MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscgra1 Structured version   Visualization version   GIF version

Theorem iscgra1 27075
Description: A special version of iscgra 27074 where one distance is known to be equal. In this case, angle congruence can be written with only one quantifier. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
iscgra.p 𝑃 = (Base‘𝐺)
iscgra.i 𝐼 = (Itv‘𝐺)
iscgra.k 𝐾 = (hlG‘𝐺)
iscgra.g (𝜑𝐺 ∈ TarskiG)
iscgra.a (𝜑𝐴𝑃)
iscgra.b (𝜑𝐵𝑃)
iscgra.c (𝜑𝐶𝑃)
iscgra.d (𝜑𝐷𝑃)
iscgra.e (𝜑𝐸𝑃)
iscgra.f (𝜑𝐹𝑃)
iscgra1.m = (dist‘𝐺)
iscgra1.1 (𝜑𝐴𝐵)
iscgra1.2 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
Assertion
Ref Expression
iscgra1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸   𝑥,𝐹   𝑥,𝐾   𝜑,𝑥   𝑥,𝐺   𝑥,𝐼   𝑥,𝑃
Allowed substitution hint:   (𝑥)

Proof of Theorem iscgra1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iscgra.p . . 3 𝑃 = (Base‘𝐺)
2 iscgra.i . . 3 𝐼 = (Itv‘𝐺)
3 iscgra.k . . 3 𝐾 = (hlG‘𝐺)
4 iscgra.g . . 3 (𝜑𝐺 ∈ TarskiG)
5 iscgra.a . . 3 (𝜑𝐴𝑃)
6 iscgra.b . . 3 (𝜑𝐵𝑃)
7 iscgra.c . . 3 (𝜑𝐶𝑃)
8 iscgra.d . . 3 (𝜑𝐷𝑃)
9 iscgra.e . . 3 (𝜑𝐸𝑃)
10 iscgra.f . . 3 (𝜑𝐹𝑃)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10iscgra 27074 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑦𝑃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)))
129ad3antrrr 726 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐸𝑃)
136ad3antrrr 726 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐵𝑃)
145ad3antrrr 726 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐴𝑃)
154ad3antrrr 726 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐺 ∈ TarskiG)
168ad3antrrr 726 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐷𝑃)
17 iscgra1.m . . . . . . . 8 = (dist‘𝐺)
18 simpllr 772 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝑦𝑃)
19 simpr2 1193 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝑦(𝐾𝐸)𝐷)
201, 2, 3, 18, 16, 12, 15, 19hlne2 26871 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐷𝐸)
21 iscgra1.1 . . . . . . . . . 10 (𝜑𝐴𝐵)
2221ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐴𝐵)
2322necomd 2998 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐵𝐴)
241, 2, 3, 16, 12, 12, 15, 20hlid 26874 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐷(𝐾𝐸)𝐷)
25 eqid 2738 . . . . . . . . . . 11 (cgrG‘𝐺) = (cgrG‘𝐺)
267ad3antrrr 726 . . . . . . . . . . 11 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝐶𝑃)
27 simplr 765 . . . . . . . . . . 11 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝑥𝑃)
28 simpr1 1192 . . . . . . . . . . 11 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩)
291, 17, 2, 25, 15, 14, 13, 26, 18, 12, 27, 28cgr3simp1 26785 . . . . . . . . . 10 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → (𝐴 𝐵) = (𝑦 𝐸))
3029eqcomd 2744 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → (𝑦 𝐸) = (𝐴 𝐵))
311, 17, 2, 15, 18, 12, 14, 13, 30tgcgrcomlr 26745 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → (𝐸 𝑦) = (𝐵 𝐴))
32 iscgra1.2 . . . . . . . . . . 11 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
3332ad3antrrr 726 . . . . . . . . . 10 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → (𝐴 𝐵) = (𝐷 𝐸))
3433eqcomd 2744 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → (𝐷 𝐸) = (𝐴 𝐵))
351, 17, 2, 15, 16, 12, 14, 13, 34tgcgrcomlr 26745 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → (𝐸 𝐷) = (𝐵 𝐴))
