Step | Hyp | Ref
| Expression |
1 | | eqlkr3.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LVec) |
2 | | eqlkr3.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ 𝐹) |
3 | | eqlkr3.s |
. . . . 5
⊢ 𝑆 = (Scalar‘𝑊) |
4 | | eqlkr3.r |
. . . . 5
⊢ 𝑅 = (Base‘𝑆) |
5 | | eqlkr3.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
6 | | eqlkr3.f |
. . . . 5
⊢ 𝐹 = (LFnl‘𝑊) |
7 | 3, 4, 5, 6 | lflf 37004 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝑅) |
8 | 1, 2, 7 | syl2anc 583 |
. . 3
⊢ (𝜑 → 𝐺:𝑉⟶𝑅) |
9 | 8 | ffnd 6585 |
. 2
⊢ (𝜑 → 𝐺 Fn 𝑉) |
10 | | eqlkr3.h |
. . . 4
⊢ (𝜑 → 𝐻 ∈ 𝐹) |
11 | 3, 4, 5, 6 | lflf 37004 |
. . . 4
⊢ ((𝑊 ∈ LVec ∧ 𝐻 ∈ 𝐹) → 𝐻:𝑉⟶𝑅) |
12 | 1, 10, 11 | syl2anc 583 |
. . 3
⊢ (𝜑 → 𝐻:𝑉⟶𝑅) |
13 | 12 | ffnd 6585 |
. 2
⊢ (𝜑 → 𝐻 Fn 𝑉) |
14 | | eqlkr3.e |
. . . . . . 7
⊢ (𝜑 → (𝐾‘𝐺) = (𝐾‘𝐻)) |
15 | | eqid 2738 |
. . . . . . . 8
⊢
(.r‘𝑆) = (.r‘𝑆) |
16 | | eqlkr3.k |
. . . . . . . 8
⊢ 𝐾 = (LKer‘𝑊) |
17 | 3, 4, 15, 5, 6, 16 | eqlkr 37040 |
. . . . . . 7
⊢ ((𝑊 ∈ LVec ∧ (𝐺 ∈ 𝐹 ∧ 𝐻 ∈ 𝐹) ∧ (𝐾‘𝐺) = (𝐾‘𝐻)) → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟)) |
18 | 1, 2, 10, 14, 17 | syl121anc 1373 |
. . . . . 6
⊢ (𝜑 → ∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟)) |
19 | | eqlkr3.x |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
20 | 19 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝑋 ∈ 𝑉) |
21 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → (𝐻‘𝑥) = (𝐻‘𝑋)) |
22 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑋 → (𝐺‘𝑥) = (𝐺‘𝑋)) |
23 | 22 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑋 → ((𝐺‘𝑥)(.r‘𝑆)𝑟) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) |
24 | 21, 23 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑋 → ((𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟) ↔ (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟))) |
25 | 24 | rspcv 3547 |
. . . . . . . . . 10
⊢ (𝑋 ∈ 𝑉 → (∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟) → (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟))) |
26 | 20, 25 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟) → (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟))) |
27 | | eqlkr3.a |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐺‘𝑋) = (𝐻‘𝑋)) |
28 | 27 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (𝐺‘𝑋) = (𝐻‘𝑋)) |
29 | 28 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) → (𝐺‘𝑋) = (𝐻‘𝑋)) |
30 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) → (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) |
31 | 29, 30 | eqtr2d 2779 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) → ((𝐺‘𝑋)(.r‘𝑆)𝑟) = (𝐺‘𝑋)) |
32 | 31 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) → (((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)((𝐺‘𝑋)(.r‘𝑆)𝑟)) = (((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)(𝐺‘𝑋))) |
33 | 3 | lvecdrng 20282 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ LVec → 𝑆 ∈
DivRing) |
34 | 1, 33 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑆 ∈ DivRing) |
35 | 34 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝑆 ∈ DivRing) |
36 | 3, 4, 5, 6 | lflcl 37005 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑋 ∈ 𝑉) → (𝐺‘𝑋) ∈ 𝑅) |
37 | 1, 2, 19, 36 | syl3anc 1369 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝑅) |
38 | 37 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (𝐺‘𝑋) ∈ 𝑅) |
39 | | eqlkr3.n |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐺‘𝑋) ≠ 0 ) |
40 | 39 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (𝐺‘𝑋) ≠ 0 ) |
41 | | eqlkr3.o |
. . . . . . . . . . . . . . . 16
⊢ 0 =
(0g‘𝑆) |
42 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(1r‘𝑆) = (1r‘𝑆) |
43 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(invr‘𝑆) = (invr‘𝑆) |
44 | 4, 41, 15, 42, 43 | drnginvrl 19925 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ DivRing ∧ (𝐺‘𝑋) ∈ 𝑅 ∧ (𝐺‘𝑋) ≠ 0 ) →
(((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)(𝐺‘𝑋)) = (1r‘𝑆)) |
45 | 35, 38, 40, 44 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)(𝐺‘𝑋)) = (1r‘𝑆)) |
46 | 45 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → ((((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)(𝐺‘𝑋))(.r‘𝑆)𝑟) = ((1r‘𝑆)(.r‘𝑆)𝑟)) |
47 | | lveclmod 20283 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
48 | 1, 47 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑊 ∈ LMod) |
49 | 3 | lmodring 20046 |
. . . . . . . . . . . . . . . 16
⊢ (𝑊 ∈ LMod → 𝑆 ∈ Ring) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 ∈ Ring) |
51 | 50 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝑆 ∈ Ring) |
