Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr3 Structured version   Visualization version   GIF version

Theorem eqlkr3 37361
Description: Two functionals with the same kernel are equal if they are equal at any nonzero value. (Contributed by NM, 2-Jan-2015.)
Hypotheses
Ref Expression
eqlkr3.v 𝑉 = (Base‘𝑊)
eqlkr3.s 𝑆 = (Scalar‘𝑊)
eqlkr3.r 𝑅 = (Base‘𝑆)
eqlkr3.o 0 = (0g𝑆)
eqlkr3.f 𝐹 = (LFnl‘𝑊)
eqlkr3.k 𝐾 = (LKer‘𝑊)
eqlkr3.w (𝜑𝑊 ∈ LVec)
eqlkr3.x (𝜑𝑋𝑉)
eqlkr3.g (𝜑𝐺𝐹)
eqlkr3.h (𝜑𝐻𝐹)
eqlkr3.e (𝜑 → (𝐾𝐺) = (𝐾𝐻))
eqlkr3.a (𝜑 → (𝐺𝑋) = (𝐻𝑋))
eqlkr3.n (𝜑 → (𝐺𝑋) ≠ 0 )
Assertion
Ref Expression
eqlkr3 (𝜑𝐺 = 𝐻)

Proof of Theorem eqlkr3
Dummy variables 𝑥 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqlkr3.w . . . 4 (𝜑𝑊 ∈ LVec)
2 eqlkr3.g . . . 4 (𝜑𝐺𝐹)
3 eqlkr3.s . . . . 5 𝑆 = (Scalar‘𝑊)
4 eqlkr3.r . . . . 5 𝑅 = (Base‘𝑆)
5 eqlkr3.v . . . . 5 𝑉 = (Base‘𝑊)
6 eqlkr3.f . . . . 5 𝐹 = (LFnl‘𝑊)
73, 4, 5, 6lflf 37323 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉𝑅)
81, 2, 7syl2anc 584 . . 3 (𝜑𝐺:𝑉𝑅)
98ffnd 6646 . 2 (𝜑𝐺 Fn 𝑉)
10 eqlkr3.h . . . 4 (𝜑𝐻𝐹)
113, 4, 5, 6lflf 37323 . . . 4 ((𝑊 ∈ LVec ∧ 𝐻𝐹) → 𝐻:𝑉𝑅)
121, 10, 11syl2anc 584 . . 3 (𝜑𝐻:𝑉𝑅)
1312ffnd 6646 . 2 (𝜑𝐻 Fn 𝑉)
14 eqlkr3.e . . . . . . 7 (𝜑 → (𝐾𝐺) = (𝐾𝐻))
15 eqid 2736 . . . . . . . 8 (.r𝑆) = (.r𝑆)
16 eqlkr3.k . . . . . . . 8 𝐾 = (LKer‘𝑊)
173, 4, 15, 5, 6, 16eqlkr 37359 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐾𝐺) = (𝐾𝐻)) → ∃𝑟𝑅𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))
181, 2, 10, 14, 17syl121anc 1374 . . . . . 6 (𝜑 → ∃𝑟𝑅𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))
19 eqlkr3.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
2019adantr 481 . . . . . . . . . 10 ((𝜑𝑟𝑅) → 𝑋𝑉)
21 fveq2 6819 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝐻𝑥) = (𝐻𝑋))
22 fveq2 6819 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
2322oveq1d 7344 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ((𝐺𝑥)(.r𝑆)𝑟) = ((𝐺𝑋)(.r𝑆)𝑟))
2421, 23eqeq12d 2752 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) ↔ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)))
2524rspcv 3566 . . . . . . . . . 10 (𝑋𝑉 → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)))
2620, 25syl 17 . . . . . . . . 9 ((𝜑𝑟𝑅) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)))
27 eqlkr3.a . . . . . . . . . . . . . . 15 (𝜑 → (𝐺𝑋) = (𝐻𝑋))
2827adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → (𝐺𝑋) = (𝐻𝑋))
2928adantr 481 . . . . . . . . . . . . 13 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (𝐺𝑋) = (𝐻𝑋))
30 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟))
3129, 30eqtr2d 2777 . . . . . . . . . . . 12 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → ((𝐺𝑋)(.r𝑆)𝑟) = (𝐺𝑋))
3231oveq2d 7345 . . . . . . . . . . 11 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)) = (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)))
333lvecdrng 20465 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LVec → 𝑆 ∈ DivRing)
341, 33syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑆 ∈ DivRing)
3534adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑅) → 𝑆 ∈ DivRing)
363, 4, 5, 6lflcl 37324 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝑅)
371, 2, 19, 36syl3anc 1370 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺𝑋) ∈ 𝑅)
3837adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑅) → (𝐺𝑋) ∈ 𝑅)
39 eqlkr3.n . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺𝑋) ≠ 0 )
4039adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑅) → (𝐺𝑋) ≠ 0 )
41 eqlkr3.o . . . . . . . . . . . . . . . 16 0 = (0g𝑆)
42 eqid 2736 . . . . . . . . . . . . . . . 16 (1r𝑆) = (1r𝑆)
43 eqid 2736 . . . . . . . . . . . . . . . 16 (invr𝑆) = (invr𝑆)
444, 41, 15, 42, 43drnginvrl 20107 . . . . . . . . . . . . . . 15 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ 𝑅 ∧ (𝐺𝑋) ≠ 0 ) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)) = (1r𝑆))
4535, 38, 40, 44syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)) = (1r𝑆))
4645oveq1d 7344 . . . . . . . . . . . . 13 ((𝜑𝑟𝑅) → ((((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋))(.r𝑆)𝑟) = ((1r𝑆)(.r𝑆)𝑟))
47 lveclmod 20466 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
481, 47syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ LMod)
493lmodring 20229 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → 𝑆 ∈ Ring)
5048, 49syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ Ring)
5150adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → 𝑆 ∈ Ring)
524, 41, 43drnginvrcl 20105 . . . . . . . . . . . . . . 15 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ 𝑅 ∧ (𝐺𝑋) ≠ 0 ) → ((invr𝑆)‘(𝐺𝑋)) ∈ 𝑅)
5335, 38, 40, 52syl3anc 1370 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → ((invr𝑆)‘(𝐺𝑋)) ∈ 𝑅)
54 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → 𝑟𝑅)
554, 15ringass 19890 . . . . . . . . . . . . . 14 ((𝑆 ∈ Ring ∧ (((invr𝑆)‘(𝐺𝑋)) ∈ 𝑅 ∧ (𝐺𝑋) ∈ 𝑅𝑟𝑅)) → ((((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋))(.r𝑆)𝑟) = (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)))
5651, 53, 38, 54, 55syl13anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑟𝑅) → ((((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋))(.r𝑆)𝑟) = (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)))
574, 15, 42ringlidm 19897 . . . . . . . . . . . . . 14 ((𝑆 ∈ Ring ∧ 𝑟𝑅) → ((1r𝑆)(.r𝑆)𝑟) = 𝑟)
5851, 54, 57syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑟𝑅) → ((1r𝑆)(.r𝑆)𝑟) = 𝑟)
5946, 56, 583eqtr3d 2784 . . . . . . . . . . . 12 ((𝜑𝑟𝑅) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)) = 𝑟)
6059adantr 481 . . . . . . . . . . 11 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)) = 𝑟)
6145adantr 481 . . . . . . . . . . 11 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)) = (1r𝑆))
6232, 60, 613eqtr3d 2784 . . . . . . . . . 10 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → 𝑟 = (1r𝑆))
6362ex 413 . . . . . . . . 9 ((𝜑𝑟𝑅) → ((𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟) → 𝑟 = (1r𝑆)))
6426, 63syld 47 . . . . . . . 8 ((𝜑𝑟𝑅) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → 𝑟 = (1r𝑆)))
6564ancrd 552 . . . . . . 7 ((𝜑𝑟𝑅) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))))
6665reximdva 3161 . . . . . 6 (𝜑 → (∃𝑟𝑅𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → ∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))))
6718, 66mpd 15 . . . . 5 (𝜑 → ∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟)))
684, 42ringidcl 19894 . . . . . . 7 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝑅)
6950, 68syl 17 . . . . . 6 (𝜑 → (1r𝑆) ∈ 𝑅)
70 oveq2 7337 . . . . . . . . 9 (𝑟 = (1r𝑆) → ((𝐺𝑥)(.r𝑆)𝑟) = ((𝐺𝑥)(.r𝑆)(1r𝑆)))
7170eqeq2d 2747 . . . . . . . 8 (𝑟 = (1r𝑆) → ((𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) ↔ (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7271ralbidv 3170 . . . . . . 7 (𝑟 = (1r𝑆) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7372ceqsrexv 3594 . . . . . 6 ((1r𝑆) ∈ 𝑅 → (∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟)) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7469, 73syl 17 . . . . 5 (𝜑 → (∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟)) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7567, 74mpbid 231 . . . 4 (𝜑 → ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆)))
7675r19.21bi 3230 . . 3 ((𝜑𝑥𝑉) → (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆)))
7748adantr 481 . . . . 5 ((𝜑𝑥𝑉) → 𝑊 ∈ LMod)
7877, 49syl 17 . . . 4 ((𝜑𝑥𝑉) → 𝑆 ∈ Ring)
791adantr 481 . . . . 5 ((𝜑𝑥𝑉) → 𝑊 ∈ LVec)
802adantr 481 . . . . 5 ((𝜑𝑥𝑉) → 𝐺𝐹)
81 simpr 485 . . . . 5 ((𝜑𝑥𝑉) → 𝑥𝑉)
823, 4, 5, 6lflcl 37324 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ 𝑅)
8379, 80, 81, 82syl3anc 1370 . . . 4 ((𝜑𝑥𝑉) → (𝐺𝑥) ∈ 𝑅)
844, 15, 42ringridm 19898 . . . 4 ((𝑆 ∈ Ring ∧ (𝐺𝑥) ∈ 𝑅) → ((𝐺𝑥)(.r𝑆)(1r𝑆)) = (𝐺𝑥))
8578, 83, 84syl2anc 584 . . 3 ((𝜑𝑥𝑉) → ((𝐺𝑥)(.r𝑆)(1r𝑆)) = (𝐺𝑥))
8676, 85eqtr2d 2777 . 2 ((𝜑𝑥𝑉) → (𝐺𝑥) = (𝐻𝑥))
879, 13, 86eqfnfvd 6962 1 (𝜑𝐺 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2940  wral 3061  wrex 3070  wf 6469  cfv 6473  (class class class)co 7329  Basecbs 17001  .rcmulr 17052  Scalarcsca 17054  0gc0g 17239  1rcur 19824  Ringcrg 19870  invrcinvr 20000  DivRingcdr 20085  LModclmod 20221  LVecclvec 20462  LFnlclfn 37317  LKerclk 37345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-tpos 8104  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-er 8561  df-map 8680  df-en 8797  df-dom 8798  df-sdom 8799  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-2 12129  df-3 12130  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-ress 17031  df-plusg 17064  df-mulr 17065  df-0g 17241  df-mgm 18415  df-sgrp 18464  df-mnd 18475  df-grp 18668  df-minusg 18669  df-sbg 18670  df-cmn 19475  df-abl 19476  df-mgp 19808  df-ur 19825  df-ring 19872  df-oppr 19949  df-dvdsr 19970  df-unit 19971  df-invr 20001  df-drng 20087  df-lmod 20223  df-lvec 20463  df-lfl 37318  df-lkr 37346
This theorem is referenced by:  lcfl6lem  39759
  Copyright terms: Public domain W3C validator