MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oiso Structured version   Visualization version   GIF version

Theorem f1oiso 6829
Description: Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. Proposition 6.33 of [TakeutiZaring] p. 34. (Contributed by NM, 30-Apr-2004.)
Assertion
Ref Expression
f1oiso ((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤,𝐴   𝑥,𝐵,𝑦   𝑥,𝐻,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤
Allowed substitution hints:   𝐵(𝑧,𝑤)   𝑆(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem f1oiso
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 475 . 2 ((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻:𝐴1-1-onto𝐵)
2 f1of1 6355 . . 3 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1𝐵)
3 df-br 4844 . . . . 5 ((𝐻𝑣)𝑆(𝐻𝑢) ↔ ⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ 𝑆)
4 eleq2 2867 . . . . . . 7 (𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)} → (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ 𝑆 ↔ ⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}))
5 fvex 6424 . . . . . . . . 9 (𝐻𝑣) ∈ V
6 fvex 6424 . . . . . . . . 9 (𝐻𝑢) ∈ V
7 eqeq1 2803 . . . . . . . . . . . 12 (𝑧 = (𝐻𝑣) → (𝑧 = (𝐻𝑥) ↔ (𝐻𝑣) = (𝐻𝑥)))
87anbi1d 624 . . . . . . . . . . 11 (𝑧 = (𝐻𝑣) → ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ↔ ((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦))))
98anbi1d 624 . . . . . . . . . 10 (𝑧 = (𝐻𝑣) → (((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ (((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)))
1092rexbidv 3238 . . . . . . . . 9 (𝑧 = (𝐻𝑣) → (∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)))
11 eqeq1 2803 . . . . . . . . . . . 12 (𝑤 = (𝐻𝑢) → (𝑤 = (𝐻𝑦) ↔ (𝐻𝑢) = (𝐻𝑦)))
1211anbi2d 623 . . . . . . . . . . 11 (𝑤 = (𝐻𝑢) → (((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ↔ ((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦))))
1312anbi1d 624 . . . . . . . . . 10 (𝑤 = (𝐻𝑢) → ((((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)))
14132rexbidv 3238 . . . . . . . . 9 (𝑤 = (𝐻𝑢) → (∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)))
155, 6, 10, 14opelopab 5193 . . . . . . . 8 (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)} ↔ ∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦))
16 anass 461 . . . . . . . . . . . . . . 15 ((((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ((𝐻𝑣) = (𝐻𝑥) ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)))
17 f1fveq 6747 . . . . . . . . . . . . . . . . . 18 ((𝐻:𝐴1-1𝐵 ∧ (𝑣𝐴𝑥𝐴)) → ((𝐻𝑣) = (𝐻𝑥) ↔ 𝑣 = 𝑥))
18 equcom 2117 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑥𝑥 = 𝑣)
1917, 18syl6bb 279 . . . . . . . . . . . . . . . . 17 ((𝐻:𝐴1-1𝐵 ∧ (𝑣𝐴𝑥𝐴)) → ((𝐻𝑣) = (𝐻𝑥) ↔ 𝑥 = 𝑣))
2019anassrs 460 . . . . . . . . . . . . . . . 16 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ 𝑥𝐴) → ((𝐻𝑣) = (𝐻𝑥) ↔ 𝑥 = 𝑣))
2120anbi1d 624 . . . . . . . . . . . . . . 15 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ 𝑥𝐴) → (((𝐻𝑣) = (𝐻𝑥) ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)) ↔ (𝑥 = 𝑣 ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦))))
2216, 21syl5bb 275 . . . . . . . . . . . . . 14 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ 𝑥𝐴) → ((((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ (𝑥 = 𝑣 ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦))))
2322rexbidv 3233 . . . . . . . . . . . . 13 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ 𝑥𝐴) → (∃𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦𝐴 (𝑥 = 𝑣 ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦))))
24 r19.42v 3273 . . . . . . . . . . . . 13 (∃𝑦𝐴 (𝑥 = 𝑣 ∧ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)) ↔ (𝑥 = 𝑣 ∧ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)))
