| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cmcmlem | Structured version Visualization version GIF version | ||
| Description: Commutation is symmetric. Theorem 3.4 of [Beran] p. 45. (Contributed by NM, 3-Nov-2000.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjoml2.1 | ⊢ 𝐴 ∈ Cℋ |
| pjoml2.2 | ⊢ 𝐵 ∈ Cℋ |
| Ref | Expression |
|---|---|
| cmcmlem | ⊢ (𝐴 𝐶ℋ 𝐵 → 𝐵 𝐶ℋ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.2 | . . . . . . . . 9 ⊢ 𝐵 ∈ Cℋ | |
| 2 | pjoml2.1 | . . . . . . . . . 10 ⊢ 𝐴 ∈ Cℋ | |
| 3 | 2 | choccli 31254 | . . . . . . . . 9 ⊢ (⊥‘𝐴) ∈ Cℋ |
| 4 | 1, 3 | chub2i 31417 | . . . . . . . 8 ⊢ 𝐵 ⊆ ((⊥‘𝐴) ∨ℋ 𝐵) |
| 5 | sseqin2 4203 | . . . . . . . 8 ⊢ (𝐵 ⊆ ((⊥‘𝐴) ∨ℋ 𝐵) ↔ (((⊥‘𝐴) ∨ℋ 𝐵) ∩ 𝐵) = 𝐵) | |
| 6 | 4, 5 | mpbi 230 | . . . . . . 7 ⊢ (((⊥‘𝐴) ∨ℋ 𝐵) ∩ 𝐵) = 𝐵 |
| 7 | 6 | ineq2i 4197 | . . . . . 6 ⊢ (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ (((⊥‘𝐴) ∨ℋ 𝐵) ∩ 𝐵)) = (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ 𝐵) |
| 8 | inass 4208 | . . . . . 6 ⊢ ((((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) ∩ 𝐵) = (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ (((⊥‘𝐴) ∨ℋ 𝐵) ∩ 𝐵)) | |
| 9 | 2, 1 | chdmm1i 31424 | . . . . . . 7 ⊢ (⊥‘(𝐴 ∩ 𝐵)) = ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) |
| 10 | 9 | ineq1i 4196 | . . . . . 6 ⊢ ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵) = (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ 𝐵) |
| 11 | 7, 8, 10 | 3eqtr4ri 2768 | . . . . 5 ⊢ ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵) = ((((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) ∩ 𝐵) |
| 12 | 2, 1 | chdmj4i 31431 | . . . . . . . . . . 11 ⊢ (⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) = (𝐴 ∩ 𝐵) |
| 13 | 2, 1 | chdmj2i 31429 | . . . . . . . . . . 11 ⊢ (⊥‘((⊥‘𝐴) ∨ℋ 𝐵)) = (𝐴 ∩ (⊥‘𝐵)) |
| 14 | 12, 13 | oveq12i 7425 | . . . . . . . . . 10 ⊢ ((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘((⊥‘𝐴) ∨ℋ 𝐵))) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) |
| 15 | 14 | eqeq2i 2747 | . . . . . . . . 9 ⊢ (𝐴 = ((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘((⊥‘𝐴) ∨ℋ 𝐵))) ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
| 16 | 15 | biimpri 228 | . . . . . . . 8 ⊢ (𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) → 𝐴 = ((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘((⊥‘𝐴) ∨ℋ 𝐵)))) |
| 17 | 16 | fveq2d 6890 | . . . . . . 7 ⊢ (𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) → (⊥‘𝐴) = (⊥‘((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘((⊥‘𝐴) ∨ℋ 𝐵))))) |
| 18 | 1 | choccli 31254 | . . . . . . . . 9 ⊢ (⊥‘𝐵) ∈ Cℋ |
| 19 | 3, 18 | chjcli 31404 | . . . . . . . 8 ⊢ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∈ Cℋ |
| 20 | 3, 1 | chjcli 31404 | . . . . . . . 8 ⊢ ((⊥‘𝐴) ∨ℋ 𝐵) ∈ Cℋ |
| 21 | 19, 20 | chdmj4i 31431 | . . . . . . 7 ⊢ (⊥‘((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘((⊥‘𝐴) ∨ℋ 𝐵)))) = (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) |
| 22 | 17, 21 | eqtr2di 2786 | . . . . . 6 ⊢ (𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) → (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = (⊥‘𝐴)) |
| 23 | 22 | ineq1d 4199 | . . . . 5 ⊢ (𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) → ((((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) ∩ 𝐵) = ((⊥‘𝐴) ∩ 𝐵)) |
| 24 | 11, 23 | eqtrid 2781 | . . . 4 ⊢ (𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) → ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵) = ((⊥‘𝐴) ∩ 𝐵)) |
| 25 | 24 | oveq2d 7429 | . . 3 ⊢ (𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) → ((𝐴 ∩ 𝐵) ∨ℋ ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵)) = ((𝐴 ∩ 𝐵) ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) |
| 26 | inss2 4218 | . . . 4 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 27 | 2, 1 | chincli 31407 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
| 28 | 27, 1 | pjoml2i 31532 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐵 → ((𝐴 ∩ 𝐵) ∨ℋ ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵)) = 𝐵) |
| 29 | 26, 28 | ax-mp 5 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∨ℋ ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵)) = 𝐵 |
| 30 | incom 4189 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
| 31 | incom 4189 | . . . 4 ⊢ ((⊥‘𝐴) ∩ 𝐵) = (𝐵 ∩ (⊥‘𝐴)) | |
| 32 | 30, 31 | oveq12i 7425 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) = ((𝐵 ∩ 𝐴) ∨ℋ (𝐵 ∩ (⊥‘𝐴))) |
| 33 | 25, 29, 32 | 3eqtr3g 2792 | . 2 ⊢ (𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) → 𝐵 = ((𝐵 ∩ 𝐴) ∨ℋ (𝐵 ∩ (⊥‘𝐴)))) |
| 34 | 2, 1 | cmbri 31537 | . 2 ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
| 35 | 1, 2 | cmbri 31537 | . 2 ⊢ (𝐵 𝐶ℋ 𝐴 ↔ 𝐵 = ((𝐵 ∩ 𝐴) ∨ℋ (𝐵 ∩ (⊥‘𝐴)))) |
| 36 | 33, 34, 35 | 3imtr4i 292 | 1 ⊢ (𝐴 𝐶ℋ 𝐵 → 𝐵 𝐶ℋ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∩ cin 3930 ⊆ wss 3931 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 Cℋ cch 30876 ⊥cort 30877 ∨ℋ chj 30880 𝐶ℋ ccm 30883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 ax-cc 10457 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 ax-addf 11216 ax-mulf 11217 ax-hilex 30946 ax-hfvadd 30947 ax-hvcom 30948 ax-hvass 30949 ax-hv0cl 30950 ax-hvaddid 30951 ax-hfvmul 30952 ax-hvmulid 30953 ax-hvmulass 30954 ax-hvdistr1 30955 ax-hvdistr2 30956 ax-hvmul0 30957 ax-hfi 31026 ax-his1 31029 ax-his2 31030 ax-his3 31031 ax-his4 31032 ax-hcompl 31149 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-omul 8493 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-fi 9433 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-acn 9964 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-ioo 13373 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14352 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-clim 15506 df-rlim 15507 df-sum 15705 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-starv 17288 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-unif 17296 df-hom 17297 df-cco 17298 df-rest 17438 df-topn 17439 df-0g 17457 df-gsum 17458 df-topgen 17459 df-pt 17460 df-prds 17463 df-xrs 17518 df-qtop 17523 df-imas 17524 df-xps 17526 df-mre 17600 df-mrc 17601 df-acs 17603 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-submnd 18766 df-mulg 19055 df-cntz 19304 df-cmn 19768 df-psmet 21318 df-xmet 21319 df-met 21320 df-bl 21321 df-mopn 21322 df-fbas 21323 df-fg 21324 df-cnfld 21327 df-top 22848 df-topon 22865 df-topsp 22887 df-bases 22900 df-cld 22973 df-ntr 22974 df-cls 22975 df-nei 23052 df-cn 23181 df-cnp 23182 df-lm 23183 df-haus 23269 df-tx 23516 df-hmeo 23709 df-fil 23800 df-fm 23892 df-flim 23893 df-flf 23894 df-xms 24275 df-ms 24276 df-tms 24277 df-cfil 25225 df-cau 25226 df-cmet 25227 df-grpo 30440 df-gid 30441 df-ginv 30442 df-gdiv 30443 df-ablo 30492 df-vc 30506 df-nv 30539 df-va 30542 df-ba 30543 df-sm 30544 df-0v 30545 df-vs 30546 df-nmcv 30547 df-ims 30548 df-dip 30648 df-ssp 30669 df-ph 30760 df-cbn 30810 df-hnorm 30915 df-hba 30916 df-hvsub 30918 df-hlim 30919 df-hcau 30920 df-sh 31154 df-ch 31168 df-oc 31199 df-ch0 31200 df-shs 31255 df-chj 31257 df-cm 31530 |
| This theorem is referenced by: cmcmi 31539 |
| Copyright terms: Public domain | W3C validator |