MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulm2 Structured version   Visualization version   GIF version

Theorem ulm2 25449
Description: Simplify ulmval 25444 when 𝐹 and 𝐺 are known to be functions. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
ulm2.z 𝑍 = (ℤ𝑀)
ulm2.m (𝜑𝑀 ∈ ℤ)
ulm2.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulm2.b ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = 𝐵)
ulm2.a ((𝜑𝑧𝑆) → (𝐺𝑧) = 𝐴)
ulm2.g (𝜑𝐺:𝑆⟶ℂ)
ulm2.s (𝜑𝑆𝑉)
Assertion
Ref Expression
ulm2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑥,𝑧,𝐹   𝑗,𝐺,𝑘,𝑥,𝑧   𝑗,𝑀,𝑘,𝑥,𝑧   𝜑,𝑗,𝑘,𝑥,𝑧   𝐴,𝑗,𝑘,𝑥   𝑥,𝐵   𝑆,𝑗,𝑘,𝑥,𝑧   𝑗,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧,𝑗,𝑘)   𝑉(𝑥,𝑧,𝑗,𝑘)   𝑍(𝑧,𝑘)

Proof of Theorem ulm2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ulm2.s . . 3 (𝜑𝑆𝑉)
2 ulmval 25444 . . 3 (𝑆𝑉 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
31, 2syl 17 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
4 3anan12 1094 . . . 4 ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝐺:𝑆⟶ℂ ∧ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
5 ulm2.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
6 ulm2.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
76fdmd 6595 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝑍)
8 fdm 6593 . . . . . . . . . . 11 (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) → dom 𝐹 = (ℤ𝑛))
97, 8sylan9req 2800 . . . . . . . . . 10 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑍 = (ℤ𝑛))
105, 9eqtr3id 2793 . . . . . . . . 9 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (ℤ𝑀) = (ℤ𝑛))
11 ulm2.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
1211adantr 480 . . . . . . . . . 10 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑀 ∈ ℤ)
13 uz11 12536 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑛) ↔ 𝑀 = 𝑛))
1412, 13syl 17 . . . . . . . . 9 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → ((ℤ𝑀) = (ℤ𝑛) ↔ 𝑀 = 𝑛))
1510, 14mpbid 231 . . . . . . . 8 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑀 = 𝑛)
1615eqcomd 2744 . . . . . . 7 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑛 = 𝑀)
17 fveq2 6756 . . . . . . . . . . 11 (𝑛 = 𝑀 → (ℤ𝑛) = (ℤ𝑀))
1817, 5eqtr4di 2797 . . . . . . . . . 10 (𝑛 = 𝑀 → (ℤ𝑛) = 𝑍)
1918feq2d 6570 . . . . . . . . 9 (𝑛 = 𝑀 → (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ↔ 𝐹:𝑍⟶(ℂ ↑m 𝑆)))
2019biimparc 479 . . . . . . . 8 ((𝐹:𝑍⟶(ℂ ↑m 𝑆) ∧ 𝑛 = 𝑀) → 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
216, 20sylan 579 . . . . . . 7 ((𝜑𝑛 = 𝑀) → 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
2216, 21impbida 797 . . . . . 6 (𝜑 → (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ↔ 𝑛 = 𝑀))
2322anbi1d 629 . . . . 5 (𝜑 → ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
24 ulm2.g . . . . . 6 (𝜑𝐺:𝑆⟶ℂ)
2524biantrurd 532 . . . . 5 (𝜑 → ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝐺:𝑆⟶ℂ ∧ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))))
26 simp-4l 779 . . . . . . . . . . . . . 14 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → 𝜑)
27 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 = 𝑀) → 𝑛 = 𝑀)
28 uzid 12526 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2911, 28syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ (ℤ𝑀))
3029, 5eleqtrrdi 2850 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀𝑍)
3130adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 = 𝑀) → 𝑀𝑍)
3227, 31eqeltrd 2839 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 = 𝑀) → 𝑛𝑍)
335uztrn2 12530 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
3432, 33sylan 579 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
355uztrn2 12530 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3634, 35sylan 579 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3736adantr 480 . . . . . . . . . . . . . 14 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → 𝑘𝑍)
38 simpr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → 𝑧𝑆)
39 ulm2.b . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = 𝐵)
4026, 37, 38, 39syl12anc 833 . . . . . . . . . . . . 13 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) = 𝐵)
41 ulm2.a . . . . . . . . . . . . . 14 ((𝜑𝑧𝑆) → (𝐺𝑧) = 𝐴)
4226, 41sylancom 587 . . . . . . . . . . . . 13 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (𝐺𝑧) = 𝐴)
4340, 42oveq12d 7273 . . . . . . . . . . . 12 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (((𝐹𝑘)‘𝑧) − (𝐺𝑧)) = (𝐵𝐴))
4443fveq2d 6760 . . . . . . . . . . 11 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) = (abs‘(𝐵𝐴)))
4544breq1d 5080 . . . . . . . . . 10 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝑥))
4645ralbidva 3119 . . . . . . . . 9 ((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
4746ralbidva 3119 . . . . . . . 8 (((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
4847rexbidva 3224 . . . . . . 7 ((𝜑𝑛 = 𝑀) → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
4948ralbidv 3120 . . . . . 6 ((𝜑𝑛 = 𝑀) → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
5049pm5.32da 578 . . . . 5 (𝜑 → ((𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)))
5123, 25, 503bitr3d 308 . . . 4 (𝜑 → ((𝐺:𝑆⟶ℂ ∧ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)) ↔ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)))
524, 51syl5bb 282 . . 3 (𝜑 → ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)))
5352rexbidv 3225 . 2 (𝜑 → (∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ ∃𝑛 ∈ ℤ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)))
5418rexeqdv 3340 . . . . 5 (𝑛 = 𝑀 → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
5554ralbidv 3120 . . . 4 (𝑛 = 𝑀 → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
5655ceqsrexv 3578 . . 3 (𝑀 ∈ ℤ → (∃𝑛 ∈ ℤ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
5711, 56syl 17 . 2 (𝜑 → (∃𝑛 ∈ ℤ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
583, 53, 573bitrd 304 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064   class class class wbr 5070  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cc 10800   < clt 10940  cmin 11135  cz 12249  cuz 12511  +crp 12659  abscabs 14873  𝑢culm 25440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-neg 11138  df-z 12250  df-uz 12512  df-ulm 25441
This theorem is referenced by:  ulmi  25450  ulmclm  25451  ulmres  25452  ulmshftlem  25453  ulm0  25455  ulmcau  25459  ulmss  25461
  Copyright terms: Public domain W3C validator