![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmxdiophlem | Structured version Visualization version GIF version |
Description: X can be expressed in terms of Y, so it is also Diophantine. (Contributed by Stefan O'Rear, 15-Oct-2014.) |
Ref | Expression |
---|---|
rmxdiophlem | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (𝑋 = (𝐴 Xrm 𝑁) ↔ ∃𝑦 ∈ ℕ0 (𝑦 = (𝐴 Yrm 𝑁) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0sqcl 13210 | . . . . . 6 ⊢ (𝑋 ∈ ℕ0 → (𝑋↑2) ∈ ℕ0) | |
2 | 1 | 3ad2ant3 1126 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (𝑋↑2) ∈ ℕ0) |
3 | 2 | nn0cnd 11709 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (𝑋↑2) ∈ ℂ) |
4 | simp1 1127 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → 𝐴 ∈ (ℤ≥‘2)) | |
5 | nn0z 11757 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
6 | 5 | 3ad2ant2 1125 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → 𝑁 ∈ ℤ) |
7 | frmx 38451 | . . . . . . . 8 ⊢ Xrm :((ℤ≥‘2) × ℤ)⟶ℕ0 | |
8 | 7 | fovcl 7044 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0) |
9 | 4, 6, 8 | syl2anc 579 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (𝐴 Xrm 𝑁) ∈ ℕ0) |
10 | nn0sqcl 13210 | . . . . . 6 ⊢ ((𝐴 Xrm 𝑁) ∈ ℕ0 → ((𝐴 Xrm 𝑁)↑2) ∈ ℕ0) | |
11 | 9, 10 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑2) ∈ ℕ0) |
12 | 11 | nn0cnd 11709 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → ((𝐴 Xrm 𝑁)↑2) ∈ ℂ) |
13 | rmspecnonsq 38445 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN)) | |
14 | 13 | eldifad 3804 | . . . . . . . 8 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℕ) |
15 | 14 | nnnn0d 11707 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℕ0) |
16 | 15 | 3ad2ant1 1124 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → ((𝐴↑2) − 1) ∈ ℕ0) |
17 | rmynn0 38497 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 Yrm 𝑁) ∈ ℕ0) | |
18 | 17 | 3adant3 1123 | . . . . . . 7 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (𝐴 Yrm 𝑁) ∈ ℕ0) |
19 | nn0sqcl 13210 | . . . . . . 7 ⊢ ((𝐴 Yrm 𝑁) ∈ ℕ0 → ((𝐴 Yrm 𝑁)↑2) ∈ ℕ0) | |
20 | 18, 19 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → ((𝐴 Yrm 𝑁)↑2) ∈ ℕ0) |
21 | 16, 20 | nn0mulcld 11712 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2)) ∈ ℕ0) |
22 | 21 | nn0cnd 11709 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2)) ∈ ℂ) |
23 | 3, 12, 22 | subcan2ad 10781 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (((𝑋↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) ↔ (𝑋↑2) = ((𝐴 Xrm 𝑁)↑2))) |
24 | rmxynorm 38456 | . . . . 5 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1) | |
25 | 4, 6, 24 | syl2anc 579 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1) |
26 | 25 | eqeq2d 2788 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (((𝑋↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = (((𝐴 Xrm 𝑁)↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1)) |
27 | nn0re 11657 | . . . . . 6 ⊢ (𝑋 ∈ ℕ0 → 𝑋 ∈ ℝ) | |
28 | nn0ge0 11674 | . . . . . 6 ⊢ (𝑋 ∈ ℕ0 → 0 ≤ 𝑋) | |
29 | 27, 28 | jca 507 | . . . . 5 ⊢ (𝑋 ∈ ℕ0 → (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋)) |
30 | 29 | 3ad2ant3 1126 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (𝑋 ∈ ℝ ∧ 0 ≤ 𝑋)) |
31 | nn0re 11657 | . . . . . 6 ⊢ ((𝐴 Xrm 𝑁) ∈ ℕ0 → (𝐴 Xrm 𝑁) ∈ ℝ) | |
32 | nn0ge0 11674 | . . . . . 6 ⊢ ((𝐴 Xrm 𝑁) ∈ ℕ0 → 0 ≤ (𝐴 Xrm 𝑁)) | |
33 | 31, 32 | jca 507 | . . . . 5 ⊢ ((𝐴 Xrm 𝑁) ∈ ℕ0 → ((𝐴 Xrm 𝑁) ∈ ℝ ∧ 0 ≤ (𝐴 Xrm 𝑁))) |
34 | 9, 33 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → ((𝐴 Xrm 𝑁) ∈ ℝ ∧ 0 ≤ (𝐴 Xrm 𝑁))) |
35 | sq11 13260 | . . . 4 ⊢ (((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ ((𝐴 Xrm 𝑁) ∈ ℝ ∧ 0 ≤ (𝐴 Xrm 𝑁))) → ((𝑋↑2) = ((𝐴 Xrm 𝑁)↑2) ↔ 𝑋 = (𝐴 Xrm 𝑁))) | |
36 | 30, 34, 35 | syl2anc 579 | . . 3 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → ((𝑋↑2) = ((𝐴 Xrm 𝑁)↑2) ↔ 𝑋 = (𝐴 Xrm 𝑁))) |
