MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulm2 Structured version   Visualization version   GIF version

Theorem ulm2 24983
Description: Simplify ulmval 24978 when 𝐹 and 𝐺 are known to be functions. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
ulm2.z 𝑍 = (ℤ𝑀)
ulm2.m (𝜑𝑀 ∈ ℤ)
ulm2.f (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
ulm2.b ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = 𝐵)
ulm2.a ((𝜑𝑧𝑆) → (𝐺𝑧) = 𝐴)
ulm2.g (𝜑𝐺:𝑆⟶ℂ)
ulm2.s (𝜑𝑆𝑉)
Assertion
Ref Expression
ulm2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑥,𝑧,𝐹   𝑗,𝐺,𝑘,𝑥,𝑧   𝑗,𝑀,𝑘,𝑥,𝑧   𝜑,𝑗,𝑘,𝑥,𝑧   𝐴,𝑗,𝑘,𝑥   𝑥,𝐵   𝑆,𝑗,𝑘,𝑥,𝑧   𝑗,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧,𝑗,𝑘)   𝑉(𝑥,𝑧,𝑗,𝑘)   𝑍(𝑧,𝑘)

Proof of Theorem ulm2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ulm2.s . . 3 (𝜑𝑆𝑉)
2 ulmval 24978 . . 3 (𝑆𝑉 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
31, 2syl 17 . 2 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
4 3anan12 1093 . . . 4 ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝐺:𝑆⟶ℂ ∧ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
5 ulm2.z . . . . . . . . . 10 𝑍 = (ℤ𝑀)
6 ulm2.f . . . . . . . . . . . 12 (𝜑𝐹:𝑍⟶(ℂ ↑m 𝑆))
76fdmd 6501 . . . . . . . . . . 11 (𝜑 → dom 𝐹 = 𝑍)
8 fdm 6499 . . . . . . . . . . 11 (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) → dom 𝐹 = (ℤ𝑛))
97, 8sylan9req 2857 . . . . . . . . . 10 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑍 = (ℤ𝑛))
105, 9syl5eqr 2850 . . . . . . . . 9 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → (ℤ𝑀) = (ℤ𝑛))
11 ulm2.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
1211adantr 484 . . . . . . . . . 10 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑀 ∈ ℤ)
13 uz11 12259 . . . . . . . . . 10 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝑛) ↔ 𝑀 = 𝑛))
1412, 13syl 17 . . . . . . . . 9 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → ((ℤ𝑀) = (ℤ𝑛) ↔ 𝑀 = 𝑛))
1510, 14mpbid 235 . . . . . . . 8 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑀 = 𝑛)
1615eqcomd 2807 . . . . . . 7 ((𝜑𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆)) → 𝑛 = 𝑀)
17 fveq2 6649 . . . . . . . . . . 11 (𝑛 = 𝑀 → (ℤ𝑛) = (ℤ𝑀))
1817, 5eqtr4di 2854 . . . . . . . . . 10 (𝑛 = 𝑀 → (ℤ𝑛) = 𝑍)
1918feq2d 6477 . . . . . . . . 9 (𝑛 = 𝑀 → (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ↔ 𝐹:𝑍⟶(ℂ ↑m 𝑆)))
2019biimparc 483 . . . . . . . 8 ((𝐹:𝑍⟶(ℂ ↑m 𝑆) ∧ 𝑛 = 𝑀) → 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
216, 20sylan 583 . . . . . . 7 ((𝜑𝑛 = 𝑀) → 𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆))
2216, 21impbida 800 . . . . . 6 (𝜑 → (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ↔ 𝑛 = 𝑀))
2322anbi1d 632 . . . . 5 (𝜑 → ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)))
24 ulm2.g . . . . . 6 (𝜑𝐺:𝑆⟶ℂ)
2524biantrurd 536 . . . . 5 (𝜑 → ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝐺:𝑆⟶ℂ ∧ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥))))
26 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → 𝜑)
27 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 = 𝑀) → 𝑛 = 𝑀)
28 uzid 12250 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2911, 28syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑀 ∈ (ℤ𝑀))
3029, 5eleqtrrdi 2904 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀𝑍)
3130adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 = 𝑀) → 𝑀𝑍)
3227, 31eqeltrd 2893 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 = 𝑀) → 𝑛𝑍)
