MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulm2 Structured version   Visualization version   GIF version

Theorem ulm2 26446
Description: Simplify ulmval 26441 when 𝐹 and 𝐺 are known to be functions. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
ulm2.z 𝑍 = (ℤ𝑀)
ulm2.m (𝜑𝑀 ∈ ℤ)
ulm2.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulm2.b ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = 𝐵)
ulm2.a ((𝜑𝑧𝑆) → (𝐺𝑧) = 𝐴)
ulm2.g (𝜑𝐺:𝑆⟶ℂ)
ulm2.s (𝜑𝑆𝑉)
Assertion
Ref Expression
ulm2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑥,𝑧,𝐹   𝑗,𝐺,𝑘,𝑥,𝑧   𝑗,𝑀,𝑘,𝑥,𝑧   𝜑,𝑗,𝑘,𝑥,𝑧   𝐴,𝑗,𝑘,𝑥   𝑥,𝐵   𝑆,𝑗,𝑘,𝑥,𝑧   𝑗,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧,𝑗,𝑘)   𝑉(𝑥,𝑧,𝑗,𝑘)   𝑍(𝑧,𝑘)

Proof of Theorem ulm2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ulm2.s . . 3 (𝜑𝑆𝑉)
2 ulmval 26441 . . 3 (𝑆𝑉 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
31, 2syl 17 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
4 3anan12 1096 . . . 4 ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝐺:𝑆⟶ℂ ∧ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
5 ulm2.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
6 ulm2.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
76fdmd 6757 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝑍)
8 fdm 6756 . . . . . . . . . . 11 (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) → dom 𝐹 = (ℤ𝑛))
97, 8sylan9req 2801 . . . . . . . . . 10 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑍 = (ℤ𝑛))
105, 9eqtr3id 2794 . . . . . . . . 9 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (ℤ𝑀) = (ℤ𝑛))
11 ulm2.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
1211adantr 480 . . . . . . . . . 10 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑀 ∈ ℤ)
13 uz11 12928 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑛) ↔ 𝑀 = 𝑛))
1412, 13syl 17 . . . . . . . . 9 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → ((ℤ𝑀) = (ℤ𝑛) ↔ 𝑀 = 𝑛))
1510, 14mpbid 232 . . . . . . . 8 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑀 = 𝑛)
1615eqcomd 2746 . . . . . . 7 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑛 = 𝑀)
17 fveq2 6920 . . . . . . . . . . 11 (𝑛 = 𝑀 → (ℤ𝑛) = (ℤ𝑀))
1817, 5eqtr4di 2798 . . . . . . . . . 10 (𝑛 = 𝑀 → (ℤ𝑛) = 𝑍)
1918feq2d 6733 . . . . . . . . 9 (𝑛 = 𝑀 → (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ↔ 𝐹:𝑍⟶(ℂ ↑m 𝑆)))
2019biimparc 479 . . . . . . . 8 ((𝐹:𝑍⟶(ℂ ↑m 𝑆) ∧ 𝑛 = 𝑀) → 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
216, 20sylan 579 . . . . . . 7 ((𝜑𝑛 = 𝑀) → 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
2216, 21impbida 800 . . . . . 6 (𝜑 → (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ↔ 𝑛 = 𝑀))
2322anbi1d 630 . . . . 5 (𝜑 → ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
24 ulm2.g . . . . . 6 (𝜑𝐺:𝑆⟶ℂ)
2524biantrurd 532 . . . . 5 (𝜑 → ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝐺:𝑆⟶ℂ ∧ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))))
26 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → 𝜑)
27 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 = 𝑀) → 𝑛 = 𝑀)
28 uzid 12918 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2911, 28syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ (ℤ𝑀))
3029, 5eleqtrrdi 2855 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀𝑍)
3130adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 = 𝑀) → 𝑀𝑍)
3227, 31eqeltrd 2844 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 = 𝑀) → 𝑛𝑍)
335uztrn2 12922 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
3432, 33sylan 579 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
355uztrn2 12922 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3634, 35sylan 579 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3736adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → 𝑘𝑍)
38 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → 𝑧𝑆)
39 ulm2.b . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = 𝐵)
4026, 37, 38, 39syl12anc 836 . . . . . . . . . . . . 13 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) = 𝐵)
41 ulm2.a . . . . . . . . . . . . . 14 ((𝜑𝑧𝑆) → (𝐺𝑧) = 𝐴)
4226, 41sylancom 587 . . . . . . . . . . . . 13 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (𝐺𝑧) = 𝐴)
4340, 42oveq12d 7466 . . . . . . . . . . . 12 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (((𝐹𝑘)‘𝑧) − (𝐺𝑧)) = (𝐵𝐴))
4443fveq2d 6924 . . . . . . . . . . 11 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) = (abs‘(𝐵𝐴)))
4544breq1d 5176 . . . . . . . . . 10 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝑥))
4645ralbidva 3182 . . . . . . . . 9 ((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
4746ralbidva 3182 . . . . . . . 8 (((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
4847rexbidva 3183 . . . . . . 7 ((𝜑𝑛 = 𝑀) → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
4948ralbidv 3184 . . . . . 6 ((𝜑𝑛 = 𝑀) → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
5049pm5.32da 578 . . . . 5 (𝜑 → ((𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)))
5123, 25, 503bitr3d 309 . . . 4 (𝜑 → ((𝐺:𝑆⟶ℂ ∧ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)) ↔ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)))
524, 51bitrid 283 . . 3 (𝜑 → ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)))
5352rexbidv 3185 . 2 (𝜑 → (∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ ∃𝑛 ∈ ℤ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)))
5418rexeqdv 3335 . . . . 5 (𝑛 = 𝑀 → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
5554ralbidv 3184 . . . 4 (𝑛 = 𝑀 → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
5655ceqsrexv 3668 . . 3 (𝑀 ∈ ℤ → (∃𝑛 ∈ ℤ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
5711, 56syl 17 . 2 (𝜑 → (∃𝑛 ∈ ℤ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
583, 53, 573bitrd 305 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076   class class class wbr 5166  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182   < clt 11324  cmin 11520  cz 12639  cuz 12903  +crp 13057  abscabs 15283  𝑢culm 26437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-neg 11523  df-z 12640  df-uz 12904  df-ulm 26438
This theorem is referenced by:  ulmi  26447  ulmclm  26448  ulmres  26449  ulmshftlem  26450  ulm0  26452  ulmcau  26456  ulmss  26458
  Copyright terms: Public domain W3C validator