MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvsymOLDOLD Structured version   Visualization version   GIF version

Theorem cnvsymOLDOLD 6087
Description: Obsolete version of cnvsym 6085 as of 23-Dec-2024. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cnvsymOLDOLD (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem cnvsymOLDOLD
StepHypRef Expression
1 alcom 2160 . 2 (∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))
2 relcnv 6075 . . 3 Rel 𝑅
3 ssrel 5745 . . 3 (Rel 𝑅 → (𝑅𝑅 ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅)))
42, 3ax-mp 5 . 2 (𝑅𝑅 ↔ ∀𝑦𝑥(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))
5 vex 3451 . . . . . 6 𝑦 ∈ V
6 vex 3451 . . . . . 6 𝑥 ∈ V
75, 6brcnv 5846 . . . . 5 (𝑦𝑅𝑥𝑥𝑅𝑦)
8 df-br 5108 . . . . 5 (𝑦𝑅𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
97, 8bitr3i 277 . . . 4 (𝑥𝑅𝑦 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
10 df-br 5108 . . . 4 (𝑦𝑅𝑥 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅)
119, 10imbi12i 350 . . 3 ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))
12112albii 1820 . 2 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝑦(⟨𝑦, 𝑥⟩ ∈ 𝑅 → ⟨𝑦, 𝑥⟩ ∈ 𝑅))
131, 4, 123bitr4i 303 1 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  wss 3914  cop 4595   class class class wbr 5107  ccnv 5637  Rel wrel 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator