Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  expdiophlem1 Structured version   Visualization version   GIF version

Theorem expdiophlem1 40759
Description: Lemma for expdioph 40761. Fully expanded expression for exponential. (Contributed by Stefan O'Rear, 17-Oct-2014.)
Assertion
Ref Expression
expdiophlem1 (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴𝐵)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))))
Distinct variable groups:   𝐴,𝑑,𝑒,𝑓   𝐵,𝑑,𝑒,𝑓   𝐶,𝑑,𝑒,𝑓

Proof of Theorem expdiophlem1
StepHypRef Expression
1 2re 11977 . . . . . . . . . . 11 2 ∈ ℝ
21a1i 11 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 2 ∈ ℝ)
3 nnre 11910 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
4 peano2re 11078 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
53, 4syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ ℝ)
65adantl 481 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐵 + 1) ∈ ℝ)
7 nnz 12272 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
87peano2zd 12358 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ ℤ)
9 frmy 40652 . . . . . . . . . . . . 13 Yrm :((ℤ‘2) × ℤ)⟶ℤ
109fovcl 7380 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ (𝐵 + 1) ∈ ℤ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℤ)
118, 10sylan2 592 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℤ)
1211zred 12355 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℝ)
13 elnnuz 12551 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ ↔ 𝐵 ∈ (ℤ‘1))
14 eluzp1p1 12539 . . . . . . . . . . . . . 14 (𝐵 ∈ (ℤ‘1) → (𝐵 + 1) ∈ (ℤ‘(1 + 1)))
15 df-2 11966 . . . . . . . . . . . . . . 15 2 = (1 + 1)
1615fveq2i 6759 . . . . . . . . . . . . . 14 (ℤ‘2) = (ℤ‘(1 + 1))
1714, 16eleqtrrdi 2850 . . . . . . . . . . . . 13 (𝐵 ∈ (ℤ‘1) → (𝐵 + 1) ∈ (ℤ‘2))
1813, 17sylbi 216 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ (ℤ‘2))
19 eluzle 12524 . . . . . . . . . . . 12 ((𝐵 + 1) ∈ (ℤ‘2) → 2 ≤ (𝐵 + 1))
2018, 19syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 2 ≤ (𝐵 + 1))
2120adantl 481 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 2 ≤ (𝐵 + 1))
22 nnnn0 12170 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
23 peano2nn0 12203 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → (𝐵 + 1) ∈ ℕ0)
2422, 23syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℕ → (𝐵 + 1) ∈ ℕ0)
25 rmygeid 40702 . . . . . . . . . . 11 ((𝐴 ∈ (ℤ‘2) ∧ (𝐵 + 1) ∈ ℕ0) → (𝐵 + 1) ≤ (𝐴 Yrm (𝐵 + 1)))
2624, 25sylan2 592 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐵 + 1) ≤ (𝐴 Yrm (𝐵 + 1)))
272, 6, 12, 21, 26letrd 11062 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 2 ≤ (𝐴 Yrm (𝐵 + 1)))
28 2z 12282 . . . . . . . . . 10 2 ∈ ℤ
29 eluz 12525 . . . . . . . . . 10 ((2 ∈ ℤ ∧ (𝐴 Yrm (𝐵 + 1)) ∈ ℤ) → ((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ↔ 2 ≤ (𝐴 Yrm (𝐵 + 1))))
3028, 11, 29sylancr 586 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ↔ 2 ≤ (𝐴 Yrm (𝐵 + 1))))
3127, 30mpbird 256 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2))
3231adantl 481 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2))
33 simprl 767 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐴 ∈ (ℤ‘2))
34 simprr 769 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐵 ∈ ℕ)
3512leidd 11471 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ≤ (𝐴 Yrm (𝐵 + 1)))
3635adantl 481 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴 Yrm (𝐵 + 1)) ≤ (𝐴 Yrm (𝐵 + 1)))
37 jm3.1 40758 . . . . . . 7 ((((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ (𝐴 Yrm (𝐵 + 1)) ≤ (𝐴 Yrm (𝐵 + 1))) → (𝐴𝐵) = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)))
3832, 33, 34, 36, 37syl31anc 1371 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴𝐵) = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)))
3938eqeq2d 2749 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = (𝐴𝐵) ↔ 𝐶 = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1))))
407adantl 481 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
41 frmx 40651 . . . . . . . . . . 11 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
4241fovcl 7380 . . . . . . . . . 10 (((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0)
4331, 40, 42syl2anc 583 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0)
4443nn0zd 12353 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℤ)
45 eluzelz 12521 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
4645adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
4711, 46zsubcld 12360 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) − 𝐴) ∈ ℤ)
489fovcl 7380 . . . . . . . . . 10 (((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐵 ∈ ℤ) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℤ)
4931, 40, 48syl2anc 583 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℤ)
5047, 49zmulcld 12361 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵)) ∈ ℤ)
5144, 50zsubcld 12360 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) ∈ ℤ)
5251adantl 481 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) ∈ ℤ)
5332, 33, 34, 36jm3.1lem3 40757 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∈ ℕ)
54 simpl 482 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐶 ∈ ℕ0)
55 divalgmodcl 16044 . . . . . 6 (((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) ∈ ℤ ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (𝐶 = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
5652, 53, 54, 55syl3anc 1369 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) mod ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
5739, 56bitrd 278 . . . 4 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = (𝐴𝐵) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
58 rmynn0 40695 . . . . . . . . . 10 ((𝐴 ∈ (ℤ‘2) ∧ (𝐵 + 1) ∈ ℕ0) → (𝐴 Yrm (𝐵 + 1)) ∈ ℕ0)