52 | 4, 41, 43 | drnginvrcl 19923 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆 ∈ DivRing ∧ (𝐺‘𝑋) ∈ 𝑅 ∧ (𝐺‘𝑋) ≠ 0 ) →
((invr‘𝑆)‘(𝐺‘𝑋)) ∈ 𝑅) |
53 | 35, 38, 40, 52 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → ((invr‘𝑆)‘(𝐺‘𝑋)) ∈ 𝑅) |
54 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → 𝑟 ∈ 𝑅) |
55 | 4, 15 | ringass 19718 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ Ring ∧
(((invr‘𝑆)‘(𝐺‘𝑋)) ∈ 𝑅 ∧ (𝐺‘𝑋) ∈ 𝑅 ∧ 𝑟 ∈ 𝑅)) → ((((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)(𝐺‘𝑋))(.r‘𝑆)𝑟) = (((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)((𝐺‘𝑋)(.r‘𝑆)𝑟))) |
56 | 51, 53, 38, 54, 55 | syl13anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → ((((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)(𝐺‘𝑋))(.r‘𝑆)𝑟) = (((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)((𝐺‘𝑋)(.r‘𝑆)𝑟))) |
57 | 4, 15, 42 | ringlidm 19725 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ Ring ∧ 𝑟 ∈ 𝑅) → ((1r‘𝑆)(.r‘𝑆)𝑟) = 𝑟) |
58 | 51, 54, 57 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → ((1r‘𝑆)(.r‘𝑆)𝑟) = 𝑟) |
59 | 46, 56, 58 | 3eqtr3d 2786 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)((𝐺‘𝑋)(.r‘𝑆)𝑟)) = 𝑟) |
60 | 59 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) → (((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)((𝐺‘𝑋)(.r‘𝑆)𝑟)) = 𝑟) |
61 | 45 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) → (((invr‘𝑆)‘(𝐺‘𝑋))(.r‘𝑆)(𝐺‘𝑋)) = (1r‘𝑆)) |
62 | 32, 60, 61 | 3eqtr3d 2786 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ 𝑅) ∧ (𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟)) → 𝑟 = (1r‘𝑆)) |
63 | 62 | ex 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → ((𝐻‘𝑋) = ((𝐺‘𝑋)(.r‘𝑆)𝑟) → 𝑟 = (1r‘𝑆))) |
64 | 26, 63 | syld 47 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟) → 𝑟 = (1r‘𝑆))) |
65 | 64 | ancrd 551 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ 𝑅) → (∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟) → (𝑟 = (1r‘𝑆) ∧ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟)))) |
66 | 65 | reximdva 3202 |
. . . . . 6
⊢ (𝜑 → (∃𝑟 ∈ 𝑅 ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟) → ∃𝑟 ∈ 𝑅 (𝑟 = (1r‘𝑆) ∧ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟)))) |
67 | 18, 66 | mpd 15 |
. . . . 5
⊢ (𝜑 → ∃𝑟 ∈ 𝑅 (𝑟 = (1r‘𝑆) ∧ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟))) |
68 | 4, 42 | ringidcl 19722 |
. . . . . . 7
⊢ (𝑆 ∈ Ring →
(1r‘𝑆)
∈ 𝑅) |
69 | 50, 68 | syl 17 |
. . . . . 6
⊢ (𝜑 → (1r‘𝑆) ∈ 𝑅) |
70 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑟 = (1r‘𝑆) → ((𝐺‘𝑥)(.r‘𝑆)𝑟) = ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆))) |
71 | 70 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑟 = (1r‘𝑆) → ((𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟) ↔ (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆)))) |
72 | 71 | ralbidv 3120 |
. . . . . . 7
⊢ (𝑟 = (1r‘𝑆) → (∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟) ↔ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆)))) |
73 | 72 | ceqsrexv 3578 |
. . . . . 6
⊢
((1r‘𝑆) ∈ 𝑅 → (∃𝑟 ∈ 𝑅 (𝑟 = (1r‘𝑆) ∧ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟)) ↔ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆)))) |
74 | 69, 73 | syl 17 |
. . . . 5
⊢ (𝜑 → (∃𝑟 ∈ 𝑅 (𝑟 = (1r‘𝑆) ∧ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)𝑟)) ↔ ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆)))) |
75 | 67, 74 | mpbid 231 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑉 (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆))) |
76 | 75 | r19.21bi 3132 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐻‘𝑥) = ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆))) |
77 | 48 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑊 ∈ LMod) |
78 | 77, 49 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑆 ∈ Ring) |
79 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑊 ∈ LVec) |
80 | 2 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝐺 ∈ 𝐹) |
81 | | simpr 484 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑥 ∈ 𝑉) |
82 | 3, 4, 5, 6 | lflcl 37005 |
. . . . 5
⊢ ((𝑊 ∈ LVec ∧ 𝐺 ∈ 𝐹 ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) ∈ 𝑅) |
83 | 79, 80, 81, 82 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) ∈ 𝑅) |
84 | 4, 15, 42 | ringridm 19726 |
. . . 4
⊢ ((𝑆 ∈ Ring ∧ (𝐺‘𝑥) ∈ 𝑅) → ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆)) = (𝐺‘𝑥)) |
85 | 78, 83, 84 | syl2anc 583 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ((𝐺‘𝑥)(.r‘𝑆)(1r‘𝑆)) = (𝐺‘𝑥)) |
86 | 76, 85 | eqtr2d 2779 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐺‘𝑥) = (𝐻‘𝑥)) |
87 | 9, 13, 86 | eqfnfvd 6894 |
1
⊢ (𝜑 → 𝐺 = 𝐻) |