2523, 24syl6bb 279 . . . . . . . . . . . 12 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ 𝑥𝐴) → (∃𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ (𝑥 = 𝑣 ∧ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦))))
2625rexbidva 3230 . . . . . . . . . . 11 ((𝐻:𝐴1-1𝐵𝑣𝐴) → (∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥𝐴 (𝑥 = 𝑣 ∧ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦))))
27 breq1 4846 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → (𝑥𝑅𝑦𝑣𝑅𝑦))
2827anbi2d 623 . . . . . . . . . . . . . 14 (𝑥 = 𝑣 → (((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦) ↔ ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦)))
2928rexbidv 3233 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → (∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦)))
3029ceqsrexv 3525 . . . . . . . . . . . 12 (𝑣𝐴 → (∃𝑥𝐴 (𝑥 = 𝑣 ∧ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)) ↔ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦)))
3130adantl 474 . . . . . . . . . . 11 ((𝐻:𝐴1-1𝐵𝑣𝐴) → (∃𝑥𝐴 (𝑥 = 𝑣 ∧ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑥𝑅𝑦)) ↔ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦)))
3226, 31bitrd 271 . . . . . . . . . 10 ((𝐻:𝐴1-1𝐵𝑣𝐴) → (∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦)))
33 f1fveq 6747 . . . . . . . . . . . . . . 15 ((𝐻:𝐴1-1𝐵 ∧ (𝑢𝐴𝑦𝐴)) → ((𝐻𝑢) = (𝐻𝑦) ↔ 𝑢 = 𝑦))
34 equcom 2117 . . . . . . . . . . . . . . 15 (𝑢 = 𝑦𝑦 = 𝑢)
3533, 34syl6bb 279 . . . . . . . . . . . . . 14 ((𝐻:𝐴1-1𝐵 ∧ (𝑢𝐴𝑦𝐴)) → ((𝐻𝑢) = (𝐻𝑦) ↔ 𝑦 = 𝑢))
3635anassrs 460 . . . . . . . . . . . . 13 (((𝐻:𝐴1-1𝐵𝑢𝐴) ∧ 𝑦𝐴) → ((𝐻𝑢) = (𝐻𝑦) ↔ 𝑦 = 𝑢))
3736anbi1d 624 . . . . . . . . . . . 12 (((𝐻:𝐴1-1𝐵𝑢𝐴) ∧ 𝑦𝐴) → (((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦) ↔ (𝑦 = 𝑢𝑣𝑅𝑦)))
3837rexbidva 3230 . . . . . . . . . . 11 ((𝐻:𝐴1-1𝐵𝑢𝐴) → (∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦) ↔ ∃𝑦𝐴 (𝑦 = 𝑢𝑣𝑅𝑦)))
39 breq2 4847 . . . . . . . . . . . . 13 (𝑦 = 𝑢 → (𝑣𝑅𝑦𝑣𝑅𝑢))
4039ceqsrexv 3525 . . . . . . . . . . . 12 (𝑢𝐴 → (∃𝑦𝐴 (𝑦 = 𝑢𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢))
4140adantl 474 . . . . . . . . . . 11 ((𝐻:𝐴1-1𝐵𝑢𝐴) → (∃𝑦𝐴 (𝑦 = 𝑢𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢))
4238, 41bitrd 271 . . . . . . . . . 10 ((𝐻:𝐴1-1𝐵𝑢𝐴) → (∃𝑦𝐴 ((𝐻𝑢) = (𝐻𝑦) ∧ 𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢))
4332, 42sylan9bb 506 . . . . . . . . 9 (((𝐻:𝐴1-1𝐵𝑣𝐴) ∧ (𝐻:𝐴1-1𝐵𝑢𝐴)) → (∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ 𝑣𝑅𝑢))
4443anandis 669 . . . . . . . 8 ((𝐻:𝐴1-1𝐵 ∧ (𝑣𝐴𝑢𝐴)) → (∃𝑥𝐴𝑦𝐴 (((𝐻𝑣) = (𝐻𝑥) ∧ (𝐻𝑢) = (𝐻𝑦)) ∧ 𝑥𝑅𝑦) ↔ 𝑣𝑅𝑢))
4515, 44syl5bb 275 . . . . . . 7 ((𝐻:𝐴1-1𝐵 ∧ (𝑣𝐴𝑢𝐴)) → (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)} ↔ 𝑣𝑅𝑢))
464, 45sylan9bbr 507 . . . . . 6 (((𝐻:𝐴1-1𝐵 ∧ (𝑣𝐴𝑢𝐴)) ∧ 𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ 𝑆𝑣𝑅𝑢))
4746an32s 643 . . . . 5 (((𝐻:𝐴1-1𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) ∧ (𝑣𝐴𝑢𝐴)) → (⟨(𝐻𝑣), (𝐻𝑢)⟩ ∈ 𝑆𝑣𝑅𝑢))
483, 47syl5rbb 276 . . . 4 (((𝐻:𝐴1-1𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) ∧ (𝑣𝐴𝑢𝐴)) → (𝑣𝑅𝑢 ↔ (𝐻𝑣)𝑆(𝐻𝑢)))
4948ralrimivva 3152 . . 3 ((𝐻:𝐴1-1𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → ∀𝑣𝐴𝑢𝐴 (𝑣𝑅𝑢 ↔ (𝐻𝑣)𝑆(𝐻𝑢)))
502, 49sylan 576 . 2 ((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → ∀𝑣𝐴𝑢𝐴 (𝑣𝑅𝑢 ↔ (𝐻𝑣)𝑆(𝐻𝑢)))
51 df-isom 6110 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑣𝐴𝑢𝐴 (𝑣𝑅𝑢 ↔ (𝐻𝑣)𝑆(𝐻𝑢))))
521, 50, 51sylanbrc 579 1 ((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3089  wrex 3090  cop 4374   class class class wbr 4843  {copab 4905  1-1wf1 6098  1-1-ontowf1o 6100  cfv 6101   Isom wiso 6102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-f1o 6108  df-fv 6109  df-isom 6110
This theorem is referenced by:  f1oiso2  6830  hartogslem1  8689  cnso  15312
  Copyright terms: Public domain W3C validator