Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqlkr3 Structured version   Visualization version   GIF version

Theorem eqlkr3 39087
Description: Two functionals with the same kernel are equal if they are equal at any nonzero value. (Contributed by NM, 2-Jan-2015.)
Hypotheses
Ref Expression
eqlkr3.v 𝑉 = (Base‘𝑊)
eqlkr3.s 𝑆 = (Scalar‘𝑊)
eqlkr3.r 𝑅 = (Base‘𝑆)
eqlkr3.o 0 = (0g𝑆)
eqlkr3.f 𝐹 = (LFnl‘𝑊)
eqlkr3.k 𝐾 = (LKer‘𝑊)
eqlkr3.w (𝜑𝑊 ∈ LVec)
eqlkr3.x (𝜑𝑋𝑉)
eqlkr3.g (𝜑𝐺𝐹)
eqlkr3.h (𝜑𝐻𝐹)
eqlkr3.e (𝜑 → (𝐾𝐺) = (𝐾𝐻))
eqlkr3.a (𝜑 → (𝐺𝑋) = (𝐻𝑋))
eqlkr3.n (𝜑 → (𝐺𝑋) ≠ 0 )
Assertion
Ref Expression
eqlkr3 (𝜑𝐺 = 𝐻)

Proof of Theorem eqlkr3
Dummy variables 𝑥 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqlkr3.w . . . 4 (𝜑𝑊 ∈ LVec)
2 eqlkr3.g . . . 4 (𝜑𝐺𝐹)
3 eqlkr3.s . . . . 5 𝑆 = (Scalar‘𝑊)
4 eqlkr3.r . . . . 5 𝑅 = (Base‘𝑆)
5 eqlkr3.v . . . . 5 𝑉 = (Base‘𝑊)
6 eqlkr3.f . . . . 5 𝐹 = (LFnl‘𝑊)
73, 4, 5, 6lflf 39049 . . . 4 ((𝑊 ∈ LVec ∧ 𝐺𝐹) → 𝐺:𝑉𝑅)
81, 2, 7syl2anc 584 . . 3 (𝜑𝐺:𝑉𝑅)
98ffnd 6671 . 2 (𝜑𝐺 Fn 𝑉)
10 eqlkr3.h . . . 4 (𝜑𝐻𝐹)
113, 4, 5, 6lflf 39049 . . . 4 ((𝑊 ∈ LVec ∧ 𝐻𝐹) → 𝐻:𝑉𝑅)
121, 10, 11syl2anc 584 . . 3 (𝜑𝐻:𝑉𝑅)
1312ffnd 6671 . 2 (𝜑𝐻 Fn 𝑉)
14 eqlkr3.e . . . . . . 7 (𝜑 → (𝐾𝐺) = (𝐾𝐻))
15 eqid 2729 . . . . . . . 8 (.r𝑆) = (.r𝑆)
16 eqlkr3.k . . . . . . . 8 𝐾 = (LKer‘𝑊)
173, 4, 15, 5, 6, 16eqlkr 39085 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝐺𝐹𝐻𝐹) ∧ (𝐾𝐺) = (𝐾𝐻)) → ∃𝑟𝑅𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))
181, 2, 10, 14, 17syl121anc 1377 . . . . . 6 (𝜑 → ∃𝑟𝑅𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))
19 eqlkr3.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
2019adantr 480 . . . . . . . . . 10 ((𝜑𝑟𝑅) → 𝑋𝑉)
21 fveq2 6840 . . . . . . . . . . . 12 (𝑥 = 𝑋 → (𝐻𝑥) = (𝐻𝑋))
22 fveq2 6840 . . . . . . . . . . . . 13 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
2322oveq1d 7384 . . . . . . . . . . . 12 (𝑥 = 𝑋 → ((𝐺𝑥)(.r𝑆)𝑟) = ((𝐺𝑋)(.r𝑆)𝑟))
2421, 23eqeq12d 2745 . . . . . . . . . . 11 (𝑥 = 𝑋 → ((𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) ↔ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)))
2524rspcv 3581 . . . . . . . . . 10 (𝑋𝑉 → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)))
2620, 25syl 17 . . . . . . . . 9 ((𝜑𝑟𝑅) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)))
27 eqlkr3.a . . . . . . . . . . . . . . 15 (𝜑 → (𝐺𝑋) = (𝐻𝑋))
2827adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → (𝐺𝑋) = (𝐻𝑋))
2928adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (𝐺𝑋) = (𝐻𝑋))
30 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟))
3129, 30eqtr2d 2765 . . . . . . . . . . . 12 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → ((𝐺𝑋)(.r𝑆)𝑟) = (𝐺𝑋))
3231oveq2d 7385 . . . . . . . . . . 11 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)) = (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)))
333lvecdrng 21044 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LVec → 𝑆 ∈ DivRing)
341, 33syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑆 ∈ DivRing)
3534adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑅) → 𝑆 ∈ DivRing)
363, 4, 5, 6lflcl 39050 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑋𝑉) → (𝐺𝑋) ∈ 𝑅)
371, 2, 19, 36syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺𝑋) ∈ 𝑅)
3837adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑅) → (𝐺𝑋) ∈ 𝑅)
39 eqlkr3.n . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺𝑋) ≠ 0 )
4039adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟𝑅) → (𝐺𝑋) ≠ 0 )
41 eqlkr3.o . . . . . . . . . . . . . . . 16 0 = (0g𝑆)
42 eqid 2729 . . . . . . . . . . . . . . . 16 (1r𝑆) = (1r𝑆)
43 eqid 2729 . . . . . . . . . . . . . . . 16 (invr𝑆) = (invr𝑆)
444, 41, 15, 42, 43drnginvrl 20676 . . . . . . . . . . . . . . 15 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ 𝑅 ∧ (𝐺𝑋) ≠ 0 ) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)) = (1r𝑆))
4535, 38, 40, 44syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)) = (1r𝑆))
4645oveq1d 7384 . . . . . . . . . . . . 13 ((𝜑𝑟𝑅) → ((((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋))(.r𝑆)𝑟) = ((1r𝑆)(.r𝑆)𝑟))
47 lveclmod 21045 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
481, 47syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑊 ∈ LMod)
493lmodring 20806 . . . . . . . . . . . . . . . 16 (𝑊 ∈ LMod → 𝑆 ∈ Ring)
5048, 49syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ Ring)
5150adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → 𝑆 ∈ Ring)
524, 41, 43drnginvrcl 20673 . . . . . . . . . . . . . . 15 ((𝑆 ∈ DivRing ∧ (𝐺𝑋) ∈ 𝑅 ∧ (𝐺𝑋) ≠ 0 ) → ((invr𝑆)‘(𝐺𝑋)) ∈ 𝑅)
5335, 38, 40, 52syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → ((invr𝑆)‘(𝐺𝑋)) ∈ 𝑅)
54 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑟𝑅) → 𝑟𝑅)
554, 15ringass 20173 . . . . . . . . . . . . . 14 ((𝑆 ∈ Ring ∧ (((invr𝑆)‘(𝐺𝑋)) ∈ 𝑅 ∧ (𝐺𝑋) ∈ 𝑅𝑟𝑅)) → ((((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋))(.r𝑆)𝑟) = (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)))
5651, 53, 38, 54, 55syl13anc 1374 . . . . . . . . . . . . 13 ((𝜑𝑟𝑅) → ((((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋))(.r𝑆)𝑟) = (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)))
574, 15, 42ringlidm 20189 . . . . . . . . . . . . . 14 ((𝑆 ∈ Ring ∧ 𝑟𝑅) → ((1r𝑆)(.r𝑆)𝑟) = 𝑟)
5851, 54, 57syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑟𝑅) → ((1r𝑆)(.r𝑆)𝑟) = 𝑟)
5946, 56, 583eqtr3d 2772 . . . . . . . . . . . 12 ((𝜑𝑟𝑅) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)) = 𝑟)
6059adantr 480 . . . . . . . . . . 11 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)((𝐺𝑋)(.r𝑆)𝑟)) = 𝑟)
6145adantr 480 . . . . . . . . . . 11 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → (((invr𝑆)‘(𝐺𝑋))(.r𝑆)(𝐺𝑋)) = (1r𝑆))
6232, 60, 613eqtr3d 2772 . . . . . . . . . 10 (((𝜑𝑟𝑅) ∧ (𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟)) → 𝑟 = (1r𝑆))
6362ex 412 . . . . . . . . 9 ((𝜑𝑟𝑅) → ((𝐻𝑋) = ((𝐺𝑋)(.r𝑆)𝑟) → 𝑟 = (1r𝑆)))
6426, 63syld 47 . . . . . . . 8 ((𝜑𝑟𝑅) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → 𝑟 = (1r𝑆)))
6564ancrd 551 . . . . . . 7 ((𝜑𝑟𝑅) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))))
6665reximdva 3146 . . . . . 6 (𝜑 → (∃𝑟𝑅𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) → ∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟))))
6718, 66mpd 15 . . . . 5 (𝜑 → ∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟)))
684, 42ringidcl 20185 . . . . . . 7 (𝑆 ∈ Ring → (1r𝑆) ∈ 𝑅)
6950, 68syl 17 . . . . . 6 (𝜑 → (1r𝑆) ∈ 𝑅)
70 oveq2 7377 . . . . . . . . 9 (𝑟 = (1r𝑆) → ((𝐺𝑥)(.r𝑆)𝑟) = ((𝐺𝑥)(.r𝑆)(1r𝑆)))
7170eqeq2d 2740 . . . . . . . 8 (𝑟 = (1r𝑆) → ((𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) ↔ (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7271ralbidv 3156 . . . . . . 7 (𝑟 = (1r𝑆) → (∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7372ceqsrexv 3618 . . . . . 6 ((1r𝑆) ∈ 𝑅 → (∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟)) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7469, 73syl 17 . . . . 5 (𝜑 → (∃𝑟𝑅 (𝑟 = (1r𝑆) ∧ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)𝑟)) ↔ ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆))))
7567, 74mpbid 232 . . . 4 (𝜑 → ∀𝑥𝑉 (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆)))
7675r19.21bi 3227 . . 3 ((𝜑𝑥𝑉) → (𝐻𝑥) = ((𝐺𝑥)(.r𝑆)(1r𝑆)))
7748adantr 480 . . . . 5 ((𝜑𝑥𝑉) → 𝑊 ∈ LMod)
7877, 49syl 17 . . . 4 ((𝜑𝑥𝑉) → 𝑆 ∈ Ring)
791adantr 480 . . . . 5 ((𝜑𝑥𝑉) → 𝑊 ∈ LVec)
802adantr 480 . . . . 5 ((𝜑𝑥𝑉) → 𝐺𝐹)
81 simpr 484 . . . . 5 ((𝜑𝑥𝑉) → 𝑥𝑉)
823, 4, 5, 6lflcl 39050 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ 𝑅)
8379, 80, 81, 82syl3anc 1373 . . . 4 ((𝜑𝑥𝑉) → (𝐺𝑥) ∈ 𝑅)
844, 15, 42ringridm 20190 . . . 4 ((𝑆 ∈ Ring ∧ (𝐺𝑥) ∈ 𝑅) → ((𝐺𝑥)(.r𝑆)(1r𝑆)) = (𝐺𝑥))
8578, 83, 84syl2anc 584 . . 3 ((𝜑𝑥𝑉) → ((𝐺𝑥)(.r𝑆)(1r𝑆)) = (𝐺𝑥))
8676, 85eqtr2d 2765 . 2 ((𝜑𝑥𝑉) → (𝐺𝑥) = (𝐻𝑥))
879, 13, 86eqfnfvd 6988 1 (𝜑𝐺 = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  .rcmulr 17197  Scalarcsca 17199  0gc0g 17378  1rcur 20101  Ringcrg 20153  invrcinvr 20307  DivRingcdr 20649  LModclmod 20798  LVecclvec 21041  LFnlclfn 39043  LKerclk 39071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-drng 20651  df-lmod 20800  df-lvec 21042  df-lfl 39044  df-lkr 39072
This theorem is referenced by:  lcfl6lem  41485
  Copyright terms: Public domain W3C validator