| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cmcm2i | Structured version Visualization version GIF version | ||
| Description: Commutation with orthocomplement. Theorem 2.3(i) of [Beran] p. 39. (Contributed by NM, 4-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjoml2.1 | ⊢ 𝐴 ∈ Cℋ |
| pjoml2.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| cmcm2i | ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 𝐶ℋ (⊥‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | . . . . . 6 ⊢ 𝐴 ∈ Cℋ | |
| 2 | pjoml2.2 | . . . . . 6 ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1, 2 | chincli 31426 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| 4 | 2 | choccli 31273 | . . . . . 6 ⊢ (⊥‘𝐵) ∈ Cℋ |
| 5 | 1, 4 | chincli 31426 | . . . . 5 ⊢ (𝐴 ∩ (⊥‘𝐵)) ∈ Cℋ |
| 6 | 3, 5 | chjcomi 31434 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) = ((𝐴 ∩ (⊥‘𝐵)) ∨ℋ (𝐴 ∩ 𝐵)) |
| 7 | 2 | pjococi 31403 | . . . . . 6 ⊢ (⊥‘(⊥‘𝐵)) = 𝐵 |
| 8 | 7 | ineq2i 4199 | . . . . 5 ⊢ (𝐴 ∩ (⊥‘(⊥‘𝐵))) = (𝐴 ∩ 𝐵) |
| 9 | 8 | oveq2i 7425 | . . . 4 ⊢ ((𝐴 ∩ (⊥‘𝐵)) ∨ℋ (𝐴 ∩ (⊥‘(⊥‘𝐵)))) = ((𝐴 ∩ (⊥‘𝐵)) ∨ℋ (𝐴 ∩ 𝐵)) |
| 10 | 6, 9 | eqtr4i 2760 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) = ((𝐴 ∩ (⊥‘𝐵)) ∨ℋ (𝐴 ∩ (⊥‘(⊥‘𝐵)))) |
| 11 | 10 | eqeq2i 2747 | . 2 ⊢ (𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) ↔ 𝐴 = ((𝐴 ∩ (⊥‘𝐵)) ∨ℋ (𝐴 ∩ (⊥‘(⊥‘𝐵))))) |
| 12 | 1, 2 | cmbri 31556 | . 2 ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
| 13 | 1, 4 | cmbri 31556 | . 2 ⊢ (𝐴 𝐶ℋ (⊥‘𝐵) ↔ 𝐴 = ((𝐴 ∩ (⊥‘𝐵)) ∨ℋ (𝐴 ∩ (⊥‘(⊥‘𝐵))))) |
| 14 | 11, 12, 13 | 3bitr4i 303 | 1 ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 𝐶ℋ (⊥‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∩ cin 3932 class class class wbr 5125 ‘cfv 6542 (class class class)co 7414 Cℋ cch 30895 ⊥cort 30896 ∨ℋ chj 30899 𝐶ℋ ccm 30902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-cc 10458 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 ax-mulf 11218 ax-hilex 30965 ax-hfvadd 30966 ax-hvcom 30967 ax-hvass 30968 ax-hv0cl 30969 ax-hvaddid 30970 ax-hfvmul 30971 ax-hvmulid 30972 ax-hvmulass 30973 ax-hvdistr1 30974 ax-hvdistr2 30975 ax-hvmul0 30976 ax-hfi 31045 ax-his1 31048 ax-his2 31049 ax-his3 31050 ax-his4 31051 ax-hcompl 31168 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-oadd 8493 df-omul 8494 df-er 8728 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-acn 9965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-q 12974 df-rp 13018 df-xneg 13137 df-xadd 13138 df-xmul 13139 df-ioo 13374 df-ico 13376 df-icc 13377 df-fz 13531 df-fzo 13678 df-fl 13815 df-seq 14026 df-exp 14086 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-rlim 15508 df-sum 15706 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-starv 17292 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-unif 17300 df-hom 17301 df-cco 17302 df-rest 17443 df-topn 17444 df-0g 17462 df-gsum 17463 df-topgen 17464 df-pt 17465 df-prds 17468 df-xrs 17523 df-qtop 17528 df-imas 17529 df-xps 17531 df-mre 17605 df-mrc 17606 df-acs 17608 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-mulg 19060 df-cntz 19309 df-cmn 19773 df-psmet 21323 df-xmet 21324 df-met 21325 df-bl 21326 df-mopn 21327 df-fbas 21328 df-fg 21329 df-cnfld 21332 df-top 22867 df-topon 22884 df-topsp 22906 df-bases 22919 df-cld 22992 df-ntr 22993 df-cls 22994 df-nei 23071 df-cn 23200 df-cnp 23201 df-lm 23202 df-haus 23288 df-tx 23535 df-hmeo 23728 df-fil 23819 df-fm 23911 df-flim 23912 df-flf 23913 df-xms 24294 df-ms 24295 df-tms 24296 df-cfil 25244 df-cau 25245 df-cmet 25246 df-grpo 30459 df-gid 30460 df-ginv 30461 df-gdiv 30462 df-ablo 30511 df-vc 30525 df-nv 30558 df-va 30561 df-ba 30562 df-sm 30563 df-0v 30564 df-vs 30565 df-nmcv 30566 df-ims 30567 df-dip 30667 df-ssp 30688 df-ph 30779 df-cbn 30829 df-hnorm 30934 df-hba 30935 df-hvsub 30937 df-hlim 30938 df-hcau 30939 df-sh 31173 df-ch 31187 df-oc 31218 df-ch0 31219 df-chj 31276 df-cm 31549 |
| This theorem is referenced by: cmcm3i 31560 cmcm4i 31561 cmcm2ii 31564 cm2mi 31592 osumcor2i 31610 mayetes3i 31695 |
| Copyright terms: Public domain | W3C validator |