nnz 11727 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
87peano2zd 11813 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ ℤ)
9 frmy 38315 . . . . . . . . . . . . 13 Yrm :((ℤ‘2) × ℤ)⟶ℤ
109fovcl 7025 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝐵 + 1) ∈ ℤ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℤ)
118, 10sylan2 586 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℤ)
1211zred 11810 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℝ)
13 elnnuz 12006 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ ↔ 𝐵 ∈ (ℤ‘1))
14 eluzp1p1 11994 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℤ‘1) → (𝐵 + 1) ∈ (ℤ‘(1 + 1)))
15 df-2 11414 . . . . . . . . . . . . . . 15 2 = (1 + 1)
1615fveq2i 6436 . . . . . . . . . . . . . 14 (ℤ‘2) = (ℤ‘(1 + 1))
1714, 16syl6eleqr 2917 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ‘1) → (𝐵 + 1) ∈ (ℤ‘2))
1813, 17sylbi 209 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ (ℤ‘2))
19 eluzle 11981 . . . . . . . . . . . 12 ((𝐵 + 1) ∈ (ℤ‘2) → 2 ≤ (𝐵 + 1))
2018, 19syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 2 ≤ (𝐵 + 1))
2120adantl 475 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 2 ≤ (𝐵 + 1))
22 nnnn0 11626 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
23 peano2nn0 11660 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0)
2422, 23syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ ℕ0)
25 rmygeid 38367 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝐵 + 1) ∈ ℕ0) → (𝐵 + 1) ≤ (𝐴 Yrm (𝐵 + 1)))
2624, 25sylan2 586 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐵 + 1) ≤ (𝐴 Yrm (𝐵 + 1)))
272, 6, 12, 21, 26letrd 10513 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 2 ≤ (𝐴 Yrm (𝐵 + 1)))
28 2z 11737 . . . . . . . . . 10 2 ∈ ℤ
29 eluz 11982 . . . . . . . . . 10 ((2 ∈ ℤ ∧ (𝐴 Yrm (𝐵 + 1)) ∈ ℤ) → ((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ↔ 2 ≤ (𝐴 Yrm (𝐵 + 1))))
3028, 11, 29sylancr 581 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ↔ 2 ≤ (𝐴 Yrm (𝐵 + 1))))
3127, 30mpbird 249 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2))
3231adantl 475 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2))
33 simprl 787 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐴 ∈ (ℤ‘2))
34 simprr 789 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐵 ∈ ℕ)
3512leidd 10918 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ≤ (𝐴 Yrm (𝐵 + 1)))
3635adantl 475 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴 Yrm (𝐵 + 1)) ≤ (𝐴 Yrm (𝐵 + 1)))
37 jm3.1 38423 . . . . . . 7 ((((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ (𝐴 Yrm (𝐵 + 1)) ≤ (𝐴 Yrm (𝐵 + 1))) → (𝐴𝐵) = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)))
3832, 33, 34, 36, 37syl31anc 1496 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴𝐵) = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)))
3938eqeq2d 2835 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = (𝐴𝐵) ↔ 𝐶 = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1))))
407adantl 475 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
41 frmx 38314 . . . . . . . . . . 11 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
4241fovcl 7025 . . . . . . . . . 10 (((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0)
4331, 40, 42syl2anc 579 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0)
4443nn0zd 11808 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℤ)
45 eluzelz 11978 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
4645adantr 474 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
4711, 46zsubcld 11815 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) − 𝐴) ∈ ℤ)
489fovcl 7025 . . . . . . . . . 10 (((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℤ)
4931, 40, 48syl2anc 579 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℤ)
5047, 49zmulcld 11816 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵)) ∈ ℤ)
5144, 50zsubcld 11815 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) ∈ ℤ)
5251adantl 475 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) ∈ ℤ)
5332, 33, 34, 36jm3.1lem3 38422 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∈ ℕ)
54 simpl 476 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐶 ∈ ℕ0)
55 divalgmodcl 15504 . . . . . 6 (((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) ∈ ℤ ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (𝐶 = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
5652, 53, 54, 55syl3anc 1494 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
5739, 56bitrd 271 . . . 4 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = (𝐴𝐵) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
58 rmynn0 38360 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝐵 + 1) ∈ ℕ0) → (𝐴 Yrm (𝐵 + 1)) ∈ ℕ0)
5924, 58sylan2 586 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℕ0)
6059adantl 475 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴 Yrm (𝐵 + 1)) ∈ ℕ0)
61 oveq1 6912 . . . . . . . . . . . 12 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑 Yrm 𝐵) = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))
6261eqeq2d 2835 . . . . . . . . . . 11 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑒 = (𝑑 Yrm 𝐵) ↔ 𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵)))
63 oveq1 6912 . . . . . . . . . . . . . 14 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑 Xrm 𝐵) = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵))
6463eqeq2d 2835 . . . . . . . . . . . . 13 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑓 = (𝑑 Xrm 𝐵) ↔ 𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵)))
65 oveq2 6913 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (2 · 𝑑) = (2 · (𝐴 Yrm (𝐵 + 1))))
6665oveq1d 6920 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((2 · 𝑑) · 𝐴) = ((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴))
6766oveq1d 6920 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (((2 · 𝑑) · 𝐴) − (𝐴↑2)) = (((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)))
6867oveq1d 6920 . . . . . . . . . . . . . . 15 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) = ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1))
6968breq2d 4885 . . . . . . . . . . . . . 14 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ↔ 𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)))
70 oveq1 6912 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑𝐴) = ((𝐴 Yrm (𝐵 + 1)) − 𝐴))
7170oveq1d 6920 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑑𝐴) · 𝑒) = (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒))
7271oveq2d 6921 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑓 − ((𝑑𝐴) · 𝑒)) = (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)))
7372oveq1d 6920 . . . . . . . . . . . . . . 15 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶) = ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))
7468, 73breq12d 4886 . . . . . . . . . . . . . 14 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶) ↔ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))
7569, 74anbi12d 624 . . . . . . . . . . . . 13 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))
7664, 75anbi12d 624 . . . . . . . . . . . 12 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))) ↔ (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))))
7776rexbidv 3262 . . . . . . . . . . 11 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))))
7862, 77anbi12d 624 . . . . . . . . . 10 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
7978rexbidv 3262 . . . . . . . . 9 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ ∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
8079ceqsrexv 3554 . . . . . . . 8 ((𝐴 Yrm (𝐵 + 1)) ∈ ℕ0 → (∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
8160, 80syl 17 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
8222ad2antll 720 . . . . . . . . 9 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐵 ∈ ℕ0)
83 rmynn0 38360 . . . . . . . . 9 (((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ0) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℕ0)
8432, 82, 83syl2anc 579 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℕ0)
85 oveq2 6913 . . . . . . . . . . . . . . 15 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒) = (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵)))
8685oveq2d 6921 . . . . . . . . . . . . . 14 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) = (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))))
8786oveq1d 6920 . . . . . . . . . . . . 13 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶) = ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))
8887breq2d 4885 . . . . . . . . . . . 12 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶) ↔ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))
8988anbi2d 622 . . . . . . . . . . 11 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
9089anbi2d 622 . . . . . . . . . 10 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → ((𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))) ↔ (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
9190rexbidv 3262 . . . . . . . . 9 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
9291ceqsrexv 3554 . . . . . . . 8 (((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℕ0 → (∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
9384, 92syl 17 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
947ad2antll 720 . . . . . . . . 9 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐵 ∈ ℤ)
9532, 94, 42syl2anc 579 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0)
96 oveq1 6912 . . . . . . . . . . . 12 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) = (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))))
9796oveq1d 6920 . . . . . . . . . . 11 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶) = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))
9897breq2d 4885 . . . . . . . . . 10 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → (((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶) ↔ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))
9998anbi2d 622 . . . . . . . . 9 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
10099ceqsrexv 3554 . . . . . . . 8 (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0 → (∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
10195, 100syl 17 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
10281, 93, 1013bitrrd 298 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
103 r19.42v 3302 . . . . . . . . . 10 (∃𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑓 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
104 r19.42v 3302 . . . . . . . . . . 11 (∃𝑓 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))
105104anbi2i 616 . . . . . . . . . 10 ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑓 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
106103, 105bitri 267 . . . . . . . . 9 (∃𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
107106rexbii 3251 . . . . . . . 8 (∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑒 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
108 r19.42v 3302 . . . . . . . 8 (∃𝑒 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
109107, 108bitri 267 . . . . . . 7 (∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
110109rexbii 3251 . . . . . 6 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
111102, 110syl6bbr 281 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
112 eleq1 2894 . . . . . . . . . . . 12 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑 ∈ (ℤ‘2) ↔ (𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2)))
11332, 112syl5ibrcom 239 . . . . . . . . . . 11 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝑑 = (𝐴 Yrm (𝐵 + 1)) → 𝑑 ∈ (ℤ‘2)))
114113imp 397 . . . . . . . . . 10 (((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) → 𝑑 ∈ (ℤ‘2))
115 ibar 524 . . . . . . . . . . 11 (𝑑 ∈ (ℤ‘2) → (𝑒 = (𝑑 Yrm 𝐵) ↔ (𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵))))
116 ibar 524 . . . . . . . . . . . 12 (𝑑 ∈ (ℤ‘2) → (𝑓 = (𝑑 Xrm 𝐵) ↔ (𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵))))
117116anbi1d 623 . . . . . . . . . . 11 (𝑑 ∈ (ℤ‘2) → ((𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))) ↔ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))
118115, 117anbi12d 624 . . . . . . . . . 10 (𝑑 ∈ (ℤ‘2) → ((𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
119114, 118syl 17 . . . . . . . . 9 (((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) → ((𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
120119pm5.32da 574 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
121 ibar 524 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝑑 = (𝐴 Yrm (𝐵 + 1)) ↔ (𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1)))))
122121ad2antrl 719 . . . . . . . . 9 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝑑 = (𝐴 Yrm (𝐵 + 1)) ↔ (𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1)))))
123122anbi1d 623 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
124120, 123bitrd 271 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
125124rexbidv 3262 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
1261252rexbidv 3267 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
127111, 126bitrd 271 . . . 4 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
12857, 127bitrd 271 . . 3 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = (𝐴𝐵) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
129128pm5.32da 574 . 2 (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴𝐵)) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))))
130 r19.42v 3302 . . . 4 (∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
1311302rexbii 3252 . . 3 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
132 r19.42v 3302 . . . . 5 (∃𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
133132rexbii 3251 . . . 4 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ∃𝑑 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
134 r19.42v 3302 . . . 4 (∃𝑑 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
135133, 134bitri 267 . . 3 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
136131, 135bitri 267 . 2 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
137129, 136syl6bbr 281 1 (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴𝐵)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  wrex 3118   class class class wbr 4873  cfv 6123  (class class class)co 6905  cr 10251  1c1 10253   + caddc 10255   · cmul 10257   < clt 10391  cle 10392  cmin 10585  cn 11350  2c2 11406  0cn0 11618  cz 11704  cuz 11968   mod cmo 12963  cexp 13154  cdvds 15357   Xrm crmx 38301   Yrm crmy 38302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-omul 7831  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-acn 9081  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-xnn0 11691  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-ioc 12468  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155  df-fac 13354  df-bc 13383  df-hash 13411  df-shft 14184  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-limsup 14579  df-clim 14596  df-rlim 14597  df-sum 14794  df-ef 15170  df-sin 15172  df-cos 15173  df-pi 15175  df-dvds 15358  df-gcd 15590  df-numer 15814  df-denom 15815  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-xrs 16515  df-qtop 16520  df-imas 16521  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-mulg 17895  df-cntz 18100  df-cmn 18548  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-fbas 20103  df-fg 20104  df-cnfld 20107  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-ntr 21195  df-cls 21196  df-nei 21273  df-lp 21311  df-perf 21312  df-cn 21402  df-cnp 21403  df-haus 21490  df-tx 21736  df-hmeo 21929  df-fil 22020  df-fm 22112  df-flim 22113  df-flf 22114  df-xms 22495  df-ms 22496  df-tms 22497  df-cncf 23051  df-limc 24029  df-dv 24030  df-log 24702  df-squarenn 38242  df-pell1qr 38243  df-pell14qr 38244  df-pell1234qr 38245  df-pellfund 38246  df-rmx 38303  df-rmy 38304
This theorem is referenced by:  expdiophlem2  38425
  Copyright terms: Public domain W3C validator