Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cmbr3i | Structured version Visualization version GIF version |
Description: Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (Contributed by NM, 6-Dec-2000.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjoml2.1 | ⊢ 𝐴 ∈ Cℋ |
pjoml2.2 | ⊢ 𝐵 ∈ Cℋ |
Ref | Expression |
---|---|
cmbr3i | ⊢ (𝐴 𝐶ℋ 𝐵 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjoml2.1 | . . . . 5 ⊢ 𝐴 ∈ Cℋ | |
2 | pjoml2.2 | . . . . 5 ⊢ 𝐵 ∈ Cℋ | |
3 | 1, 2 | cmcmi 29519 | . . . 4 ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐵 𝐶ℋ 𝐴) |
4 | 2, 1 | cmbr2i 29523 | . . . 4 ⊢ (𝐵 𝐶ℋ 𝐴 ↔ 𝐵 = ((𝐵 ∨ℋ 𝐴) ∩ (𝐵 ∨ℋ (⊥‘𝐴)))) |
5 | 3, 4 | bitri 278 | . . 3 ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐵 = ((𝐵 ∨ℋ 𝐴) ∩ (𝐵 ∨ℋ (⊥‘𝐴)))) |
6 | ineq2 4095 | . . . 4 ⊢ (𝐵 = ((𝐵 ∨ℋ 𝐴) ∩ (𝐵 ∨ℋ (⊥‘𝐴))) → (𝐴 ∩ 𝐵) = (𝐴 ∩ ((𝐵 ∨ℋ 𝐴) ∩ (𝐵 ∨ℋ (⊥‘𝐴))))) | |
7 | inass 4108 | . . . . 5 ⊢ ((𝐴 ∩ (𝐵 ∨ℋ 𝐴)) ∩ (𝐵 ∨ℋ (⊥‘𝐴))) = (𝐴 ∩ ((𝐵 ∨ℋ 𝐴) ∩ (𝐵 ∨ℋ (⊥‘𝐴)))) | |
8 | 2, 1 | chjcomi 29395 | . . . . . . . 8 ⊢ (𝐵 ∨ℋ 𝐴) = (𝐴 ∨ℋ 𝐵) |
9 | 8 | ineq2i 4098 | . . . . . . 7 ⊢ (𝐴 ∩ (𝐵 ∨ℋ 𝐴)) = (𝐴 ∩ (𝐴 ∨ℋ 𝐵)) |
10 | 1, 2 | chabs2i 29446 | . . . . . . 7 ⊢ (𝐴 ∩ (𝐴 ∨ℋ 𝐵)) = 𝐴 |
11 | 9, 10 | eqtri 2761 | . . . . . 6 ⊢ (𝐴 ∩ (𝐵 ∨ℋ 𝐴)) = 𝐴 |
12 | 1 | choccli 29234 | . . . . . . 7 ⊢ (⊥‘𝐴) ∈ Cℋ |
13 | 2, 12 | chjcomi 29395 | . . . . . 6 ⊢ (𝐵 ∨ℋ (⊥‘𝐴)) = ((⊥‘𝐴) ∨ℋ 𝐵) |
14 | 11, 13 | ineq12i 4099 | . . . . 5 ⊢ ((𝐴 ∩ (𝐵 ∨ℋ 𝐴)) ∩ (𝐵 ∨ℋ (⊥‘𝐴))) = (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) |
15 | 7, 14 | eqtr3i 2763 | . . . 4 ⊢ (𝐴 ∩ ((𝐵 ∨ℋ 𝐴) ∩ (𝐵 ∨ℋ (⊥‘𝐴)))) = (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) |
16 | 6, 15 | eqtr2di 2790 | . . 3 ⊢ (𝐵 = ((𝐵 ∨ℋ 𝐴) ∩ (𝐵 ∨ℋ (⊥‘𝐴))) → (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = (𝐴 ∩ 𝐵)) |
17 | 5, 16 | sylbi 220 | . 2 ⊢ (𝐴 𝐶ℋ 𝐵 → (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = (𝐴 ∩ 𝐵)) |
18 | inss1 4117 | . . . . . 6 ⊢ (𝐴 ∩ (⊥‘𝐵)) ⊆ 𝐴 | |
19 | 2 | choccli 29234 | . . . . . . . 8 ⊢ (⊥‘𝐵) ∈ Cℋ |
20 | 1, 19 | chincli 29387 | . . . . . . 7 ⊢ (𝐴 ∩ (⊥‘𝐵)) ∈ Cℋ |
21 | 20, 1 | pjoml2i 29512 | . . . . . 6 ⊢ ((𝐴 ∩ (⊥‘𝐵)) ⊆ 𝐴 → ((𝐴 ∩ (⊥‘𝐵)) ∨ℋ ((⊥‘(𝐴 ∩ (⊥‘𝐵))) ∩ 𝐴)) = 𝐴) |
22 | 18, 21 | ax-mp 5 | . . . . 5 ⊢ ((𝐴 ∩ (⊥‘𝐵)) ∨ℋ ((⊥‘(𝐴 ∩ (⊥‘𝐵))) ∩ 𝐴)) = 𝐴 |
23 | 20 | choccli 29234 | . . . . . . 7 ⊢ (⊥‘(𝐴 ∩ (⊥‘𝐵))) ∈ Cℋ |
24 | 23, 1 | chincli 29387 | . . . . . 6 ⊢ ((⊥‘(𝐴 ∩ (⊥‘𝐵))) ∩ 𝐴) ∈ Cℋ |
25 | 20, 24 | chjcomi 29395 | . . . . 5 ⊢ ((𝐴 ∩ (⊥‘𝐵)) ∨ℋ ((⊥‘(𝐴 ∩ (⊥‘𝐵))) ∩ 𝐴)) = (((⊥‘(𝐴 ∩ (⊥‘𝐵))) ∩ 𝐴) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) |
26 | 22, 25 | eqtr3i 2763 | . . . 4 ⊢ 𝐴 = (((⊥‘(𝐴 ∩ (⊥‘𝐵))) ∩ 𝐴) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) |
27 | 1, 2 | chdmm3i 29406 | . . . . . . . 8 ⊢ (⊥‘(𝐴 ∩ (⊥‘𝐵))) = ((⊥‘𝐴) ∨ℋ 𝐵) |
28 | 27 | ineq2i 4098 | . . . . . . 7 ⊢ (𝐴 ∩ (⊥‘(𝐴 ∩ (⊥‘𝐵)))) = (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) |
29 | incom 4089 | . . . . . . 7 ⊢ (𝐴 ∩ (⊥‘(𝐴 ∩ (⊥‘𝐵)))) = ((⊥‘(𝐴 ∩ (⊥‘𝐵))) ∩ 𝐴) | |
30 | 28, 29 | eqtr3i 2763 | . . . . . 6 ⊢ (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = ((⊥‘(𝐴 ∩ (⊥‘𝐵))) ∩ 𝐴) |
31 | 30 | eqeq1i 2743 | . . . . 5 ⊢ ((𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = (𝐴 ∩ 𝐵) ↔ ((⊥‘(𝐴 ∩ (⊥‘𝐵))) ∩ 𝐴) = (𝐴 ∩ 𝐵)) |
32 | oveq1 7171 | . . . . 5 ⊢ (((⊥‘(𝐴 ∩ (⊥‘𝐵))) ∩ 𝐴) = (𝐴 ∩ 𝐵) → (((⊥‘(𝐴 ∩ (⊥‘𝐵))) ∩ 𝐴) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) | |
33 | 31, 32 | sylbi 220 | . . . 4 ⊢ ((𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = (𝐴 ∩ 𝐵) → (((⊥‘(𝐴 ∩ (⊥‘𝐵))) ∩ 𝐴) ∨ℋ (𝐴 ∩ (⊥‘𝐵))) = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
34 | 26, 33 | syl5eq 2785 | . . 3 ⊢ ((𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = (𝐴 ∩ 𝐵) → 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
35 | 1, 2 | cmbri 29517 | . . 3 ⊢ (𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ((𝐴 ∩ 𝐵) ∨ℋ (𝐴 ∩ (⊥‘𝐵)))) |
36 | 34, 35 | sylibr 237 | . 2 ⊢ ((𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = (𝐴 ∩ 𝐵) → 𝐴 𝐶ℋ 𝐵) |
37 | 17, 36 | impbii 212 | 1 ⊢ (𝐴 𝐶ℋ 𝐵 ↔ (𝐴 ∩ ((⊥‘𝐴) ∨ℋ 𝐵)) = (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1542 ∈ wcel 2113 ∩ cin 3840 ⊆ wss 3841 class class class wbr 5027 ‘cfv 6333 (class class class)co 7164 Cℋ cch 28856 ⊥cort 28857 ∨ℋ chj 28860 𝐶ℋ ccm 28863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-inf2 9170 ax-cc 9928 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 ax-pre-sup 10686 ax-addf 10687 ax-mulf 10688 ax-hilex 28926 ax-hfvadd 28927 ax-hvcom 28928 ax-hvass 28929 ax-hv0cl 28930 ax-hvaddid 28931 ax-hfvmul 28932 ax-hvmulid 28933 ax-hvmulass 28934 ax-hvdistr1 28935 ax-hvdistr2 28936 ax-hvmul0 28937 ax-hfi 29006 ax-his1 29009 ax-his2 29010 ax-his3 29011 ax-his4 29012 ax-hcompl 29129 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-iin 4881 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-se 5479 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-isom 6342 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-of 7419 df-om 7594 df-1st 7707 df-2nd 7708 df-supp 7850 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-2o 8125 df-oadd 8128 df-omul 8129 df-er 8313 df-map 8432 df-pm 8433 df-ixp 8501 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-fsupp 8900 df-fi 8941 df-sup 8972 df-inf 8973 df-oi 9040 df-card 9434 df-acn 9437 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-div 11369 df-nn 11710 df-2 11772 df-3 11773 df-4 11774 df-5 11775 df-6 11776 df-7 11777 df-8 11778 df-9 11779 df-n0 11970 df-z 12056 df-dec 12173 df-uz 12318 df-q 12424 df-rp 12466 df-xneg 12583 df-xadd 12584 df-xmul 12585 df-ioo 12818 df-ico 12820 df-icc 12821 df-fz 12975 df-fzo 13118 df-fl 13246 df-seq 13454 df-exp 13515 df-hash 13776 df-cj 14541 df-re 14542 df-im 14543 df-sqrt 14677 df-abs 14678 df-clim 14928 df-rlim 14929 df-sum 15129 df-struct 16581 df-ndx 16582 df-slot 16583 df-base 16585 df-sets 16586 df-ress 16587 df-plusg 16674 df-mulr 16675 df-starv 16676 df-sca 16677 df-vsca 16678 df-ip 16679 df-tset 16680 df-ple 16681 df-ds 16683 df-unif 16684 df-hom 16685 df-cco 16686 df-rest 16792 df-topn 16793 df-0g 16811 df-gsum 16812 df-topgen 16813 df-pt 16814 df-prds 16817 df-xrs 16871 df-qtop 16876 df-imas 16877 df-xps 16879 df-mre 16953 df-mrc 16954 df-acs 16956 df-mgm 17961 df-sgrp 18010 df-mnd 18021 df-submnd 18066 df-mulg 18336 df-cntz 18558 df-cmn 19019 df-psmet 20202 df-xmet 20203 df-met 20204 df-bl 20205 df-mopn 20206 df-fbas 20207 df-fg 20208 df-cnfld 20211 df-top 21638 df-topon 21655 df-topsp 21677 df-bases 21690 df-cld 21763 df-ntr 21764 df-cls 21765 df-nei 21842 df-cn 21971 df-cnp 21972 df-lm 21973 df-haus 22059 df-tx 22306 df-hmeo 22499 df-fil 22590 df-fm 22682 df-flim 22683 df-flf 22684 df-xms 23066 df-ms 23067 df-tms 23068 df-cfil 24000 df-cau 24001 df-cmet 24002 df-grpo 28420 df-gid 28421 df-ginv 28422 df-gdiv 28423 df-ablo 28472 df-vc 28486 df-nv 28519 df-va 28522 df-ba 28523 df-sm 28524 df-0v 28525 df-vs 28526 df-nmcv 28527 df-ims 28528 df-dip 28628 df-ssp 28649 df-ph 28740 df-cbn 28790 df-hnorm 28895 df-hba 28896 df-hvsub 28898 df-hlim 28899 df-hcau 28900 df-sh 29134 df-ch 29148 df-oc 29179 df-ch0 29180 df-shs 29235 df-chj 29237 df-cm 29510 |
This theorem is referenced by: cmbr4i 29528 cmbr3 29535 |
Copyright terms: Public domain | W3C validator |