![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cmcmlem | Structured version Visualization version GIF version |
Description: Commutation is symmetric. Theorem 3.4 of [Beran] p. 45. (Contributed by NM, 3-Nov-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjoml2.1 | ⊢ 𝐴 ∈ Cℋ |
pjoml2.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
cmcmlem | ⊢ (𝐴 𝐶ℋ 𝐵 → 𝐵 𝐶ℋ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjoml2.2 | . . . . . . . . 9 ⊢ 𝐵 ∈ Cℋ | |
2 | pjoml2.1 | . . . . . . . . . 10 ⊢ 𝐴 ∈ Cℋ | |
3 | 2 | choccli 30995 | . . . . . . . . 9 ⊢ (⊥‘𝐴) ∈ Cℋ |
4 | 1, 3 | chub2i 31158 | . . . . . . . 8 ⊢ 𝐵 ⊆ ((⊥‘𝐴) ∨ℋ 𝐵) |
5 | sseqin2 4215 | . . . . . . . 8 ⊢ (𝐵 ⊆ ((⊥‘𝐴) ∨ℋ 𝐵) ↔ (((⊥‘𝐴) ∨ℋ 𝐵) ∩ 𝐵) = 𝐵) | |
6 | 4, 5 | mpbi 229 | . . . . . . 7 ⊢ (((⊥‘𝐴) ∨ℋ 𝐵) ∩ 𝐵) = 𝐵 |
7 | 6 | ineq2i 4209 | . . . . . 6 ⊢ (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ (((⊥‘𝐴) ∨ℋ 𝐵) ∩ 𝐵)) = (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ 𝐵) |
8 | inass 4219 | . . . . . 6 ⊢ ((((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) ∩ 𝐵) = (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ (((⊥‘𝐴) ∨ℋ 𝐵) ∩ 𝐵)) | |
9 | 2, 1 | chdmm1i 31165 | . . . . . . 7 ⊢ (⊥‘(𝐴 ∩ 𝐵)) = ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) |
10 | 9 | ineq1i 4208 | . . . . . 6 ⊢ ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵) = (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ 𝐵) |
11 | 7, 8, 10 | 3eqtr4ri 2770 | . . . . 5 ⊢ ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵) = ((((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) ∩ 𝐵) |
12 | 2, 1 | chdmj4i 31172 | . . . . . . . . . . 11 ⊢ (⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) = (𝐴 ∩ 𝐵) |
13 | 2, 1 | chdmj2i 31170 | . . . . . . . . . . 11 ⊢ (⊥‘((⊥‘𝐴) ∨ℋ 𝐵)) = (𝐴 ∩ (⊥‘𝐵)) |
14 | 12, 13 | oveq12i 7424 | . . . . . . . . . 10 ⊢ ((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘((⊥‘𝐴) ∨ℋ 𝐵))) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) |
15 | 14 | eqeq2i 2744 | . . . . . . . . 9 ⊢ (𝐴 = ((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘((⊥‘𝐴) ∨ℋ 𝐵))) ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
16 | 15 | biimpri 227 | . . . . . . . 8 ⊢ (𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) → 𝐴 = ((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘((⊥‘𝐴) ∨ℋ 𝐵)))) |
17 | 16 | fveq2d 6895 | . . . . . . 7 ⊢ (𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) → (⊥‘𝐴) = (⊥‘((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘((⊥‘𝐴) ∨ℋ 𝐵))))) |
18 | 1 | choccli 30995 | . . . . . . . . 9 ⊢ (⊥‘𝐵) ∈ Cℋ |
19 | 3, 18 | chjcli 31145 | . . . . . . . 8 ⊢ ((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∈ Cℋ |
20 | 3, 1 | chjcli 31145 | . . . . . . . 8 ⊢ ((⊥‘𝐴) ∨ℋ 𝐵) ∈ Cℋ |
21 | 19, 20 | chdmj4i 31172 | . . . . . . 7 ⊢ (⊥‘((⊥‘((⊥‘𝐴) ∨ℋ (⊥‘𝐵))) ∨ℋ (⊥‘((⊥‘𝐴) ∨ℋ 𝐵)))) = (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) |
22 | 17, 21 | eqtr2di 2788 | . . . . . 6 ⊢ (𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) → (((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = (⊥‘𝐴)) |
23 | 22 | ineq1d 4211 | . . . . 5 ⊢ (𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) → ((((⊥‘𝐴) ∨ℋ (⊥‘𝐵)) ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) ∩ 𝐵) = ((⊥‘𝐴) ∩ 𝐵)) |
24 | 11, 23 | eqtrid 2783 | . . . 4 ⊢ (𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) → ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵) = ((⊥‘𝐴) ∩ 𝐵)) |
25 | 24 | oveq2d 7428 | . . 3 ⊢ (𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) → ((𝐴 ∩ 𝐵) ∨ℋ ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵)) = ((𝐴 ∩ 𝐵) ∨ℋ ((⊥‘𝐴) ∩ 𝐵))) |
26 | inss2 4229 | . . . 4 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
27 | 2, 1 | chincli 31148 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
28 | 27, 1 | pjoml2i 31273 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐵 → ((𝐴 ∩ 𝐵) ∨ℋ ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵)) = 𝐵) |
29 | 26, 28 | ax-mp 5 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∨ℋ ((⊥‘(𝐴 ∩ 𝐵)) ∩ 𝐵)) = 𝐵 |
30 | incom 4201 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
31 | incom 4201 | . . . 4 ⊢ ((⊥‘𝐴) ∩ 𝐵) = (𝐵 ∩ (⊥‘𝐴)) | |
32 | 30, 31 | oveq12i 7424 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ∨ℋ ((⊥‘𝐴) ∩ 𝐵)) = ((𝐵 ∩ 𝐴) ∨ℋ (𝐵 ∩ (⊥‘𝐴))) |
33 | 25, 29, 32 | 3eqtr3g 2794 | . 2 ⊢ (𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) → 𝐵 = ((𝐵 ∩ 𝐴) ∨ℋ (𝐵 ∩ (⊥‘𝐴)))) |
34 | 2, 1 | cmbri 31278 | . 2 ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
35 | 1, 2 | cmbri 31278 | . 2 ⊢ (𝐵 𝐶ℋ 𝐴 ↔ 𝐵 = ((𝐵 ∩ 𝐴) ∨ℋ (𝐵 ∩ (⊥‘𝐴)))) |
36 | 33, 34, 35 | 3imtr4i 292 | 1 ⊢ (𝐴 𝐶ℋ 𝐵 → 𝐵 𝐶ℋ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∩ cin 3947 ⊆ wss 3948 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 Cℋ cch 30617 ⊥cort 30618 ∨ℋ chj 30621 𝐶ℋ ccm 30624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cc 10436 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 ax-hilex 30687 ax-hfvadd 30688 ax-hvcom 30689 ax-hvass 30690 ax-hv0cl 30691 ax-hvaddid 30692 ax-hfvmul 30693 ax-hvmulid 30694 ax-hvmulass 30695 ax-hvdistr1 30696 ax-hvdistr2 30697 ax-hvmul0 30698 ax-hfi 30767 ax-his1 30770 ax-his2 30771 ax-his3 30772 ax-his4 30773 ax-hcompl 30890 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-oadd 8476 df-omul 8477 df-er 8709 df-map 8828 df-pm 8829 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-fi 9412 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-acn 9943 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-ioo 13335 df-ico 13337 df-icc 13338 df-fz 13492 df-fzo 13635 df-fl 13764 df-seq 13974 df-exp 14035 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-rlim 15440 df-sum 15640 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-mulg 18994 df-cntz 19229 df-cmn 19698 df-psmet 21226 df-xmet 21227 df-met 21228 df-bl 21229 df-mopn 21230 df-fbas 21231 df-fg 21232 df-cnfld 21235 df-top 22717 df-topon 22734 df-topsp 22756 df-bases 22770 df-cld 22844 df-ntr 22845 df-cls 22846 df-nei 22923 df-cn 23052 df-cnp 23053 df-lm 23054 df-haus 23140 df-tx 23387 df-hmeo 23580 df-fil 23671 df-fm 23763 df-flim 23764 df-flf 23765 df-xms 24147 df-ms 24148 df-tms 24149 df-cfil 25104 df-cau 25105 df-cmet 25106 df-grpo 30181 df-gid 30182 df-ginv 30183 df-gdiv 30184 df-ablo 30233 df-vc 30247 df-nv 30280 df-va 30283 df-ba 30284 df-sm 30285 df-0v 30286 df-vs 30287 df-nmcv 30288 df-ims 30289 df-dip 30389 df-ssp 30410 df-ph 30501 df-cbn 30551 df-hnorm 30656 df-hba 30657 df-hvsub 30659 df-hlim 30660 df-hcau 30661 df-sh 30895 df-ch 30909 df-oc 30940 df-ch0 30941 df-shs 30996 df-chj 30998 df-cm 31271 |
This theorem is referenced by: cmcmi 31280 |
Copyright terms: Public domain | W3C validator |