MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1ldg Structured version   Visualization version   GIF version

Theorem deg1ldg 26004
Description: A nonzero univariate polynomial always has a nonzero leading coefficient. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1z.d 𝐷 = (deg1𝑅)
deg1z.p 𝑃 = (Poly1𝑅)
deg1z.z 0 = (0g𝑃)
deg1nn0cl.b 𝐵 = (Base‘𝑃)
deg1ldg.y 𝑌 = (0g𝑅)
deg1ldg.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
deg1ldg ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐴‘(𝐷𝐹)) ≠ 𝑌)

Proof of Theorem deg1ldg
Dummy variables 𝑏 𝑑 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1z.d . . . 4 𝐷 = (deg1𝑅)
21deg1fval 25992 . . 3 𝐷 = (1o mDeg 𝑅)
3 eqid 2730 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
4 deg1z.p . . . 4 𝑃 = (Poly1𝑅)
5 deg1nn0cl.b . . . 4 𝐵 = (Base‘𝑃)
64, 5ply1bas 22086 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
7 deg1ldg.y . . 3 𝑌 = (0g𝑅)
8 psr1baslem 22076 . . 3 (ℕ0m 1o) = {𝑐 ∈ (ℕ0m 1o) ∣ (𝑐 “ ℕ) ∈ Fin}
9 tdeglem2 25973 . . 3 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0m 1o) ↦ (ℂfld Σg 𝑎))
10 deg1z.z . . . 4 0 = (0g𝑃)
113, 4, 10ply1mpl0 22148 . . 3 0 = (0g‘(1o mPoly 𝑅))
122, 3, 6, 7, 8, 9, 11mdegldg 25978 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ∃𝑏 ∈ (ℕ0m 1o)((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)))
13 deg1ldg.a . . . . . . . . . . 11 𝐴 = (coe1𝐹)
1413fvcoe1 22099 . . . . . . . . . 10 ((𝐹𝐵𝑏 ∈ (ℕ0m 1o)) → (𝐹𝑏) = (𝐴‘(𝑏‘∅)))
15143ad2antl2 1187 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → (𝐹𝑏) = (𝐴‘(𝑏‘∅)))
16 fveq1 6860 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝑎‘∅) = (𝑏‘∅))
17 eqid 2730 . . . . . . . . . . . 12 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))
18 fvex 6874 . . . . . . . . . . . 12 (𝑏‘∅) ∈ V
1916, 17, 18fvmpt 6971 . . . . . . . . . . 11 (𝑏 ∈ (ℕ0m 1o) → ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝑏‘∅))
2019fveq2d 6865 . . . . . . . . . 10 (𝑏 ∈ (ℕ0m 1o) → (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) = (𝐴‘(𝑏‘∅)))
2120adantl 481 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) = (𝐴‘(𝑏‘∅)))
2215, 21eqtr4d 2768 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → (𝐹𝑏) = (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)))
2322neeq1d 2985 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → ((𝐹𝑏) ≠ 𝑌 ↔ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌))
2423anbi1d 631 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → (((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)) ↔ ((𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹))))
2524biancomd 463 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → (((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)) ↔ (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌)))
2625rexbidva 3156 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (∃𝑏 ∈ (ℕ0m 1o)((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)) ↔ ∃𝑏 ∈ (ℕ0m 1o)(((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌)))
27 df1o2 8444 . . . . . 6 1o = {∅}
28 nn0ex 12455 . . . . . 6 0 ∈ V
29 0ex 5265 . . . . . 6 ∅ ∈ V
3027, 28, 29, 17mapsnf1o2 8870 . . . . 5 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
31 f1ofo 6810 . . . . 5 ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0 → (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–onto→ℕ0)
32 eqeq1 2734 . . . . . . 7 (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ↔ 𝑑 = (𝐷𝐹)))
33 fveq2 6861 . . . . . . . 8 (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) = (𝐴𝑑))
3433neeq1d 2985 . . . . . . 7 (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → ((𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌 ↔ (𝐴𝑑) ≠ 𝑌))
3532, 34anbi12d 632 . . . . . 6 (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → ((((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌) ↔ (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌)))
3635cbvexfo 7268 . . . . 5 ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–onto→ℕ0 → (∃𝑏 ∈ (ℕ0m 1o)(((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌)))
3730, 31, 36mp2b 10 . . . 4 (∃𝑏 ∈ (ℕ0m 1o)(((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌))
3826, 37bitrdi 287 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (∃𝑏 ∈ (ℕ0m 1o)((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌)))
391, 4, 10, 5deg1nn0cl 26000 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
40 fveq2 6861 . . . . . 6 (𝑑 = (𝐷𝐹) → (𝐴𝑑) = (𝐴‘(𝐷𝐹)))
4140neeq1d 2985 . . . . 5 (𝑑 = (𝐷𝐹) → ((𝐴𝑑) ≠ 𝑌 ↔ (𝐴‘(𝐷𝐹)) ≠ 𝑌))
4241ceqsrexv 3624 . . . 4 ((𝐷𝐹) ∈ ℕ0 → (∃𝑑 ∈ ℕ0 (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌) ↔ (𝐴‘(𝐷𝐹)) ≠ 𝑌))
4339, 42syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (∃𝑑 ∈ ℕ0 (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌) ↔ (𝐴‘(𝐷𝐹)) ≠ 𝑌))
4438, 43bitrd 279 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (∃𝑏 ∈ (ℕ0m 1o)((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)) ↔ (𝐴‘(𝐷𝐹)) ≠ 𝑌))
4512, 44mpbid 232 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐴‘(𝐷𝐹)) ≠ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  c0 4299  cmpt 5191  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  1oc1o 8430  m cmap 8802  0cn0 12449  Basecbs 17186  0gc0g 17409  Ringcrg 20149   mPoly cmpl 21822  Poly1cpl1 22068  coe1cco1 22069  deg1cdg1 25966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-mulg 19007  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-ur 20098  df-ring 20151  df-cring 20152  df-cnfld 21272  df-psr 21825  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-ply1 22073  df-coe1 22074  df-mdeg 25967  df-deg1 25968
This theorem is referenced by:  deg1ldgn  26005  deg1ldgdomn  26006  deg1add  26015  deg1mul2  26026  deg1mul  26027  drnguc1p  26086  0ringmon1p  33533  ply1unit  33551  ply1dg1rt  33555  irngnzply1lem  33692
  Copyright terms: Public domain W3C validator