335uztrn2 12254 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
3432, 33sylan 583 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
355uztrn2 12254 . . . . . . . . . . . . . . . 16 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3634, 35sylan 583 . . . . . . . . . . . . . . 15 ((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3736adantr 484 . . . . . . . . . . . . . 14 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → 𝑘𝑍)
38 simpr 488 . . . . . . . . . . . . . 14 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → 𝑧𝑆)
39 ulm2.b . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘𝑍𝑧𝑆)) → ((𝐹𝑘)‘𝑧) = 𝐵)
4026, 37, 38, 39syl12anc 835 . . . . . . . . . . . . 13 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((𝐹𝑘)‘𝑧) = 𝐵)
41 ulm2.a . . . . . . . . . . . . . 14 ((𝜑𝑧𝑆) → (𝐺𝑧) = 𝐴)
4226, 41sylancom 591 . . . . . . . . . . . . 13 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (𝐺𝑧) = 𝐴)
4340, 42oveq12d 7157 . . . . . . . . . . . 12 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (((𝐹𝑘)‘𝑧) − (𝐺𝑧)) = (𝐵𝐴))
4443fveq2d 6653 . . . . . . . . . . 11 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) = (abs‘(𝐵𝐴)))
4544breq1d 5043 . . . . . . . . . 10 (((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) ∧ 𝑧𝑆) → ((abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝑥))
4645ralbidva 3164 . . . . . . . . 9 ((((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) ∧ 𝑘 ∈ (ℤ𝑗)) → (∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
4746ralbidva 3164 . . . . . . . 8 (((𝜑𝑛 = 𝑀) ∧ 𝑗 ∈ (ℤ𝑛)) → (∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
4847rexbidva 3258 . . . . . . 7 ((𝜑𝑛 = 𝑀) → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
4948ralbidv 3165 . . . . . 6 ((𝜑𝑛 = 𝑀) → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
5049pm5.32da 582 . . . . 5 (𝜑 → ((𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)))
5123, 25, 503bitr3d 312 . . . 4 (𝜑 → ((𝐺:𝑆⟶ℂ ∧ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥)) ↔ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)))
524, 51syl5bb 286 . . 3 (𝜑 → ((𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)))
5352rexbidv 3259 . 2 (𝜑 → (∃𝑛 ∈ ℤ (𝐹:(ℤ𝑛)⟶(ℂ ↑m 𝑆) ∧ 𝐺:𝑆⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(((𝐹𝑘)‘𝑧) − (𝐺𝑧))) < 𝑥) ↔ ∃𝑛 ∈ ℤ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥)))
5418rexeqdv 3368 . . . . 5 (𝑛 = 𝑀 → (∃𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
5554ralbidv 3165 . . . 4 (𝑛 = 𝑀 → (∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
5655ceqsrexv 3600 . . 3 (𝑀 ∈ ℤ → (∃𝑛 ∈ ℤ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
5711, 56syl 17 . 2 (𝜑 → (∃𝑛 ∈ ℤ (𝑛 = 𝑀 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
583, 53, 573bitrd 308 1 (𝜑 → (𝐹(⇝𝑢𝑆)𝐺 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)∀𝑧𝑆 (abs‘(𝐵𝐴)) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wral 3109  wrex 3110   class class class wbr 5033  dom cdm 5523  wf 6324  cfv 6328  (class class class)co 7139  m cmap 8393  cc 10528   < clt 10668  cmin 10863  cz 11973  cuz 12235  +crp 12381  abscabs 14588  𝑢culm 24974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-pre-lttri 10604  ax-pre-lttrn 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-neg 10866  df-z 11974  df-uz 12236  df-ulm 24975
This theorem is referenced by:  ulmi  24984  ulmclm  24985  ulmres  24986  ulmshftlem  24987  ulm0  24989  ulmcau  24993  ulmss  24995
  Copyright terms: Public domain W3C validator