5924, 58sylan2 592 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) → (𝐴 Yrm (𝐵 + 1)) ∈ ℕ0)
6059adantl 481 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐴 Yrm (𝐵 + 1)) ∈ ℕ0)
61 oveq1 7262 . . . . . . . . . . . 12 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑 Yrm 𝐵) = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))
6261eqeq2d 2749 . . . . . . . . . . 11 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑒 = (𝑑 Yrm 𝐵) ↔ 𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵)))
63 oveq1 7262 . . . . . . . . . . . . . 14 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑 Xrm 𝐵) = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵))
6463eqeq2d 2749 . . . . . . . . . . . . 13 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑓 = (𝑑 Xrm 𝐵) ↔ 𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵)))
65 oveq2 7263 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (2 · 𝑑) = (2 · (𝐴 Yrm (𝐵 + 1))))
6665oveq1d 7270 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((2 · 𝑑) · 𝐴) = ((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴))
6766oveq1d 7270 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (((2 · 𝑑) · 𝐴) − (𝐴↑2)) = (((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)))
6867oveq1d 7270 . . . . . . . . . . . . . . 15 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) = ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1))
6968breq2d 5082 . . . . . . . . . . . . . 14 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ↔ 𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1)))
70 oveq1 7262 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑𝐴) = ((𝐴 Yrm (𝐵 + 1)) − 𝐴))
7170oveq1d 7270 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑑𝐴) · 𝑒) = (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒))
7271oveq2d 7271 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑓 − ((𝑑𝐴) · 𝑒)) = (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)))
7372oveq1d 7270 . . . . . . . . . . . . . . 15 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶) = ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))
7468, 73breq12d 5083 . . . . . . . . . . . . . 14 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶) ↔ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))
7569, 74anbi12d 630 . . . . . . . . . . . . 13 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))
7664, 75anbi12d 630 . . . . . . . . . . . 12 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))) ↔ (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))))
7776rexbidv 3225 . . . . . . . . . . 11 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))))
7862, 77anbi12d 630 . . . . . . . . . 10 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → ((𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
7978rexbidv 3225 . . . . . . . . 9 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ ∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
8079ceqsrexv 3578 . . . . . . . 8 ((𝐴 Yrm (𝐵 + 1)) ∈ ℕ0 → (∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
8160, 80syl 17 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))))))
8222ad2antll 725 . . . . . . . . 9 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐵 ∈ ℕ0)
83 rmynn0 40695 . . . . . . . . 9 (((𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ0) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℕ0)
8432, 82, 83syl2anc 583 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℕ0)
85 oveq2 7263 . . . . . . . . . . . . . . 15 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒) = (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵)))
8685oveq2d 7271 . . . . . . . . . . . . . 14 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) = (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))))
8786oveq1d 7270 . . . . . . . . . . . . 13 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶) = ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))
8887breq2d 5082 . . . . . . . . . . . 12 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶) ↔ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))
8988anbi2d 628 . . . . . . . . . . 11 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
9089anbi2d 628 . . . . . . . . . 10 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → ((𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))) ↔ (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
9190rexbidv 3225 . . . . . . . . 9 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) → (∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
9291ceqsrexv 3578 . . . . . . . 8 (((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∈ ℕ0 → (∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
9384, 92syl 17 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑒 ∈ ℕ0 (𝑒 = ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · 𝑒)) − 𝐶)))) ↔ ∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))))
947ad2antll 725 . . . . . . . . 9 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → 𝐵 ∈ ℤ)
9532, 94, 42syl2anc 583 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0)
96 oveq1 7262 . . . . . . . . . . . 12 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → (𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) = (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))))
9796oveq1d 7270 . . . . . . . . . . 11 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶) = ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))
9897breq2d 5082 . . . . . . . . . 10 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → (((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶) ↔ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)))
9998anbi2d 628 . . . . . . . . 9 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
10099ceqsrexv 3578 . . . . . . . 8 (((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∈ ℕ0 → (∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
10195, 100syl 17 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑓 ∈ ℕ0 (𝑓 = ((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) ∧ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))) ↔ (𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶))))
10281, 93, 1013bitrrd 305 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
103 r19.42v 3276 . . . . . . . . . 10 (∃𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑓 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
104 r19.42v 3276 . . . . . . . . . . 11 (∃𝑓 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))
105104anbi2i 622 . . . . . . . . . 10 ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑓 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
106103, 105bitri 274 . . . . . . . . 9 (∃𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
107106rexbii 3177 . . . . . . . 8 (∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑒 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
108 r19.42v 3276 . . . . . . . 8 (∃𝑒 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
109107, 108bitri 274 . . . . . . 7 (∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
110109rexbii 3177 . . . . . 6 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ∃𝑒 ∈ ℕ0 (𝑒 = (𝑑 Yrm 𝐵) ∧ ∃𝑓 ∈ ℕ0 (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
111102, 110bitr4di 288 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
112 eleq1 2826 . . . . . . . . . . . 12 (𝑑 = (𝐴 Yrm (𝐵 + 1)) → (𝑑 ∈ (ℤ‘2) ↔ (𝐴 Yrm (𝐵 + 1)) ∈ (ℤ‘2)))
11332, 112syl5ibrcom 246 . . . . . . . . . . 11 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝑑 = (𝐴 Yrm (𝐵 + 1)) → 𝑑 ∈ (ℤ‘2)))
114113imp 406 . . . . . . . . . 10 (((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) → 𝑑 ∈ (ℤ‘2))
115 ibar 528 . . . . . . . . . . 11 (𝑑 ∈ (ℤ‘2) → (𝑒 = (𝑑 Yrm 𝐵) ↔ (𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵))))
116 ibar 528 . . . . . . . . . . . 12 (𝑑 ∈ (ℤ‘2) → (𝑓 = (𝑑 Xrm 𝐵) ↔ (𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵))))
117116anbi1d 629 . . . . . . . . . . 11 (𝑑 ∈ (ℤ‘2) → ((𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))) ↔ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))
118115, 117anbi12d 630 . . . . . . . . . 10 (𝑑 ∈ (ℤ‘2) → ((𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
119114, 118syl 17 . . . . . . . . 9 (((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) → ((𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))) ↔ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))
120119pm5.32da 578 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
121 ibar 528 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝑑 = (𝐴 Yrm (𝐵 + 1)) ↔ (𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1)))))
122121ad2antrl 724 . . . . . . . . 9 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝑑 = (𝐴 Yrm (𝐵 + 1)) ↔ (𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1)))))
123122anbi1d 629 . . . . . . . 8 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
124120, 123bitrd 278 . . . . . . 7 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
125124rexbidv 3225 . . . . . 6 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
1261252rexbidv 3228 . . . . 5 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 (𝑑 = (𝐴 Yrm (𝐵 + 1)) ∧ (𝑒 = (𝑑 Yrm 𝐵) ∧ (𝑓 = (𝑑 Xrm 𝐵) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
127111, 126bitrd 278 . . . 4 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → ((𝐶 < ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · (𝐴 Yrm (𝐵 + 1))) · 𝐴) − (𝐴↑2)) − 1) ∥ ((((𝐴 Yrm (𝐵 + 1)) Xrm 𝐵) − (((𝐴 Yrm (𝐵 + 1)) − 𝐴) · ((𝐴 Yrm (𝐵 + 1)) Yrm 𝐵))) − 𝐶)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
12857, 127bitrd 278 . . 3 ((𝐶 ∈ ℕ0 ∧ (𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ)) → (𝐶 = (𝐴𝐵) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
129128pm5.32da 578 . 2 (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴𝐵)) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))))
130 r19.42v 3276 . . . 4 (∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
1311302rexbii 3178 . . 3 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
132 r19.42v 3276 . . . . 5 (∃𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
133132rexbii 3177 . . . 4 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ∃𝑑 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
134 r19.42v 3276 . . . 4 (∃𝑑 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
135133, 134bitri 274 . . 3 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
136131, 135bitri 274 . 2 (∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))) ↔ ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶)))))))
137129, 136bitr4di 288 1 (𝐶 ∈ ℕ0 → (((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ 𝐶 = (𝐴𝐵)) ↔ ∃𝑑 ∈ ℕ0𝑒 ∈ ℕ0𝑓 ∈ ℕ0 ((𝐴 ∈ (ℤ‘2) ∧ 𝐵 ∈ ℕ) ∧ ((𝐴 ∈ (ℤ‘2) ∧ 𝑑 = (𝐴 Yrm (𝐵 + 1))) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑒 = (𝑑 Yrm 𝐵)) ∧ ((𝑑 ∈ (ℤ‘2) ∧ 𝑓 = (𝑑 Xrm 𝐵)) ∧ (𝐶 < ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∧ ((((2 · 𝑑) · 𝐴) − (𝐴↑2)) − 1) ∥ ((𝑓 − ((𝑑𝐴) · 𝑒)) − 𝐶))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511   mod cmo 13517  cexp 13710  cdvds 15891   Xrm crmx 40638   Yrm crmy 40639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-dvds 15892  df-gcd 16130  df-numer 16367  df-denom 16368  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-squarenn 40579  df-pell1qr 40580  df-pell14qr 40581  df-pell1234qr 40582  df-pellfund 40583  df-rmx 40640  df-rmy 40641
This theorem is referenced by:  expdiophlem2  40760
  Copyright terms: Public domain W3C validator