Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr3 Structured version   Visualization version   GIF version

Theorem eqlkr3 39057
Description: Two functionals with the same kernel are equal if they are equal at any nonzero value. (Contributed by NM, 2-Jan-2015.)
Hypotheses
Ref Expression
eqlkr3.v 𝑉 = (Base‘𝑊)
eqlkr3.s 𝑆 = (Scalar‘𝑊)
eqlkr3.r 𝑅 = (Base‘𝑆)
eqlkr3.o 0 = (0g𝑆)
eqlkr3.f 𝐹 = (LFnl‘𝑊)
eqlkr3.k 𝐾 = (LKer‘𝑊)
eqlkr3.w (𝜑𝑊 ∈ LVec)
eqlkr3.x (𝜑𝑋𝑉)
eqlkr3.g (𝜑𝐺𝐹)
eqlkr3.h (𝜑𝐻𝐹)
eqlkr3.e (𝜑 → (𝐾𝐺) = (𝐾𝐻))
eqlkr3.a (𝜑 → (𝐺𝑋) = (𝐻𝑋))
eqlkr3.n (𝜑 → (𝐺𝑋) ≠ 0 )
Assertion
Ref Expression
eqlkr3 (𝜑𝐺 = 𝐻)

Proof of Theorem eqlkr3
Dummy variables 𝑥 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqlkr3.w . . . 4 (𝜑𝑊 ∈ LVec)
2 eqlkr3.g . . . 4 (𝜑𝐺𝐹)
3 eqlkr3.s . . . . 5 𝑆 = (Scalar‘𝑊)
4 eqlkr3.r . . . . 5 𝑅 = (Base‘𝑆)
5 eqlkr3.v . . . . 5 𝑉 = (Base‘𝑊)
6 eqlkr3.f . . . . 5 𝐹 = (LFnl‘𝑊)
73, 4, 5, 6lflf 39019 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉𝑅)
81, 2, 7syl2anc 583 . . 3 (𝜑𝐺:𝑉𝑅)
98ffnd 6748 . 2 (𝜑𝐺 Fn 𝑉)
10 eqlkr3.h . . . 4 (𝜑𝐻𝐹)
113, 4, 5, 6lflf 39019 . . . 4 ((𝑊 ∈ LVec ∧ 𝐻𝐹) → 𝐻:𝑉𝑅)
121, 10, 11syl2anc 583 . . 3 (𝜑𝐻:𝑉𝑅)
1312ffnd 6748 . 2 (𝜑𝐻 Fn 𝑉)
14 eqlkr3.e . . . . . . 7 (𝜑 → (𝐾𝐺) = (𝐾𝐻))
15 eqid 2740 . . . . . . . 8 (.r𝑆) = (.r𝑆)
16 eqlkr3.k . . . . . . . 8 𝐾 = (LKer‘𝑊)
173, 4, 15, 5, 6, 16eqlkr 39055 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐾𝐺) = (𝐾𝐻)) → ∃𝑟𝑅𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))
181, 2, 10, 14, 17syl121anc 1375 . . . . . 6 (𝜑 → ∃𝑟𝑅𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))
19 eqlkr3.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
2019adantr 480 . . . . . . . . . 10 ((𝜑𝑟𝑅) → 𝑋𝑉)
21 fveq2 6920 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝐻𝑥) = (𝐻𝑋))
22 fveq2 6920 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
2322oveq1d 7463 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ((𝐺𝑥)(.r𝑆)𝑟) = ((𝐺𝑋)(.r𝑆)𝑟))
2421, 23eqeq12d 2756 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) ↔ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)))
2524rspcv 3631 . . . . . . . . . 10 (𝑋𝑉 → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)))
2620, 25syl 17 . . . . . . . . 9 ((𝜑𝑟𝑅) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)))
27 eqlkr3.a . . . . . . . . . . . . . . 15 (𝜑 → (𝐺𝑋) = (𝐻𝑋))
2827adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → (𝐺𝑋) = (𝐻𝑋))
2928adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (𝐺𝑋) = (𝐻𝑋))
30 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟))
3129, 30eqtr2d 2781 . . . . . . . . . . . 12 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → ((𝐺𝑋)(.r𝑆)𝑟) = (𝐺𝑋))
3231oveq2d 7464 . . . . . . . . . . 11 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)) = (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)))
333lvecdrng 21127 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LVec → 𝑆 ∈ DivRing)
341, 33syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑆 ∈ DivRing)
3534adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑅) → 𝑆 ∈ DivRing)
363, 4, 5, 6lflcl 39020 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝑅)
371, 2, 19, 36syl3anc 1371 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺𝑋) ∈ 𝑅)
3837adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑅) → (𝐺𝑋) ∈ 𝑅)
39 eqlkr3.n . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺𝑋) ≠ 0 )
4039adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑅) → (𝐺𝑋) ≠ 0 )
41 eqlkr3.o . . . . . . . . . . . . . . . 16 0 = (0g𝑆)
42 eqid 2740 . . . . . . . . . . . . . . . 16 (1r𝑆) = (1r𝑆)
43 eqid 2740 . . . . . . . . . . . . . . . 16 (invr𝑆) = (invr𝑆)
444, 41, 15, 42, 43drnginvrl 20778 . . . . . . . . . . . . . . 15 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ 𝑅 ∧ (𝐺𝑋) ≠ 0 ) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)) = (1r𝑆))
4535, 38, 40, 44syl3anc 1371 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)) = (1r𝑆))
4645oveq1d 7463 . . . . . . . . . . . . 13 ((𝜑𝑟𝑅) → ((((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋))(.r𝑆)𝑟) = ((1r𝑆)(.r𝑆)𝑟))
47 lveclmod 21128 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
