Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr3 Structured version   Visualization version   GIF version

Theorem eqlkr3 34903
Description: Two functionals with the same kernel are equal if they are equal at any nonzero value. (Contributed by NM, 2-Jan-2015.)
Hypotheses
Ref Expression
eqlkr3.v 𝑉 = (Base‘𝑊)
eqlkr3.s 𝑆 = (Scalar‘𝑊)
eqlkr3.r 𝑅 = (Base‘𝑆)
eqlkr3.o 0 = (0g𝑆)
eqlkr3.f 𝐹 = (LFnl‘𝑊)
eqlkr3.k 𝐾 = (LKer‘𝑊)
eqlkr3.w (𝜑𝑊 ∈ LVec)
eqlkr3.x (𝜑𝑋𝑉)
eqlkr3.g (𝜑𝐺𝐹)
eqlkr3.h (𝜑𝐻𝐹)
eqlkr3.e (𝜑 → (𝐾𝐺) = (𝐾𝐻))
eqlkr3.a (𝜑 → (𝐺𝑋) = (𝐻𝑋))
eqlkr3.n (𝜑 → (𝐺𝑋) ≠ 0 )
Assertion
Ref Expression
eqlkr3 (𝜑𝐺 = 𝐻)

Proof of Theorem eqlkr3
Dummy variables 𝑥 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqlkr3.w . . . 4 (𝜑𝑊 ∈ LVec)
2 eqlkr3.g . . . 4 (𝜑𝐺𝐹)
3 eqlkr3.s . . . . 5 𝑆 = (Scalar‘𝑊)
4 eqlkr3.r . . . . 5 𝑅 = (Base‘𝑆)
5 eqlkr3.v . . . . 5 𝑉 = (Base‘𝑊)
6 eqlkr3.f . . . . 5 𝐹 = (LFnl‘𝑊)
73, 4, 5, 6lflf 34865 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉𝑅)
81, 2, 7syl2anc 565 . . 3 (𝜑𝐺:𝑉𝑅)
9 ffn 6185 . . 3 (𝐺:𝑉𝑅𝐺 Fn 𝑉)
108, 9syl 17 . 2 (𝜑𝐺 Fn 𝑉)
11 eqlkr3.h . . . 4 (𝜑𝐻𝐹)
123, 4, 5, 6lflf 34865 . . . 4 ((𝑊 ∈ LVec ∧ 𝐻𝐹) → 𝐻:𝑉𝑅)
131, 11, 12syl2anc 565 . . 3 (𝜑𝐻:𝑉𝑅)
14 ffn 6185 . . 3 (𝐻:𝑉𝑅𝐻 Fn 𝑉)
1513, 14syl 17 . 2 (𝜑𝐻 Fn 𝑉)
16 eqlkr3.e . . . . . . 7 (𝜑 → (𝐾𝐺) = (𝐾𝐻))
17 eqid 2770 . . . . . . . 8 (.r𝑆) = (.r𝑆)
18 eqlkr3.k . . . . . . . 8 𝐾 = (LKer‘𝑊)
193, 4, 17, 5, 6, 18eqlkr 34901 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐾𝐺) = (𝐾𝐻)) → ∃𝑟𝑅𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))
201, 2, 11, 16, 19syl121anc 1480 . . . . . 6 (𝜑 → ∃𝑟𝑅𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))
21 eqlkr3.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
2221adantr 466 . . . . . . . . . 10 ((𝜑𝑟𝑅) → 𝑋𝑉)
23 fveq2 6332 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝐻𝑥) = (𝐻𝑋))
24 fveq2 6332 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
2524oveq1d 6807 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ((𝐺𝑥)(.r𝑆)𝑟) = ((𝐺𝑋)(.r𝑆)𝑟))
2623, 25eqeq12d 2785 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) ↔ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)))
2726rspcv 3454 . . . . . . . . . 10 (𝑋𝑉 → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)))
2822, 27syl 17 . . . . . . . . 9 ((𝜑𝑟𝑅) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)))
29 eqlkr3.a . . . . . . . . . . . . . . 15 (𝜑 → (𝐺𝑋) = (𝐻𝑋))
3029adantr 466 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → (𝐺𝑋) = (𝐻𝑋))
3130adantr 466 . . . . . . . . . . . . 13 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (𝐺𝑋) = (𝐻𝑋))
32 simpr 471 . . . . . . . . . . . . 13 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟))
3331, 32eqtr2d 2805 . . . . . . . . . . . 12 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → ((𝐺𝑋)(.r𝑆)𝑟) = (𝐺𝑋))
3433oveq2d 6808 . . . . . . . . . . 11 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)) = (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)))
