Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdiophlem1 Structured version   Visualization version   GIF version

Theorem expdiophlem1 42983
Description: Lemma for expdioph 42985. Fully expanded expression for exponential. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdiophlem1 (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴𝐵)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))))
Distinct variable groups:   𝐴,𝑑,𝑒,𝑓   𝐵,𝑑,𝑒,𝑓   𝐶,𝑑,𝑒,𝑓

Proof of Theorem expdiophlem1
StepHypRef Expression
1 2re 12236 . . . . . . . . . . 11 2 ∈ ℝ
21a1i 11 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 2 ∈ ℝ)
3 nnre 12169 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
4 peano2re 11323 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
53, 4syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ ℝ)
65adantl 481 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐵 + 1) ∈ ℝ)
7 nnz 12526 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
87peano2zd 12617 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ ℤ)
9 frmy 42876 . . . . . . . . . . . . 13 Yrm :((ℤ‘2) × ℤ)⟶ℤ
109fovcl 7497 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝐵 + 1) ∈ ℤ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℤ)
118, 10sylan2 593 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℤ)
1211zred 12614 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℝ)
13 elnnuz 12813 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ ↔ 𝐵 ∈ (ℤ‘1))
14 eluzp1p1 12797 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℤ‘1) → (𝐵 + 1) ∈ (ℤ‘(1 + 1)))
15 df-2 12225 . . . . . . . . . . . . . . 15 2 = (1 + 1)
1615fveq2i 6843 . . . . . . . . . . . . . 14 (ℤ‘2) = (ℤ‘(1 + 1))
1714, 16eleqtrrdi 2839 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ‘1) → (𝐵 + 1) ∈ (ℤ‘2))
1813, 17sylbi 217 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ (ℤ‘2))
19 eluzle 12782 . . . . . . . . . . . 12 ((𝐵 + 1) ∈ (ℤ‘2) → 2 ≤ (𝐵 + 1))
2018, 19syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 2 ≤ (𝐵 + 1))
2120adantl 481 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 2 ≤ (𝐵 + 1))
22 nnnn0 12425 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
23 peano2nn0 12458 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0)
2422, 23syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ ℕ0)
25 rmygeid 42926 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝐵 + 1) ∈ ℕ0) → (𝐵 + 1) ≤ (𝐴 Yrm (𝐵 + 1)))
2624, 25sylan2 593 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐵 + 1) ≤ (𝐴 Yrm (𝐵 + 1)))
272, 6, 12, 21, 26letrd 11307 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 2 ≤ (𝐴 Yrm (𝐵 + 1)))
28 2z 12541 . . . . . . . . . 10 2 ∈ ℤ
29 eluz 12783 . . . . . . . . . 10 ((2 ∈ ℤ ∧ (𝐴 Yrm (𝐵 + 1)) ∈ ℤ) → ((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ↔ 2 ≤ (𝐴 Yrm (𝐵 + 1))))
3028, 11, 29sylancr 587 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ↔ 2 ≤ (𝐴 Yrm (𝐵 + 1))))
3127, 30mpbird 257 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2))
3231adantl 481 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2))
33 simprl 770 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐴 ∈ (ℤ‘2))
34 simprr 772 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐵 ∈ ℕ)
3512leidd 11720 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ≤ (𝐴 Yrm (𝐵 + 1)))
3635adantl 481 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴 Yrm (𝐵 + 1)) ≤ (𝐴 Yrm (𝐵 + 1)))
37 jm3.1 42982 . . . . . . 7 ((((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ (𝐴 Yrm (𝐵 + 1)) ≤ (𝐴 Yrm (𝐵 + 1))) → (𝐴𝐵) = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)))
3832, 33, 34, 36, 37syl31anc 1375 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴𝐵) = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)))
3938eqeq2d 2740 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = (𝐴𝐵) ↔ 𝐶 = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1))))
407adantl 481 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
41 frmx 42875 . . . . . . . . . . 11 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
4241fovcl 7497 . . . . . . . . . 10 (((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0)
4331, 40, 42syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0)
4443nn0zd 12531 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℤ)
45 eluzelz 12779 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
4645adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
4711, 46zsubcld 12619 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) − 𝐴) ∈ ℤ)
489fovcl 7497 . . . . . . . . . 10 (((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℤ)
4931, 40, 48syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℤ)
5047, 49zmulcld 12620 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵)) ∈ ℤ)
5144, 50zsubcld 12619 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) ∈ ℤ)
5251adantl 481 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) ∈ ℤ)
5332, 33, 34, 36jm3.1lem3 42981 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∈ ℕ)
54 simpl 482 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐶 ∈ ℕ0)
55 divalgmodcl 16353 . . . . . 6 (((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) ∈ ℤ ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (𝐶 = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
