| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. 2
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻:𝐴–1-1-onto→𝐵) |
| 2 | | f1of1 6847 |
. . 3
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–1-1→𝐵) |
| 3 | | df-br 5144 |
. . . . 5
⊢ ((𝐻‘𝑣)𝑆(𝐻‘𝑢) ↔ 〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ 𝑆) |
| 4 | | eleq2 2830 |
. . . . . . 7
⊢ (𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)} → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ 𝑆 ↔ 〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)})) |
| 5 | | fvex 6919 |
. . . . . . . . 9
⊢ (𝐻‘𝑣) ∈ V |
| 6 | | fvex 6919 |
. . . . . . . . 9
⊢ (𝐻‘𝑢) ∈ V |
| 7 | | eqeq1 2741 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐻‘𝑣) → (𝑧 = (𝐻‘𝑥) ↔ (𝐻‘𝑣) = (𝐻‘𝑥))) |
| 8 | 7 | anbi1d 631 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐻‘𝑣) → ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ↔ ((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)))) |
| 9 | 8 | anbi1d 631 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐻‘𝑣) → (((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
| 10 | 9 | 2rexbidv 3222 |
. . . . . . . . 9
⊢ (𝑧 = (𝐻‘𝑣) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
| 11 | | eqeq1 2741 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝐻‘𝑢) → (𝑤 = (𝐻‘𝑦) ↔ (𝐻‘𝑢) = (𝐻‘𝑦))) |
| 12 | 11 | anbi2d 630 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝐻‘𝑢) → (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ↔ ((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)))) |
| 13 | 12 | anbi1d 631 |
. . . . . . . . . 10
⊢ (𝑤 = (𝐻‘𝑢) → ((((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
| 14 | 13 | 2rexbidv 3222 |
. . . . . . . . 9
⊢ (𝑤 = (𝐻‘𝑢) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
| 15 | 5, 6, 10, 14 | opelopab 5547 |
. . . . . . . 8
⊢
(〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)) |
| 16 | | anass 468 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ((𝐻‘𝑣) = (𝐻‘𝑥) ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦))) |
| 17 | | f1fveq 7282 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ((𝐻‘𝑣) = (𝐻‘𝑥) ↔ 𝑣 = 𝑥)) |
| 18 | | equcom 2017 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝑥 ↔ 𝑥 = 𝑣) |
| 19 | 17, 18 | bitrdi 287 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ((𝐻‘𝑣) = (𝐻‘𝑥) ↔ 𝑥 = 𝑣)) |
| 20 | 19 | anassrs 467 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝐻‘𝑣) = (𝐻‘𝑥) ↔ 𝑥 = 𝑣)) |
| 21 | 20 | anbi1d 631 |
. . . . . . . . . . . . . . 15
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)) ↔ (𝑥 = 𝑣 ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
| 22 | 16, 21 | bitrid 283 |
. . . . . . . . . . . . . 14
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ (𝑥 = 𝑣 ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
| 23 | 22 | rexbidv 3179 |
. . . . . . . . . . . . 13
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦 ∈ 𝐴 (𝑥 = 𝑣 ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
| 24 | | r19.42v 3191 |
. . . . . . . . . . . . 13
⊢
(∃𝑦 ∈
𝐴 (𝑥 = 𝑣 ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)) ↔ (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦))) |
| 25 | 23, 24 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
| 26 | 25 | rexbidva 3177 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
| 27 | | breq1 5146 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑣 → (𝑥𝑅𝑦 ↔ 𝑣𝑅𝑦)) |
| 28 | 27 | anbi2d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑣 → (((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦) ↔ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
| 29 | 28 | rexbidv 3179 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑣 → (∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
| 30 | 29 | ceqsrexv 3655 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ 𝐴 → (∃𝑥 ∈ 𝐴 (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)) ↔ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
| 31 | 30 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) → (∃𝑥 ∈ 𝐴 (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)) ↔ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
| 32 | 26, 31 | bitrd 279 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
| 33 | | f1fveq 7282 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑢) = (𝐻‘𝑦) ↔ 𝑢 = 𝑦)) |
| 34 | | equcom 2017 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑦 ↔ 𝑦 = 𝑢) |
| 35 | 33, 34 | bitrdi 287 |
. . . . . . . . . . . . . 14
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑢) = (𝐻‘𝑦) ↔ 𝑦 = 𝑢)) |
| 36 | 35 | anassrs 467 |
. . . . . . . . . . . . 13
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝐻‘𝑢) = (𝐻‘𝑦) ↔ 𝑦 = 𝑢)) |
| 37 | 36 | anbi1d 631 |
. . . . . . . . . . . 12
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦) ↔ (𝑦 = 𝑢 ∧ 𝑣𝑅𝑦))) |
| 38 | 37 | rexbidva 3177 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦) ↔ ∃𝑦 ∈ 𝐴 (𝑦 = 𝑢 ∧ 𝑣𝑅𝑦))) |
| 39 | | breq2 5147 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑢 → (𝑣𝑅𝑦 ↔ 𝑣𝑅𝑢)) |
| 40 | 39 | ceqsrexv 3655 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ 𝐴 → (∃𝑦 ∈ 𝐴 (𝑦 = 𝑢 ∧ 𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
| 41 | 40 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (𝑦 = 𝑢 ∧ 𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
| 42 | 38, 41 | bitrd 279 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
| 43 | 32, 42 | sylan9bb 509 |
. . . . . . . . 9
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ (𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴)) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
| 44 | 43 | anandis 678 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
| 45 | 15, 44 | bitrid 283 |
. . . . . . 7
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)} ↔ 𝑣𝑅𝑢)) |
| 46 | 4, 45 | sylan9bbr 510 |
. . . . . 6
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ 𝑆 ↔ 𝑣𝑅𝑢)) |
| 47 | 46 | an32s 652 |
. . . . 5
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ 𝑆 ↔ 𝑣𝑅𝑢)) |
| 48 | 3, 47 | bitr2id 284 |
. . . 4
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (𝑣𝑅𝑢 ↔ (𝐻‘𝑣)𝑆(𝐻‘𝑢))) |
| 49 | 48 | ralrimivva 3202 |
. . 3
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → ∀𝑣 ∈ 𝐴 ∀𝑢 ∈ 𝐴 (𝑣𝑅𝑢 ↔ (𝐻‘𝑣)𝑆(𝐻‘𝑢))) |
| 50 | 2, 49 | sylan 580 |
. 2
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → ∀𝑣 ∈ 𝐴 ∀𝑢 ∈ 𝐴 (𝑣𝑅𝑢 ↔ (𝐻‘𝑣)𝑆(𝐻‘𝑢))) |
| 51 | | df-isom 6570 |
. 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑣 ∈ 𝐴 ∀𝑢 ∈ 𝐴 (𝑣𝑅𝑢 ↔ (𝐻‘𝑣)𝑆(𝐻‘𝑢)))) |
| 52 | 1, 50, 51 | sylanbrc 583 |
1
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |