Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. 2
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻:𝐴–1-1-onto→𝐵) |
2 | | f1of1 6715 |
. . 3
⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴–1-1→𝐵) |
3 | | df-br 5075 |
. . . . 5
⊢ ((𝐻‘𝑣)𝑆(𝐻‘𝑢) ↔ 〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ 𝑆) |
4 | | eleq2 2827 |
. . . . . . 7
⊢ (𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)} → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ 𝑆 ↔ 〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)})) |
5 | | fvex 6787 |
. . . . . . . . 9
⊢ (𝐻‘𝑣) ∈ V |
6 | | fvex 6787 |
. . . . . . . . 9
⊢ (𝐻‘𝑢) ∈ V |
7 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝐻‘𝑣) → (𝑧 = (𝐻‘𝑥) ↔ (𝐻‘𝑣) = (𝐻‘𝑥))) |
8 | 7 | anbi1d 630 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝐻‘𝑣) → ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ↔ ((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)))) |
9 | 8 | anbi1d 630 |
. . . . . . . . . 10
⊢ (𝑧 = (𝐻‘𝑣) → (((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
10 | 9 | 2rexbidv 3229 |
. . . . . . . . 9
⊢ (𝑧 = (𝐻‘𝑣) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
11 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝐻‘𝑢) → (𝑤 = (𝐻‘𝑦) ↔ (𝐻‘𝑢) = (𝐻‘𝑦))) |
12 | 11 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝐻‘𝑢) → (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ↔ ((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)))) |
13 | 12 | anbi1d 630 |
. . . . . . . . . 10
⊢ (𝑤 = (𝐻‘𝑢) → ((((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
14 | 13 | 2rexbidv 3229 |
. . . . . . . . 9
⊢ (𝑤 = (𝐻‘𝑢) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦))) |
15 | 5, 6, 10, 14 | opelopab 5455 |
. . . . . . . 8
⊢
(〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)) |
16 | | anass 469 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ((𝐻‘𝑣) = (𝐻‘𝑥) ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦))) |
17 | | f1fveq 7135 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ((𝐻‘𝑣) = (𝐻‘𝑥) ↔ 𝑣 = 𝑥)) |
18 | | equcom 2021 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 = 𝑥 ↔ 𝑥 = 𝑣) |
19 | 17, 18 | bitrdi 287 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → ((𝐻‘𝑣) = (𝐻‘𝑥) ↔ 𝑥 = 𝑣)) |
20 | 19 | anassrs 468 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((𝐻‘𝑣) = (𝐻‘𝑥) ↔ 𝑥 = 𝑣)) |
21 | 20 | anbi1d 630 |
. . . . . . . . . . . . . . 15
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)) ↔ (𝑥 = 𝑣 ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
22 | 16, 21 | bitrid 282 |
. . . . . . . . . . . . . 14
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → ((((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ (𝑥 = 𝑣 ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
23 | 22 | rexbidv 3226 |
. . . . . . . . . . . . 13
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦 ∈ 𝐴 (𝑥 = 𝑣 ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
24 | | r19.42v 3279 |
. . . . . . . . . . . . 13
⊢
(∃𝑦 ∈
𝐴 (𝑥 = 𝑣 ∧ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)) ↔ (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦))) |
25 | 23, 24 | bitrdi 287 |
. . . . . . . . . . . 12
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
26 | 25 | rexbidva 3225 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑥 ∈ 𝐴 (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)))) |
27 | | breq1 5077 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑣 → (𝑥𝑅𝑦 ↔ 𝑣𝑅𝑦)) |
28 | 27 | anbi2d 629 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑣 → (((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦) ↔ ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