353lvecdrng 19317 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LVec → 𝑆 ∈ DivRing)
361, 35syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑆 ∈ DivRing)
3736adantr 466 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑅) → 𝑆 ∈ DivRing)
383, 4, 5, 6lflcl 34866 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝑅)
391, 2, 21, 38syl3anc 1475 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺𝑋) ∈ 𝑅)
4039adantr 466 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑅) → (𝐺𝑋) ∈ 𝑅)
41 eqlkr3.n . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺𝑋) ≠ 0 )
4241adantr 466 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑅) → (𝐺𝑋) ≠ 0 )
43 eqlkr3.o . . . . . . . . . . . . . . . 16 0 = (0g𝑆)
44 eqid 2770 . . . . . . . . . . . . . . . 16 (1r𝑆) = (1r𝑆)
45 eqid 2770 . . . . . . . . . . . . . . . 16 (invr𝑆) = (invr𝑆)
464, 43, 17, 44, 45drnginvrl 18975 . . . . . . . . . . . . . . 15 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ 𝑅 ∧ (𝐺𝑋) ≠ 0 ) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)) = (1r𝑆))
4737, 40, 42, 46syl3anc 1475 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)) = (1r𝑆))
4847oveq1d 6807 . . . . . . . . . . . . 13 ((𝜑𝑟𝑅) → ((((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋))(.r𝑆)𝑟) = ((1r𝑆)(.r𝑆)𝑟))
49 lveclmod 19318 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
501, 49syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ LMod)
513lmodring 19080 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → 𝑆 ∈ Ring)
5250, 51syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ Ring)
5352adantr 466 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → 𝑆 ∈ Ring)
544, 43, 45drnginvrcl 18973 . . . . . . . . . . . . . . 15 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ 𝑅 ∧ (𝐺𝑋) ≠ 0 ) → ((invr𝑆)‘(𝐺𝑋)) ∈ 𝑅)
5537, 40, 42, 54syl3anc 1475 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → ((invr𝑆)‘(𝐺𝑋)) ∈ 𝑅)
56 simpr 471 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → 𝑟𝑅)
574, 17ringass 18771 . . . . . . . . . . . . . 14 ((𝑆 ∈ Ring ∧ (((invr𝑆)‘(𝐺𝑋)) ∈ 𝑅 ∧ (𝐺𝑋) ∈ 𝑅𝑟𝑅)) → ((((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋))(.r𝑆)𝑟) = (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)))
5853, 55, 40, 56, 57syl13anc 1477 . . . . . . . . . . . . 13 ((𝜑𝑟𝑅) → ((((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋))(.r𝑆)𝑟) = (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)))
594, 17, 44ringlidm 18778 . . . . . . . . . . . . . 14 ((𝑆 ∈ Ring ∧ 𝑟𝑅) → ((1r𝑆)(.r𝑆)𝑟) = 𝑟)
6053, 56, 59syl2anc 565 . . . . . . . . . . . . 13 ((𝜑𝑟𝑅) → ((1r𝑆)(.r𝑆)𝑟) = 𝑟)
6148, 58, 603eqtr3d 2812 . . . . . . . . . . . 12 ((𝜑𝑟𝑅) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)) = 𝑟)
6261adantr 466 . . . . . . . . . . 11 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)) = 𝑟)