481, 47syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ LMod)
493lmodring 20888 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → 𝑆 ∈ Ring)
5048, 49syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ Ring)
5150adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → 𝑆 ∈ Ring)
524, 41, 43drnginvrcl 20775 . . . . . . . . . . . . . . 15 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ 𝑅 ∧ (𝐺𝑋) ≠ 0 ) → ((invr𝑆)‘(𝐺𝑋)) ∈ 𝑅)
5335, 38, 40, 52syl3anc 1371 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → ((invr𝑆)‘(𝐺𝑋)) ∈ 𝑅)
54 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → 𝑟𝑅)
554, 15ringass 20280 . . . . . . . . . . . . . 14 ((𝑆 ∈ Ring ∧ (((invr𝑆)‘(𝐺𝑋)) ∈ 𝑅 ∧ (𝐺𝑋) ∈ 𝑅𝑟𝑅)) → ((((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋))(.r𝑆)𝑟) = (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)))
5651, 53, 38, 54, 55syl13anc 1372 . . . . . . . . . . . . 13 ((𝜑𝑟𝑅) → ((((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋))(.r𝑆)𝑟) = (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)))
574, 15, 42ringlidm 20292 . . . . . . . . . . . . . 14 ((𝑆 ∈ Ring ∧ 𝑟𝑅) → ((1r𝑆)(.r𝑆)𝑟) = 𝑟)
5851, 54, 57syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑟𝑅) → ((1r𝑆)(.r𝑆)𝑟) = 𝑟)
5946, 56, 583eqtr3d 2788 . . . . . . . . . . . 12 ((𝜑𝑟𝑅) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)) = 𝑟)
6059adantr 480 . . . . . . . . . . 11 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)) = 𝑟)
6145adantr 480 . . . . . . . . . . 11 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)) = (1r𝑆))
6232, 60, 613eqtr3d 2788 . . . . . . . . . 10 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → 𝑟 = (1r𝑆))
6362ex 412 . . . . . . . . 9 ((𝜑𝑟𝑅) → ((𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟) → 𝑟 = (1r𝑆)))
6426, 63syld 47 . . . . . . . 8 ((𝜑𝑟𝑅) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → 𝑟 = (1r𝑆)))
6564ancrd 551 . . . . . . 7 ((𝜑𝑟𝑅) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))))
6665reximdva 3174 . . . . . 6 (𝜑 → (∃𝑟𝑅𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → ∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))))
6718, 66mpd 15 . . . . 5 (𝜑 → ∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟)))
684, 42ringidcl 20289 . . . . . . 7 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝑅)
6950, 68syl 17 . . . . . 6 (𝜑 → (1r𝑆) ∈ 𝑅)
70 oveq2 7456 . . . . . . . . 9 (𝑟 = (1r𝑆) → ((𝐺𝑥)(.r𝑆)𝑟) = ((𝐺𝑥)(.r𝑆)(1r𝑆)))
7170eqeq2d 2751 . . . . . . . 8 (𝑟 = (1r𝑆) → ((𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) ↔ (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7271ralbidv 3184 . . . . . . 7 (𝑟 = (1r𝑆) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7372ceqsrexv 3668 . . . . . 6 ((1r𝑆) ∈ 𝑅 → (∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟)) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7469, 73syl 17 . . . . 5 (𝜑 → (∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟)) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7567, 74mpbid 232 . . . 4 (𝜑 → ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆)))
7675r19.21bi 3257 . . 3 ((𝜑𝑥𝑉) → (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆)))
7748adantr 480 . . . . 5 ((𝜑𝑥𝑉) → 𝑊 ∈ LMod)
7877, 49syl 17 . . . 4 ((𝜑𝑥𝑉) → 𝑆 ∈ Ring)
791adantr 480 . . . . 5 ((𝜑𝑥𝑉) → 𝑊 ∈ LVec)
802adantr 480 . . . . 5 ((𝜑𝑥𝑉) → 𝐺𝐹)
81 simpr 484 . . . . 5 ((𝜑𝑥𝑉) → 𝑥𝑉)
823, 4, 5, 6lflcl 39020 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ 𝑅)
8379, 80, 81, 82syl3anc 1371 . . . 4 ((𝜑𝑥𝑉) → (𝐺𝑥) ∈ 𝑅)
844, 15, 42ringridm 20293 . . . 4 ((𝑆 ∈ Ring ∧ (𝐺𝑥) ∈ 𝑅) → ((𝐺𝑥)(.r𝑆)(1r𝑆)) = (𝐺𝑥))
8578, 83, 84syl2anc 583 . . 3 ((𝜑𝑥𝑉) → ((𝐺𝑥)(.r𝑆)(1r𝑆)) = (𝐺𝑥))
8676, 85eqtr2d 2781 . 2 ((𝜑𝑥𝑉) → (𝐺𝑥) = (𝐻𝑥))
879, 13, 86eqfnfvd 7067 1 (𝜑𝐺 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  Scalarcsca 17314  0gc0g 17499  1rcur 20208  Ringcrg 20260  invrcinvr 20413  DivRingcdr 20751  LModclmod 20880  LVecclvec 21124  LFnlclfn 39013  LKerclk 39041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-drng 20753  df-lmod 20882  df-lvec 21125  df-lfl 39014  df-lkr 39042
This theorem is referenced by:  lcfl6lem  41455
  Copyright terms: Public domain W3C validator