361, 2, 3, 12, 13, 14, 15, 16, 17, 20, 23, 18, 16, 19, 24, 31, 35hlcgreulem 26882 . . . . . . 7 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝑦 = 𝐷)
37 simpr3 1194 . . . . . . 7 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → 𝑥(𝐾𝐸)𝐹)
3836, 28, 37jca32 515 . . . . . 6 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹)) → (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
39 simprrl 777 . . . . . . 7 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩)
40 simprl 767 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → 𝑦 = 𝐷)
418ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → 𝐷𝑃)
429ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → 𝐸𝑃)
434ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → 𝐺 ∈ TarskiG)
441, 17, 2, 4, 5, 6, 8, 9, 32, 21tgcgrneq 26748 . . . . . . . . . 10 (𝜑𝐷𝐸)
4544ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → 𝐷𝐸)
461, 2, 3, 41, 41, 42, 43, 45hlid 26874 . . . . . . . 8 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → 𝐷(𝐾𝐸)𝐷)
4740, 46eqbrtrd 5092 . . . . . . 7 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → 𝑦(𝐾𝐸)𝐷)
48 simprrr 778 . . . . . . 7 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → 𝑥(𝐾𝐸)𝐹)
4939, 47, 483jca 1126 . . . . . 6 ((((𝜑𝑦𝑃) ∧ 𝑥𝑃) ∧ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))) → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹))
5038, 49impbida 797 . . . . 5 (((𝜑𝑦𝑃) ∧ 𝑥𝑃) → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹) ↔ (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))))
5150rexbidva 3224 . . . 4 ((𝜑𝑦𝑃) → (∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹) ↔ ∃𝑥𝑃 (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))))
52 r19.42v 3276 . . . 4 (∃𝑥𝑃 (𝑦 = 𝐷 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)) ↔ (𝑦 = 𝐷 ∧ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
5351, 52bitrdi 286 . . 3 ((𝜑𝑦𝑃) → (∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹) ↔ (𝑦 = 𝐷 ∧ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))))
5453rexbidva 3224 . 2 (𝜑 → (∃𝑦𝑃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑦(𝐾𝐸)𝐷𝑥(𝐾𝐸)𝐹) ↔ ∃𝑦𝑃 (𝑦 = 𝐷 ∧ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹))))
55 id 22 . . . . . . . 8 (𝑦 = 𝐷𝑦 = 𝐷)
56 eqidd 2739 . . . . . . . 8 (𝑦 = 𝐷𝐸 = 𝐸)
57 eqidd 2739 . . . . . . . 8 (𝑦 = 𝐷𝑥 = 𝑥)
5855, 56, 57s3eqd 14505 . . . . . . 7 (𝑦 = 𝐷 → ⟨“𝑦𝐸𝑥”⟩ = ⟨“𝐷𝐸𝑥”⟩)
5958breq2d 5082 . . . . . 6 (𝑦 = 𝐷 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑥”⟩))
6059anbi1d 629 . . . . 5 (𝑦 = 𝐷 → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
6160rexbidv 3225 . . . 4 (𝑦 = 𝐷 → (∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹) ↔ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
6261ceqsrexv 3578 . . 3 (𝐷𝑃 → (∃𝑦𝑃 (𝑦 = 𝐷 ∧ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)) ↔ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
638, 62syl 17 . 2 (𝜑 → (∃𝑦𝑃 (𝑦 = 𝐷 ∧ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑦𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)) ↔ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
6411, 54, 633bitrd 304 1 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑥”⟩ ∧ 𝑥(𝐾𝐸)𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  ⟨“cs3 14483  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  Itvcitv 26699  cgrGccgrg 26775  hlGchlg 26865  cgrAccgra 27072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkg 26718  df-cgrg 26776  df-hlg 26866  df-cgra 27073
This theorem is referenced by:  acopyeu  27099
  Copyright terms: Public domain W3C validator