MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulm2 Structured version   Visualization version   GIF version

Theorem ulm2 25231
Description: Simplify ulmval 25226 when 𝐹 and 𝐺 are known to be functions. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
ulm2.z 𝑍 = (ℤ𝑀)
ulm2.m (𝜑𝑀 ∈ ℤ)
ulm2.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulm2.b ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = 𝐵)
ulm2.a ((𝜑𝑧𝑆) → (𝐺𝑧) = 𝐴)
ulm2.g (𝜑𝐺:𝑆⟶ℂ)
ulm2.s (𝜑𝑆𝑉)
Assertion
Ref Expression
ulm2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑥,𝑧,𝐹   𝑗,𝐺,𝑘,𝑥,𝑧   𝑗,𝑀,𝑘,𝑥,𝑧   𝜑,𝑗,𝑘,𝑥,𝑧   𝐴,𝑗,𝑘,𝑥   𝑥,𝐵   𝑆,𝑗,𝑘,𝑥,𝑧   𝑗,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧,𝑗,𝑘)   𝑉(𝑥,𝑧,𝑗,𝑘)   𝑍(𝑧,𝑘)

Proof of Theorem ulm2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ulm2.s . . 3 (𝜑𝑆𝑉)
2 ulmval 25226 . . 3 (𝑆𝑉 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
31, 2syl 17 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
4 3anan12 1098 . . . 4 ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝐺:𝑆⟶ℂ ∧ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
5 ulm2.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
6 ulm2.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
76fdmd 6534 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝑍)
8 fdm 6532 . . . . . . . . . . 11 (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) → dom 𝐹 = (ℤ𝑛))
97, 8sylan9req 2792 . . . . . . . . . 10 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑍 = (ℤ𝑛))
105, 9eqtr3id 2785 . . . . . . . . 9 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (ℤ𝑀) = (ℤ𝑛))
11 ulm2.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
1211adantr 484 . . . . . . . . . 10 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑀 ∈ ℤ)
13 uz11 12428 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑛) ↔ 𝑀 = 𝑛))
1412, 13syl 17 . . . . . . . . 9 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → ((ℤ𝑀) = (ℤ𝑛) ↔ 𝑀 = 𝑛))
1510, 14mpbid 235 . . . . . . . 8 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑀 = 𝑛)
1615eqcomd 2742 . . . . . . 7 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑛 = 𝑀)
17 fveq2 6695 . . . . . . . . . . 11 (𝑛 = 𝑀 → (ℤ𝑛) = (ℤ𝑀))
1817, 5eqtr4di 2789 . . . . . . . . . 10 (𝑛 = 𝑀 → (ℤ𝑛) = 𝑍)
1918feq2d 6509 . . . . . . . . 9 (𝑛 = 𝑀 → (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ↔ 𝐹:𝑍⟶(ℂ ↑m 𝑆)))
2019biimparc 483 . . . . . . . 8 ((𝐹:𝑍⟶(ℂ ↑m 𝑆) ∧ 𝑛 = 𝑀) → 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
216, 20sylan 583 . . . . . . 7 ((𝜑𝑛 = 𝑀) → 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
2216, 21impbida 801 . . . . . 6 (𝜑 → (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ↔ 𝑛 = 𝑀))
2322anbi1d 633 . . . . 5 (𝜑 → ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
24 ulm2.g . . . . . 6 (𝜑𝐺:𝑆⟶ℂ)
2524biantrurd 536 . . . . 5 (𝜑 → ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝐺:𝑆⟶ℂ ∧ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))))
26 simp-4l 783 . . . . . . . . . . . . . 14 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → 𝜑)
27 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 = 𝑀) → 𝑛 = 𝑀)
28 uzid 12418 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2911, 28syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ (ℤ𝑀))
3029, 5eleqtrrdi 2842 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀𝑍)
3130adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 = 𝑀) → 𝑀𝑍)
3227, 31eqeltrd 2831 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 = 𝑀) → 𝑛𝑍)
335uztrn2 12422 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
3432, 33sylan 583 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
355uztrn2 12422 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3634, 35sylan 583 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3736adantr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → 𝑘𝑍)
38 simpr 488 . . . . . . . . . . . . . 14 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → 𝑧𝑆)
39 ulm2.b . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = 𝐵)
4026, 37, 38, 39syl12anc 837 . . . . . . . . . . . . 13 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) = 𝐵)
41 ulm2.a . . . . . . . . . . . . . 14 ((𝜑𝑧𝑆) → (𝐺𝑧) = 𝐴)
4226, 41sylancom 591 . . . . . . . . . . . . 13 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (𝐺𝑧) = 𝐴)
4340, 42oveq12d 7209 . . . . . . . . . . . 12 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (((𝐹𝑘)‘𝑧) − (𝐺𝑧)) = (𝐵𝐴))
4443fveq2d 6699 . . . . . . . . . . 11 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) = (abs‘(𝐵𝐴)))
4544breq1d 5049 . . . . . . . . . 10 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝑥))
4645ralbidva 3107 . . . . . . . . 9 ((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
4746ralbidva 3107 . . . . . . . 8 (((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
4847rexbidva 3205 . . . . . . 7 ((𝜑𝑛 = 𝑀) → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
4948ralbidv 3108 . . . . . 6 ((𝜑𝑛 = 𝑀) → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
5049pm5.32da 582 . . . . 5 (𝜑 → ((𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)))
5123, 25, 503bitr3d 312 . . . 4 (𝜑 → ((𝐺:𝑆⟶ℂ ∧ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)) ↔ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)))
524, 51syl5bb 286 . . 3 (𝜑 → ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)))
5352rexbidv 3206 . 2 (𝜑 → (∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ ∃𝑛 ∈ ℤ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)))
5418rexeqdv 3316 . . . . 5 (𝑛 = 𝑀 → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
5554ralbidv 3108 . . . 4 (𝑛 = 𝑀 → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
5655ceqsrexv 3553 . . 3 (𝑀 ∈ ℤ → (∃𝑛 ∈ ℤ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
5711, 56syl 17 . 2 (𝜑 → (∃𝑛 ∈ ℤ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
583, 53, 573bitrd 308 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  wrex 3052   class class class wbr 5039  dom cdm 5536  wf 6354  cfv 6358  (class class class)co 7191  m cmap 8486  cc 10692   < clt 10832  cmin 11027  cz 12141  cuz 12403  +crp 12551  abscabs 14762  𝑢culm 25222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-pre-lttri 10768  ax-pre-lttrn 10769
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-neg 11030  df-z 12142  df-uz 12404  df-ulm 25223
This theorem is referenced by:  ulmi  25232  ulmclm  25233  ulmres  25234  ulmshftlem  25235  ulm0  25237  ulmcau  25241  ulmss  25243
  Copyright terms: Public domain W3C validator