5652, 53, 54, 55syl3anc 1373 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
5739, 56bitrd 279 . . . 4 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = (𝐴𝐵) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
58 rmynn0 42919 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝐵 + 1) ∈ ℕ0) → (𝐴 Yrm (𝐵 + 1)) ∈ ℕ0)
5924, 58sylan2 593 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℕ0)
6059adantl 481 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴 Yrm (𝐵 + 1)) ∈ ℕ0)
61 oveq1 7376 . . . . . . . . . . . 12 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑 Yrm 𝐵) = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))
6261eqeq2d 2740 . . . . . . . . . . 11 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑒 = (𝑑 Yrm 𝐵) ↔ 𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵)))
63 oveq1 7376 . . . . . . . . . . . . . 14 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑 Xrm 𝐵) = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵))
6463eqeq2d 2740 . . . . . . . . . . . . 13 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑓 = (𝑑 Xrm 𝐵) ↔ 𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵)))
65 oveq2 7377 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (2 · 𝑑) = (2 · (𝐴 Yrm (𝐵 + 1))))
6665oveq1d 7384 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((2 · 𝑑) · 𝐴) = ((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴))
6766oveq1d 7384 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (((2 · 𝑑) · 𝐴) − (𝐴↑2)) = (((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)))
6867oveq1d 7384 . . . . . . . . . . . . . . 15 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) = ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1))
6968breq2d 5114 . . . . . . . . . . . . . 14 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ↔ 𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)))
70 oveq1 7376 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑𝐴) = ((𝐴 Yrm (𝐵 + 1)) − 𝐴))
7170oveq1d 7384 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑑𝐴) · 𝑒) = (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒))
7271oveq2d 7385 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑓 − ((𝑑𝐴) · 𝑒)) = (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)))
7372oveq1d 7384 . . . . . . . . . . . . . . 15 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶) = ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))
7468, 73breq12d 5115 . . . . . . . . . . . . . 14 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶) ↔ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))
7569, 74anbi12d 632 . . . . . . . . . . . . 13 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))
7664, 75anbi12d 632 . . . . . . . . . . . 12 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))) ↔ (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))))
7776rexbidv 3157 . . . . . . . . . . 11 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))))
7862, 77anbi12d 632 . . . . . . . . . 10 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
7978rexbidv 3157 . . . . . . . . 9 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ ∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
8079ceqsrexv 3618 . . . . . . . 8 ((𝐴 Yrm (𝐵 + 1)) ∈ ℕ0 → (∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
8160, 80syl 17 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
8222ad2antll 729 . . . . . . . . 9 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐵 ∈ ℕ0)
83 rmynn0 42919 . . . . . . . . 9 (((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ0) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℕ0)
8432, 82, 83syl2anc 584 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℕ0)
85 oveq2 7377 . . . . . . . . . . . . . . 15 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒) = (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵)))
8685oveq2d 7385 . . . . . . . . . . . . . 14 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) = (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))))
8786oveq1d 7384 . . . . . . . . . . . . 13 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶) = ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))
8887breq2d 5114 . . . . . . . . . . . 12 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶) ↔ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))
8988anbi2d 630 . . . . . . . . . . 11 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
9089anbi2d 630 . . . . . . . . . 10 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → ((𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))) ↔ (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
9190rexbidv 3157 . . . . . . . . 9 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
9291ceqsrexv 3618 . . . . . . . 8 (((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℕ0 → (∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
9384, 92syl 17 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
947ad2antll 729 . . . . . . . . 9 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐵 ∈ ℤ)
9532, 94, 42syl2anc 584 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0)
96 oveq1 7376 . . . . . . . . . . . 12 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) = (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))))
9796oveq1d 7384 . . . . . . . . . . 11 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶) = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))
9897breq2d 5114 . . . . . . . . . 10 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → (((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶) ↔ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))
9998anbi2d 630 . . . . . . . . 9 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
10099ceqsrexv 3618 . . . . . . . 8 (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0 → (∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
10195, 100syl 17 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
10281, 93, 1013bitrrd 306 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
103 r19.42v 3167 . . . . . . . . . 10 (∃𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑓 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
104 r19.42v 3167 . . . . . . . . . . 11 (∃𝑓 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))
105104anbi2i 623 . . . . . . . . . 10 ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑓 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
106103, 105bitri 275 . . . . . . . . 9 (∃𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
107106rexbii 3076 . . . . . . . 8 (∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑒 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
108 r19.42v 3167 . . . . . . . 8 (∃𝑒 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
109107, 108bitri 275 . . . . . . 7 (∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
110109rexbii 3076 . . . . . 6 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
111102, 110bitr4di 289 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
112 eleq1 2816 . . . . . . . . . . . 12 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑 ∈ (ℤ‘2) ↔ (𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2)))
11332, 112syl5ibrcom 247 . . . . . . . . . . 11 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝑑 = (𝐴 Yrm (𝐵 + 1)) → 𝑑 ∈ (ℤ‘2)))
114113imp 406 . . . . . . . . . 10 (((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) → 𝑑 ∈ (ℤ‘2))
115 ibar 528 . . . . . . . . . . 11 (𝑑 ∈ (ℤ‘2) → (𝑒 = (𝑑 Yrm 𝐵) ↔ (𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵))))
116 ibar 528 . . . . . . . . . . . 12 (𝑑 ∈ (ℤ‘2) → (𝑓 = (𝑑 Xrm 𝐵) ↔ (𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵))))
117116anbi1d 631 . . . . . . . . . . 11 (𝑑 ∈ (ℤ‘2) → ((𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))) ↔ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))
118115, 117anbi12d 632 . . . . . . . . . 10 (𝑑 ∈ (ℤ‘2) → ((𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
119114, 118syl 17 . . . . . . . . 9 (((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) → ((𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
120119pm5.32da 579 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
121 ibar 528 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝑑 = (𝐴 Yrm (𝐵 + 1)) ↔ (𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1)))))
122121ad2antrl 728 . . . . . . . . 9 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝑑 = (𝐴 Yrm (𝐵 + 1)) ↔ (𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1)))))
123122anbi1d 631 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
124120, 123bitrd 279 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
125124rexbidv 3157 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
1261252rexbidv 3200 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
127111, 126bitrd 279 . . . 4 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
12857, 127bitrd 279 . . 3 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = (𝐴𝐵) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
129128pm5.32da 579 . 2 (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴𝐵)) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))))
130 r19.42v 3167 . . . 4 (∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
1311302rexbii 3109 . . 3 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
132 r19.42v 3167 . . . . 5 (∃𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
133132rexbii 3076 . . . 4 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ∃𝑑 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
134 r19.42v 3167 . . . 4 (∃𝑑 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
135133, 134bitri 275 . . 3 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
136131, 135bitri 275 . 2 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
137129, 136bitr4di 289 1 (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴𝐵)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769   mod cmo 13807  cexp 14002  cdvds 16198   Xrm crmx 42861   Yrm crmy 42862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-numer 16681  df-denom 16682  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-mulg 18976  df-cntz 19225  df-cmn 19688  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-squarenn 42802  df-pell1qr 42803  df-pell14qr 42804  df-pell1234qr 42805  df-pellfund 42806  df-rmx 42863  df-rmy 42864
This theorem is referenced by:  expdiophlem2  42984
  Copyright terms: Public domain W3C validator