MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1ldg Structured version   Visualization version   GIF version

Theorem deg1ldg 25457
Description: A nonzero univariate polynomial always has a nonzero leading coefficient. (Contributed by Stefan O'Rear, 23-Mar-2015.)
Hypotheses
Ref Expression
deg1z.d 𝐷 = ( deg1𝑅)
deg1z.p 𝑃 = (Poly1𝑅)
deg1z.z 0 = (0g𝑃)
deg1nn0cl.b 𝐵 = (Base‘𝑃)
deg1ldg.y 𝑌 = (0g𝑅)
deg1ldg.a 𝐴 = (coe1𝐹)
Assertion
Ref Expression
deg1ldg ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐴‘(𝐷𝐹)) ≠ 𝑌)

Proof of Theorem deg1ldg
Dummy variables 𝑏 𝑑 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 deg1z.d . . . 4 𝐷 = ( deg1𝑅)
21deg1fval 25445 . . 3 𝐷 = (1o mDeg 𝑅)
3 eqid 2736 . . 3 (1o mPoly 𝑅) = (1o mPoly 𝑅)
4 deg1z.p . . . 4 𝑃 = (Poly1𝑅)
5 eqid 2736 . . . 4 (PwSer1𝑅) = (PwSer1𝑅)
6 deg1nn0cl.b . . . 4 𝐵 = (Base‘𝑃)
74, 5, 6ply1bas 21566 . . 3 𝐵 = (Base‘(1o mPoly 𝑅))
8 deg1ldg.y . . 3 𝑌 = (0g𝑅)
9 psr1baslem 21556 . . 3 (ℕ0m 1o) = {𝑐 ∈ (ℕ0m 1o) ∣ (𝑐 “ ℕ) ∈ Fin}
10 tdeglem2 25426 . . 3 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0m 1o) ↦ (ℂfld Σg 𝑎))
11 deg1z.z . . . 4 0 = (0g𝑃)
123, 4, 11ply1mpl0 21626 . . 3 0 = (0g‘(1o mPoly 𝑅))
132, 3, 7, 8, 9, 10, 12mdegldg 25431 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → ∃𝑏 ∈ (ℕ0m 1o)((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)))
14 deg1ldg.a . . . . . . . . . . 11 𝐴 = (coe1𝐹)
1514fvcoe1 21578 . . . . . . . . . 10 ((𝐹𝐵𝑏 ∈ (ℕ0m 1o)) → (𝐹𝑏) = (𝐴‘(𝑏‘∅)))
16153ad2antl2 1186 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → (𝐹𝑏) = (𝐴‘(𝑏‘∅)))
17 fveq1 6841 . . . . . . . . . . . 12 (𝑎 = 𝑏 → (𝑎‘∅) = (𝑏‘∅))
18 eqid 2736 . . . . . . . . . . . 12 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)) = (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))
19 fvex 6855 . . . . . . . . . . . 12 (𝑏‘∅) ∈ V
2017, 18, 19fvmpt 6948 . . . . . . . . . . 11 (𝑏 ∈ (ℕ0m 1o) → ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝑏‘∅))
2120fveq2d 6846 . . . . . . . . . 10 (𝑏 ∈ (ℕ0m 1o) → (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) = (𝐴‘(𝑏‘∅)))
2221adantl 482 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) = (𝐴‘(𝑏‘∅)))
2316, 22eqtr4d 2779 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → (𝐹𝑏) = (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)))
2423neeq1d 3003 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → ((𝐹𝑏) ≠ 𝑌 ↔ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌))
2524anbi1d 630 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → (((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)) ↔ ((𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹))))
2625biancomd 464 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) ∧ 𝑏 ∈ (ℕ0m 1o)) → (((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)) ↔ (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌)))
2726rexbidva 3173 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (∃𝑏 ∈ (ℕ0m 1o)((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)) ↔ ∃𝑏 ∈ (ℕ0m 1o)(((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌)))
28 df1o2 8419 . . . . . 6 1o = {∅}
29 nn0ex 12419 . . . . . 6 0 ∈ V
30 0ex 5264 . . . . . 6 ∅ ∈ V
3128, 29, 30, 18mapsnf1o2 8832 . . . . 5 (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
32 f1ofo 6791 . . . . 5 ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0 → (𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–onto→ℕ0)
33 eqeq1 2740 . . . . . . 7 (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ↔ 𝑑 = (𝐷𝐹)))
34 fveq2 6842 . . . . . . . 8 (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) = (𝐴𝑑))
3534neeq1d 3003 . . . . . . 7 (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → ((𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌 ↔ (𝐴𝑑) ≠ 𝑌))
3633, 35anbi12d 631 . . . . . 6 (((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = 𝑑 → ((((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌) ↔ (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌)))
3736cbvexfo 7236 . . . . 5 ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅)):(ℕ0m 1o)–onto→ℕ0 → (∃𝑏 ∈ (ℕ0m 1o)(((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌)))
3831, 32, 37mp2b 10 . . . 4 (∃𝑏 ∈ (ℕ0m 1o)(((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹) ∧ (𝐴‘((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏)) ≠ 𝑌) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌))
3927, 38bitrdi 286 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (∃𝑏 ∈ (ℕ0m 1o)((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)) ↔ ∃𝑑 ∈ ℕ0 (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌)))
401, 4, 11, 6deg1nn0cl 25453 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐷𝐹) ∈ ℕ0)
41 fveq2 6842 . . . . . 6 (𝑑 = (𝐷𝐹) → (𝐴𝑑) = (𝐴‘(𝐷𝐹)))
4241neeq1d 3003 . . . . 5 (𝑑 = (𝐷𝐹) → ((𝐴𝑑) ≠ 𝑌 ↔ (𝐴‘(𝐷𝐹)) ≠ 𝑌))
4342ceqsrexv 3605 . . . 4 ((𝐷𝐹) ∈ ℕ0 → (∃𝑑 ∈ ℕ0 (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌) ↔ (𝐴‘(𝐷𝐹)) ≠ 𝑌))
4440, 43syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (∃𝑑 ∈ ℕ0 (𝑑 = (𝐷𝐹) ∧ (𝐴𝑑) ≠ 𝑌) ↔ (𝐴‘(𝐷𝐹)) ≠ 𝑌))
4539, 44bitrd 278 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (∃𝑏 ∈ (ℕ0m 1o)((𝐹𝑏) ≠ 𝑌 ∧ ((𝑎 ∈ (ℕ0m 1o) ↦ (𝑎‘∅))‘𝑏) = (𝐷𝐹)) ↔ (𝐴‘(𝐷𝐹)) ≠ 𝑌))
4613, 45mpbid 231 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐹0 ) → (𝐴‘(𝐷𝐹)) ≠ 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  c0 4282  cmpt 5188  ontowfo 6494  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  1oc1o 8405  m cmap 8765  0cn0 12413  Basecbs 17083  0gc0g 17321  Ringcrg 19964   mPoly cmpl 21308  PwSer1cps1 21546  Poly1cpl1 21548  coe1cco1 21549   deg1 cdg1 25416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-mulg 18873  df-subg 18925  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-cnfld 20797  df-psr 21311  df-mpl 21313  df-opsr 21315  df-psr1 21551  df-ply1 21553  df-coe1 21554  df-mdeg 25417  df-deg1 25418
This theorem is referenced by:  deg1ldgn  25458  deg1ldgdomn  25459  deg1add  25468  deg1mul2  25479  drnguc1p  25535  0ringmon1p  32264  irngnzply1lem  32364
  Copyright terms: Public domain W3C validator