29 | 28 | rexbidv 3226 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑣 → (∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
30 | 29 | ceqsrexv 3585 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ 𝐴 → (∃𝑥 ∈ 𝐴 (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)) ↔ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
31 | 30 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) → (∃𝑥 ∈ 𝐴 (𝑥 = 𝑣 ∧ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑥𝑅𝑦)) ↔ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
32 | 26, 31 | bitrd 278 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ ∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦))) |
33 | | f1fveq 7135 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑢) = (𝐻‘𝑦) ↔ 𝑢 = 𝑦)) |
34 | | equcom 2021 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑦 ↔ 𝑦 = 𝑢) |
35 | 33, 34 | bitrdi 287 |
. . . . . . . . . . . . . 14
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → ((𝐻‘𝑢) = (𝐻‘𝑦) ↔ 𝑦 = 𝑢)) |
36 | 35 | anassrs 468 |
. . . . . . . . . . . . 13
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → ((𝐻‘𝑢) = (𝐻‘𝑦) ↔ 𝑦 = 𝑢)) |
37 | 36 | anbi1d 630 |
. . . . . . . . . . . 12
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) ∧ 𝑦 ∈ 𝐴) → (((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦) ↔ (𝑦 = 𝑢 ∧ 𝑣𝑅𝑦))) |
38 | 37 | rexbidva 3225 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦) ↔ ∃𝑦 ∈ 𝐴 (𝑦 = 𝑢 ∧ 𝑣𝑅𝑦))) |
39 | | breq2 5078 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑢 → (𝑣𝑅𝑦 ↔ 𝑣𝑅𝑢)) |
40 | 39 | ceqsrexv 3585 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ 𝐴 → (∃𝑦 ∈ 𝐴 (𝑦 = 𝑢 ∧ 𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
41 | 40 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 (𝑦 = 𝑢 ∧ 𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
42 | 38, 41 | bitrd 278 |
. . . . . . . . . 10
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴) → (∃𝑦 ∈ 𝐴 ((𝐻‘𝑢) = (𝐻‘𝑦) ∧ 𝑣𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
43 | 32, 42 | sylan9bb 510 |
. . . . . . . . 9
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑣 ∈ 𝐴) ∧ (𝐻:𝐴–1-1→𝐵 ∧ 𝑢 ∈ 𝐴)) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
44 | 43 | anandis 675 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (((𝐻‘𝑣) = (𝐻‘𝑥) ∧ (𝐻‘𝑢) = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦) ↔ 𝑣𝑅𝑢)) |
45 | 15, 44 | bitrid 282 |
. . . . . . 7
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)} ↔ 𝑣𝑅𝑢)) |
46 | 4, 45 | sylan9bbr 511 |
. . . . . 6
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ 𝑆 ↔ 𝑣𝑅𝑢)) |
47 | 46 | an32s 649 |
. . . . 5
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (〈(𝐻‘𝑣), (𝐻‘𝑢)〉 ∈ 𝑆 ↔ 𝑣𝑅𝑢)) |
48 | 3, 47 | bitr2id 284 |
. . . 4
⊢ (((𝐻:𝐴–1-1→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) ∧ (𝑣 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴)) → (𝑣𝑅𝑢 ↔ (𝐻‘𝑣)𝑆(𝐻‘𝑢))) |
49 | 48 | ralrimivva 3123 |
. . 3
⊢ ((𝐻:𝐴–1-1→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → ∀𝑣 ∈ 𝐴 ∀𝑢 ∈ 𝐴 (𝑣𝑅𝑢 ↔ (𝐻‘𝑣)𝑆(𝐻‘𝑢))) |
50 | 2, 49 | sylan 580 |
. 2
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → ∀𝑣 ∈ 𝐴 ∀𝑢 ∈ 𝐴 (𝑣𝑅𝑢 ↔ (𝐻‘𝑣)𝑆(𝐻‘𝑢))) |
51 | | df-isom 6442 |
. 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑣 ∈ 𝐴 ∀𝑢 ∈ 𝐴 (𝑣𝑅𝑢 ↔ (𝐻‘𝑣)𝑆(𝐻‘𝑢)))) |
52 | 1, 50, 51 | sylanbrc 583 |
1
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑆 = {〈𝑧, 𝑤〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ((𝑧 = (𝐻‘𝑥) ∧ 𝑤 = (𝐻‘𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) |