Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr3 Structured version   Visualization version   GIF version

Theorem eqlkr3 39210
Description: Two functionals with the same kernel are equal if they are equal at any nonzero value. (Contributed by NM, 2-Jan-2015.)
Hypotheses
Ref Expression
eqlkr3.v 𝑉 = (Base‘𝑊)
eqlkr3.s 𝑆 = (Scalar‘𝑊)
eqlkr3.r 𝑅 = (Base‘𝑆)
eqlkr3.o 0 = (0g𝑆)
eqlkr3.f 𝐹 = (LFnl‘𝑊)
eqlkr3.k 𝐾 = (LKer‘𝑊)
eqlkr3.w (𝜑𝑊 ∈ LVec)
eqlkr3.x (𝜑𝑋𝑉)
eqlkr3.g (𝜑𝐺𝐹)
eqlkr3.h (𝜑𝐻𝐹)
eqlkr3.e (𝜑 → (𝐾𝐺) = (𝐾𝐻))
eqlkr3.a (𝜑 → (𝐺𝑋) = (𝐻𝑋))
eqlkr3.n (𝜑 → (𝐺𝑋) ≠ 0 )
Assertion
Ref Expression
eqlkr3 (𝜑𝐺 = 𝐻)

Proof of Theorem eqlkr3
Dummy variables 𝑥 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqlkr3.w . . . 4 (𝜑𝑊 ∈ LVec)
2 eqlkr3.g . . . 4 (𝜑𝐺𝐹)
3 eqlkr3.s . . . . 5 𝑆 = (Scalar‘𝑊)
4 eqlkr3.r . . . . 5 𝑅 = (Base‘𝑆)
5 eqlkr3.v . . . . 5 𝑉 = (Base‘𝑊)
6 eqlkr3.f . . . . 5 𝐹 = (LFnl‘𝑊)
73, 4, 5, 6lflf 39172 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉𝑅)
81, 2, 7syl2anc 584 . . 3 (𝜑𝐺:𝑉𝑅)
98ffnd 6652 . 2 (𝜑𝐺 Fn 𝑉)
10 eqlkr3.h . . . 4 (𝜑𝐻𝐹)
113, 4, 5, 6lflf 39172 . . . 4 ((𝑊 ∈ LVec ∧ 𝐻𝐹) → 𝐻:𝑉𝑅)
121, 10, 11syl2anc 584 . . 3 (𝜑𝐻:𝑉𝑅)
1312ffnd 6652 . 2 (𝜑𝐻 Fn 𝑉)
14 eqlkr3.e . . . . . . 7 (𝜑 → (𝐾𝐺) = (𝐾𝐻))
15 eqid 2731 . . . . . . . 8 (.r𝑆) = (.r𝑆)
16 eqlkr3.k . . . . . . . 8 𝐾 = (LKer‘𝑊)
173, 4, 15, 5, 6, 16eqlkr 39208 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐾𝐺) = (𝐾𝐻)) → ∃𝑟𝑅𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))
181, 2, 10, 14, 17syl121anc 1377 . . . . . 6 (𝜑 → ∃𝑟𝑅𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))
19 eqlkr3.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
2019adantr 480 . . . . . . . . . 10 ((𝜑𝑟𝑅) → 𝑋𝑉)
21 fveq2 6822 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝐻𝑥) = (𝐻𝑋))
22 fveq2 6822 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
2322oveq1d 7361 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ((𝐺𝑥)(.r𝑆)𝑟) = ((𝐺𝑋)(.r𝑆)𝑟))
2421, 23eqeq12d 2747 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) ↔ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)))
2524rspcv 3568 . . . . . . . . . 10 (𝑋𝑉 → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)))
2620, 25syl 17 . . . . . . . . 9 ((𝜑𝑟𝑅) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)))
27 eqlkr3.a . . . . . . . . . . . . . . 15 (𝜑 → (𝐺𝑋) = (𝐻𝑋))
2827adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → (𝐺𝑋) = (𝐻𝑋))
2928adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (𝐺𝑋) = (𝐻𝑋))
30 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟))
3129, 30eqtr2d 2767 . . . . . . . . . . . 12 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → ((𝐺𝑋)(.r𝑆)𝑟) = (𝐺𝑋))
3231oveq2d 7362 . . . . . . . . . . 11 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)) = (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)))
333lvecdrng 21039 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LVec → 𝑆 ∈ DivRing)
341, 33syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑆 ∈ DivRing)
3534adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑅) → 𝑆 ∈ DivRing)
363, 4, 5, 6lflcl 39173 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝑅)
371, 2, 19, 36syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺𝑋) ∈ 𝑅)
3837adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑅) → (𝐺𝑋) ∈ 𝑅)
39 eqlkr3.n . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺𝑋) ≠ 0 )
4039adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑅) → (𝐺𝑋) ≠ 0 )
41 eqlkr3.o . . . . . . . . . . . . . . . 16 0 = (0g𝑆)
42 eqid 2731 . . . . . . . . . . . . . . . 16 (1r𝑆) = (1r𝑆)
43 eqid 2731 . . . . . . . . . . . . . . . 16 (invr𝑆) = (invr𝑆)
444, 41, 15, 42, 43drnginvrl 20671 . . . . . . . . . . . . . . 15 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ 𝑅 ∧ (𝐺𝑋) ≠ 0 ) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)) = (1r𝑆))
4535, 38, 40, 44syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)) = (1r𝑆))
4645oveq1d 7361 . . . . . . . . . . . . 13 ((𝜑𝑟𝑅) → ((((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋))(.r𝑆)𝑟) = ((1r𝑆)(.r𝑆)𝑟))
47 lveclmod 21040 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
481, 47syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ LMod)
493lmodring 20801 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → 𝑆 ∈ Ring)
5048, 49syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ Ring)
5150adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → 𝑆 ∈ Ring)
524, 41, 43drnginvrcl 20668 . . . . . . . . . . . . . . 15 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ 𝑅 ∧ (𝐺𝑋) ≠ 0 ) → ((invr𝑆)‘(𝐺𝑋)) ∈ 𝑅)
5335, 38, 40, 52syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → ((invr𝑆)‘(𝐺𝑋)) ∈ 𝑅)
54 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → 𝑟𝑅)
554, 15ringass 20171 . . . . . . . . . . . . . 14 ((𝑆 ∈ Ring ∧ (((invr𝑆)‘(𝐺𝑋)) ∈ 𝑅 ∧ (𝐺𝑋) ∈ 𝑅𝑟𝑅)) → ((((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋))(.r𝑆)𝑟) = (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)))
5651, 53, 38, 54, 55syl13anc 1374 . . . . . . . . . . . . 13 ((𝜑𝑟𝑅) → ((((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋))(.r𝑆)𝑟) = (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)))
574, 15, 42ringlidm 20187 . . . . . . . . . . . . . 14 ((𝑆 ∈ Ring ∧ 𝑟𝑅) → ((1r𝑆)(.r𝑆)𝑟) = 𝑟)
5851, 54, 57syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑟𝑅) → ((1r𝑆)(.r𝑆)𝑟) = 𝑟)
5946, 56, 583eqtr3d 2774 . . . . . . . . . . . 12 ((𝜑𝑟𝑅) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)) = 𝑟)
6059adantr 480 . . . . . . . . . . 11 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)) = 𝑟)
6145adantr 480 . . . . . . . . . . 11 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)) = (1r𝑆))
6232, 60, 613eqtr3d 2774 . . . . . . . . . 10 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → 𝑟 = (1r𝑆))
6362ex 412 . . . . . . . . 9 ((𝜑𝑟𝑅) → ((𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟) → 𝑟 = (1r𝑆)))
6426, 63syld 47 . . . . . . . 8 ((𝜑𝑟𝑅) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → 𝑟 = (1r𝑆)))
6564ancrd 551 . . . . . . 7 ((𝜑𝑟𝑅) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))))
6665reximdva 3145 . . . . . 6 (𝜑 → (∃𝑟𝑅𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → ∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))))
6718, 66mpd 15 . . . . 5 (𝜑 → ∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟)))
684, 42ringidcl 20183 . . . . . . 7 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝑅)
6950, 68syl 17 . . . . . 6 (𝜑 → (1r𝑆) ∈ 𝑅)
70 oveq2 7354 . . . . . . . . 9 (𝑟 = (1r𝑆) → ((𝐺𝑥)(.r𝑆)𝑟) = ((𝐺𝑥)(.r𝑆)(1r𝑆)))
7170eqeq2d 2742 . . . . . . . 8 (𝑟 = (1r𝑆) → ((𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) ↔ (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7271ralbidv 3155 . . . . . . 7 (𝑟 = (1r𝑆) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7372ceqsrexv 3605 . . . . . 6 ((1r𝑆) ∈ 𝑅 → (∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟)) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7469, 73syl 17 . . . . 5 (𝜑 → (∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟)) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7567, 74mpbid 232 . . . 4 (𝜑 → ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆)))
7675r19.21bi 3224 . . 3 ((𝜑𝑥𝑉) → (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆)))
7748adantr 480 . . . . 5 ((𝜑𝑥𝑉) → 𝑊 ∈ LMod)
7877, 49syl 17 . . . 4 ((𝜑𝑥𝑉) → 𝑆 ∈ Ring)
791adantr 480 . . . . 5 ((𝜑𝑥𝑉) → 𝑊 ∈ LVec)
802adantr 480 . . . . 5 ((𝜑𝑥𝑉) → 𝐺𝐹)
81 simpr 484 . . . . 5 ((𝜑𝑥𝑉) → 𝑥𝑉)
823, 4, 5, 6lflcl 39173 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ 𝑅)
8379, 80, 81, 82syl3anc 1373 . . . 4 ((𝜑𝑥𝑉) → (𝐺𝑥) ∈ 𝑅)
844, 15, 42ringridm 20188 . . . 4 ((𝑆 ∈ Ring ∧ (𝐺𝑥) ∈ 𝑅) → ((𝐺𝑥)(.r𝑆)(1r𝑆)) = (𝐺𝑥))
8578, 83, 84syl2anc 584 . . 3 ((𝜑𝑥𝑉) → ((𝐺𝑥)(.r𝑆)(1r𝑆)) = (𝐺𝑥))
8676, 85eqtr2d 2767 . 2 ((𝜑𝑥𝑉) → (𝐺𝑥) = (𝐻𝑥))
879, 13, 86eqfnfvd 6967 1 (𝜑𝐺 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  .rcmulr 17162  Scalarcsca 17164  0gc0g 17343  1rcur 20099  Ringcrg 20151  invrcinvr 20305  DivRingcdr 20644  LModclmod 20793  LVecclvec 21036  LFnlclfn 39166  LKerclk 39194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-drng 20646  df-lmod 20795  df-lvec 21037  df-lfl 39167  df-lkr 39195
This theorem is referenced by:  lcfl6lem  41607
  Copyright terms: Public domain W3C validator