6347adantr 466 . . . . . . . . . . 11 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)) = (1r𝑆))
6434, 62, 633eqtr3d 2812 . . . . . . . . . 10 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → 𝑟 = (1r𝑆))
6564ex 397 . . . . . . . . 9 ((𝜑𝑟𝑅) → ((𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟) → 𝑟 = (1r𝑆)))
6628, 65syld 47 . . . . . . . 8 ((𝜑𝑟𝑅) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → 𝑟 = (1r𝑆)))
6766ancrd 533 . . . . . . 7 ((𝜑𝑟𝑅) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))))
6867reximdva 3164 . . . . . 6 (𝜑 → (∃𝑟𝑅𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → ∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))))
6920, 68mpd 15 . . . . 5 (𝜑 → ∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟)))
704, 44ringidcl 18775 . . . . . . 7 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝑅)
7152, 70syl 17 . . . . . 6 (𝜑 → (1r𝑆) ∈ 𝑅)
72 oveq2 6800 . . . . . . . . 9 (𝑟 = (1r𝑆) → ((𝐺𝑥)(.r𝑆)𝑟) = ((𝐺𝑥)(.r𝑆)(1r𝑆)))
7372eqeq2d 2780 . . . . . . . 8 (𝑟 = (1r𝑆) → ((𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) ↔ (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7473ralbidv 3134 . . . . . . 7 (𝑟 = (1r𝑆) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7574ceqsrexv 3484 . . . . . 6 ((1r𝑆) ∈ 𝑅 → (∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟)) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7671, 75syl 17 . . . . 5 (𝜑 → (∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟)) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7769, 76mpbid 222 . . . 4 (𝜑 → ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆)))
7877r19.21bi 3080 . . 3 ((𝜑𝑥𝑉) → (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆)))
7950adantr 466 . . . . 5 ((𝜑𝑥𝑉) → 𝑊 ∈ LMod)
8079, 51syl 17 . . . 4 ((𝜑𝑥𝑉) → 𝑆 ∈ Ring)
811adantr 466 . . . . 5 ((𝜑𝑥𝑉) → 𝑊 ∈ LVec)
822adantr 466 . . . . 5 ((𝜑𝑥𝑉) → 𝐺𝐹)
83 simpr 471 . . . . 5 ((𝜑𝑥𝑉) → 𝑥𝑉)
843, 4, 5, 6lflcl 34866 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ 𝑅)
8581, 82, 83, 84syl3anc 1475 . . . 4 ((𝜑𝑥𝑉) → (𝐺𝑥) ∈ 𝑅)
864, 17, 44ringridm 18779 . . . 4 ((𝑆 ∈ Ring ∧ (𝐺𝑥) ∈ 𝑅) → ((𝐺𝑥)(.r𝑆)(1r𝑆)) = (𝐺𝑥))
8780, 85, 86syl2anc 565 . . 3 ((𝜑𝑥𝑉) → ((𝐺𝑥)(.r𝑆)(1r𝑆)) = (𝐺𝑥))
8878, 87eqtr2d 2805 . 2 ((𝜑𝑥𝑉) → (𝐺𝑥) = (𝐻𝑥))
8910, 15, 88eqfnfvd 6457 1 (𝜑𝐺 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wne 2942  wral 3060  wrex 3061   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6792  Basecbs 16063  .rcmulr 16149  Scalarcsca 16151  0gc0g 16307  1rcur 18708  Ringcrg 18754  invrcinvr 18878  DivRingcdr 18956  LModclmod 19072  LVecclvec 19314  LFnlclfn 34859  LKerclk 34887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-minusg 17633  df-sbg 17634  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-drng 18958  df-lmod 19074  df-lvec 19315  df-lfl 34860  df-lkr 34888
This theorem is referenced by:  lcfl6lem  37301
  Copyright terms: Public domain W3C validator