37 | 23, 26, 36 | 3bitr3rd 302 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (𝑋 = (𝐴 Xrm 𝑁) ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1)) |
38 | oveq1 6931 | . . . . . . 7 ⊢ (𝑦 = (𝐴 Yrm 𝑁) → (𝑦↑2) = ((𝐴 Yrm 𝑁)↑2)) | |
39 | 38 | oveq2d 6940 | . . . . . 6 ⊢ (𝑦 = (𝐴 Yrm 𝑁) → (((𝐴↑2) − 1) · (𝑦↑2)) = (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) |
40 | 39 | oveq2d 6940 | . . . . 5 ⊢ (𝑦 = (𝐴 Yrm 𝑁) → ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = ((𝑋↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2)))) |
41 | 40 | eqeq1d 2780 | . . . 4 ⊢ (𝑦 = (𝐴 Yrm 𝑁) → (((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1 ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1)) |
42 | 41 | ceqsrexv 3539 | . . 3 ⊢ ((𝐴 Yrm 𝑁) ∈ ℕ0 → (∃𝑦 ∈ ℕ0 (𝑦 = (𝐴 Yrm 𝑁) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1)) |
43 | 18, 42 | syl 17 | . 2 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (∃𝑦 ∈ ℕ0 (𝑦 = (𝐴 Yrm 𝑁) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1) ↔ ((𝑋↑2) − (((𝐴↑2) − 1) · ((𝐴 Yrm 𝑁)↑2))) = 1)) |
44 | 37, 43 | bitr4d 274 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ ℕ0) → (𝑋 = (𝐴 Xrm 𝑁) ↔ ∃𝑦 ∈ ℕ0 (𝑦 = (𝐴 Yrm 𝑁) ∧ ((𝑋↑2) − (((𝐴↑2) − 1) · (𝑦↑2))) = 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ∃wrex 3091 class class class wbr 4888 ‘cfv 6137 (class class class)co 6924 ℝcr 10273 0cc0 10274 1c1 10275 · cmul 10279 ≤ cle 10414 − cmin 10608 ℕcn 11379 2c2 11435 ℕ0cn0 11647 ℤcz 11733 ℤ≥cuz 11997 ↑cexp 13183 ◻NNcsquarenn 38374 Xrm crmx 38438 Yrm crmy 38439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 ax-addf 10353 ax-mulf 10354 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-of 7176 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-2o 7846 df-oadd 7849 df-omul 7850 df-er 8028 df-map 8144 df-pm 8145 df-ixp 8197 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-fi 8607 df-sup 8638 df-inf 8639 df-oi 8706 df-card 9100 df-acn 9103 df-cda 9327 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-4 11445 df-5 11446 df-6 11447 df-7 11448 df-8 11449 df-9 11450 df-n0 11648 df-xnn0 11720 df-z 11734 df-dec 11851 df-uz 11998 df-q 12101 df-rp 12143 df-xneg 12262 df-xadd 12263 df-xmul 12264 df-ioo 12496 df-ioc 12497 df-ico 12498 df-icc 12499 df-fz 12649 df-fzo 12790 df-fl 12917 df-mod 12993 df-seq 13125 df-exp 13184 df-fac 13385 df-bc 13414 df-hash 13442 df-shft 14220 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-abs 14389 df-limsup 14619 df-clim 14636 df-rlim 14637 df-sum 14834 df-ef 15209 df-sin 15211 df-cos 15212 df-pi 15214 df-dvds 15397 df-gcd 15633 df-numer 15858 df-denom 15859 df-struct 16268 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-ress 16274 df-plusg 16362 df-mulr 16363 df-starv 16364 df-sca 16365 df-vsca 16366 df-ip 16367 df-tset 16368 df-ple 16369 df-ds 16371 df-unif 16372 df-hom 16373 df-cco 16374 df-rest 16480 df-topn 16481 df-0g 16499 df-gsum 16500 df-topgen 16501 df-pt 16502 df-prds 16505 df-xrs 16559 df-qtop 16564 df-imas 16565 df-xps 16567 df-mre 16643 df-mrc 16644 df-acs 16646 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-submnd 17733 df-mulg 17939 df-cntz 18144 df-cmn 18592 df-psmet 20145 df-xmet 20146 df-met 20147 df-bl 20148 df-mopn 20149 df-fbas 20150 df-fg 20151 df-cnfld 20154 df-top 21117 df-topon 21134 df-topsp 21156 df-bases 21169 df-cld 21242 df-ntr 21243 df-cls 21244 df-nei 21321 df-lp 21359 df-perf 21360 df-cn 21450 df-cnp 21451 df-haus 21538 df-tx 21785 df-hmeo 21978 df-fil 22069 df-fm 22161 df-flim 22162 df-flf 22163 df-xms 22544 df-ms 22545 df-tms 22546 df-cncf 23100 df-limc 24078 df-dv 24079 df-log 24751 df-squarenn 38379 df-pell1qr 38380 df-pell14qr 38381 df-pell1234qr 38382 df-pellfund 38383 df-rmx 38440 df-rmy 38441 |
This theorem is referenced by: rmxdioph 38556 |
Copyright terms: Public domain | W3C validator |