![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvsymOLDOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of cnvsym 6103 as of 23-Dec-2024. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnvsymOLDOLD | ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2148 | . 2 ⊢ (∀𝑦∀𝑥(⟨𝑦, 𝑥⟩ ∈ ◡𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅) ↔ ∀𝑥∀𝑦(⟨𝑦, 𝑥⟩ ∈ ◡𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅)) | |
2 | relcnv 6093 | . . 3 ⊢ Rel ◡𝑅 | |
3 | ssrel 5772 | . . 3 ⊢ (Rel ◡𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑦∀𝑥(⟨𝑦, 𝑥⟩ ∈ ◡𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑦∀𝑥(⟨𝑦, 𝑥⟩ ∈ ◡𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅)) |
5 | vex 3470 | . . . . . 6 ⊢ 𝑦 ∈ V | |
6 | vex 3470 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | 5, 6 | brcnv 5872 | . . . . 5 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
8 | df-br 5139 | . . . . 5 ⊢ (𝑦◡𝑅𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ ◡𝑅) | |
9 | 7, 8 | bitr3i 277 | . . . 4 ⊢ (𝑥𝑅𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ ◡𝑅) |
10 | df-br 5139 | . . . 4 ⊢ (𝑦𝑅𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅) | |
11 | 9, 10 | imbi12i 350 | . . 3 ⊢ ((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ↔ (⟨𝑦, 𝑥⟩ ∈ ◡𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅)) |
12 | 11 | 2albii 1814 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦(⟨𝑦, 𝑥⟩ ∈ ◡𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅)) |
13 | 1, 4, 12 | 3bitr4i 303 | 1 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 ∈ wcel 2098 ⊆ wss 3940 ⟨cop 4626 class class class wbr 5138 ◡ccnv 5665 Rel wrel 5671 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-11 2146 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-cnv 5674 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |