MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1ldg Structured version   Visualization version   GIF version

Theorem deg1ldg 25257
Description: A nonzero univariate polynomial always has a nonzero leading coefficient. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1z.d 𝐷 = ( deg1𝑅)
deg1z.p 𝑃 = (Poly1𝑅)
deg1z.z 0 = (0g𝑃)
deg1nn0cl.b 𝐵 = (Base‘𝑃)
deg1ldg.y 𝑌 = (0g𝑅)
deg1ldg.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
deg1ldg ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐴‘(𝐷𝐹)) ≠ 𝑌)

Proof of Theorem deg1ldg
Dummy variables 𝑏 𝑑 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1z.d . . . 4 𝐷 = ( deg1𝑅)
21deg1fval 25245 . . 3 𝐷 = (1o mDeg 𝑅)
3 eqid 2738 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
4 deg1z.p . . . 4 𝑃 = (Poly1𝑅)
5 eqid 2738 . . . 4 (PwSer1𝑅) = (PwSer1𝑅)
6 deg1nn0cl.b . . . 4 𝐵 = (Base‘𝑃)
74, 5, 6ply1bas 21366 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
8 deg1ldg.y . . 3 𝑌 = (0g𝑅)
9 psr1baslem 21356 . . 3 (ℕ0m 1o) = {𝑐 ∈ (ℕ0m 1o) ∣ (𝑐 “ ℕ) ∈ Fin}
10 tdeglem2 25226 . . 3 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0m 1o) ↦ (ℂfld Σg 𝑎))
11 deg1z.z . . . 4 0 = (0g𝑃)
123, 4, 11ply1mpl0 21426 . . 3 0 = (0g‘(1o mPoly 𝑅))
132, 3, 7, 8, 9, 10, 12mdegldg 25231 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ∃𝑏 ∈ (ℕ0m 1o)((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)))
14 deg1ldg.a . . . . . . . . . . 11 𝐴 = (coe1𝐹)
1514fvcoe1 21378 . . . . . . . . . 10 ((𝐹𝐵𝑏 ∈ (ℕ0m 1o)) → (𝐹𝑏) = (𝐴‘(𝑏‘∅)))
16153ad2antl2 1185 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → (𝐹𝑏) = (𝐴‘(𝑏‘∅)))
17 fveq1 6773 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝑎‘∅) = (𝑏‘∅))
18 eqid 2738 . . . . . . . . . . . 12 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))
19 fvex 6787 . . . . . . . . . . . 12 (𝑏‘∅) ∈ V
2017, 18, 19fvmpt 6875 . . . . . . . . . . 11 (𝑏 ∈ (ℕ0m 1o) → ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝑏‘∅))
2120fveq2d 6778 . . . . . . . . . 10 (𝑏 ∈ (ℕ0m 1o) → (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) = (𝐴‘(𝑏‘∅)))
2221adantl 482 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) = (𝐴‘(𝑏‘∅)))
2316, 22eqtr4d 2781 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → (𝐹𝑏) = (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)))
2423neeq1d 3003 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → ((𝐹𝑏) ≠ 𝑌 ↔ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌))
2524anbi1d 630 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → (((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)) ↔ ((𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹))))
2625biancomd 464 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → (((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)) ↔ (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌)))
2726rexbidva 3225 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (∃𝑏 ∈ (ℕ0m 1o)((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)) ↔ ∃𝑏 ∈ (ℕ0m 1o)(((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌)))
28 df1o2 8304 . . . . . 6 1o = {∅}
29 nn0ex 12239 . . . . . 6 0 ∈ V
30 0ex 5231 . . . . . 6 ∅ ∈ V
3128, 29, 30, 18mapsnf1o2 8682 . . . . 5 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
32 f1ofo 6723 . . . . 5 ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0 → (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–onto→ℕ0)
33 eqeq1 2742 . . . . . . 7 (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ↔ 𝑑 = (𝐷𝐹)))
34 fveq2 6774 . . . . . . . 8 (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) = (𝐴𝑑))
3534neeq1d 3003 . . . . . . 7 (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → ((𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌 ↔ (𝐴𝑑) ≠ 𝑌))
3633, 35anbi12d 631 . . . . . 6 (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → ((((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌) ↔ (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌)))
3736cbvexfo 7162 . . . . 5 ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–onto→ℕ0 → (∃𝑏 ∈ (ℕ0m 1o)(((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌)))
3831, 32, 37mp2b 10 . . . 4 (∃𝑏 ∈ (ℕ0m 1o)(((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌))
3927, 38bitrdi 287 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (∃𝑏 ∈ (ℕ0m 1o)((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌)))
401, 4, 11, 6deg1nn0cl 25253 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
41 fveq2 6774 . . . . . 6 (𝑑 = (𝐷𝐹) → (𝐴𝑑) = (𝐴‘(𝐷𝐹)))
4241neeq1d 3003 . . . . 5 (𝑑 = (𝐷𝐹) → ((𝐴𝑑) ≠ 𝑌 ↔ (𝐴‘(𝐷𝐹)) ≠ 𝑌))
4342ceqsrexv 3585 . . . 4 ((𝐷𝐹) ∈ ℕ0 → (∃𝑑 ∈ ℕ0 (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌) ↔ (𝐴‘(𝐷𝐹)) ≠ 𝑌))
4440, 43syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (∃𝑑 ∈ ℕ0 (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌) ↔ (𝐴‘(𝐷𝐹)) ≠ 𝑌))
4539, 44bitrd 278 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (∃𝑏 ∈ (ℕ0m 1o)((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)) ↔ (𝐴‘(𝐷𝐹)) ≠ 𝑌))
4613, 45mpbid 231 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐴‘(𝐷𝐹)) ≠ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  c0 4256  cmpt 5157  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  1oc1o 8290  m cmap 8615  0cn0 12233  Basecbs 16912  0gc0g 17150  Ringcrg 19783   mPoly cmpl 21109  PwSer1cps1 21346  Poly1cpl1 21348  coe1cco1 21349   deg1 cdg1 25216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-cnfld 20598  df-psr 21112  df-mpl 21114  df-opsr 21116  df-psr1 21351  df-ply1 21353  df-coe1 21354  df-mdeg 25217  df-deg1 25218
This theorem is referenced by:  deg1ldgn  25258  deg1ldgdomn  25259  deg1add  25268  deg1mul2  25279  drnguc1p  25335
  Copyright terms: Public domain W3C validator