![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvsymOLDOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of cnvsym 6144 as of 23-Dec-2024. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnvsymOLDOLD | ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcom 2160 | . 2 ⊢ (∀𝑦∀𝑥(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅) ↔ ∀𝑥∀𝑦(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅)) | |
2 | relcnv 6134 | . . 3 ⊢ Rel ◡𝑅 | |
3 | ssrel 5806 | . . 3 ⊢ (Rel ◡𝑅 → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑦∀𝑥(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅))) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑦∀𝑥(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅)) |
5 | vex 3492 | . . . . . 6 ⊢ 𝑦 ∈ V | |
6 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | 5, 6 | brcnv 5907 | . . . . 5 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
8 | df-br 5167 | . . . . 5 ⊢ (𝑦◡𝑅𝑥 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) | |
9 | 7, 8 | bitr3i 277 | . . . 4 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑦, 𝑥〉 ∈ ◡𝑅) |
10 | df-br 5167 | . . . 4 ⊢ (𝑦𝑅𝑥 ↔ 〈𝑦, 𝑥〉 ∈ 𝑅) | |
11 | 9, 10 | imbi12i 350 | . . 3 ⊢ ((𝑥𝑅𝑦 → 𝑦𝑅𝑥) ↔ (〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅)) |
12 | 11 | 2albii 1818 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ↔ ∀𝑥∀𝑦(〈𝑦, 𝑥〉 ∈ ◡𝑅 → 〈𝑦, 𝑥〉 ∈ 𝑅)) |
13 | 1, 4, 12 | 3bitr4i 303 | 1 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∈ wcel 2108 ⊆ wss 3976 〈cop 4654 class class class wbr 5166 ◡ccnv 5699 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |