MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrnbnb Structured version   Visualization version   GIF version

Theorem frgrnbnb 28170
Description: If two neighbors 𝑈 and 𝑊 of a vertex 𝑋 have a common neighbor 𝐴 in a friendship graph, then this common neighbor 𝐴 must be the vertex 𝑋. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 2-Apr-2021.) (Proof shortened by AV, 13-Feb-2022.)
Hypotheses
Ref Expression
frgrnbnb.e 𝐸 = (Edg‘𝐺)
frgrnbnb.n 𝐷 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
frgrnbnb ((𝐺 ∈ FriendGraph ∧ (𝑈𝐷𝑊𝐷) ∧ 𝑈𝑊) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))

Proof of Theorem frgrnbnb
StepHypRef Expression
1 frgrusgr 28138 . . 3 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
2 frgrnbnb.n . . . . . . . . . 10 𝐷 = (𝐺 NeighbVtx 𝑋)
32eleq2i 2844 . . . . . . . . 9 (𝑈𝐷𝑈 ∈ (𝐺 NeighbVtx 𝑋))
4 frgrnbnb.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
54nbusgreledg 27235 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝑈 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝑈, 𝑋} ∈ 𝐸))
65biimpd 232 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑈 ∈ (𝐺 NeighbVtx 𝑋) → {𝑈, 𝑋} ∈ 𝐸))
73, 6syl5bi 245 . . . . . . . 8 (𝐺 ∈ USGraph → (𝑈𝐷 → {𝑈, 𝑋} ∈ 𝐸))
82eleq2i 2844 . . . . . . . . 9 (𝑊𝐷𝑊 ∈ (𝐺 NeighbVtx 𝑋))
94nbusgreledg 27235 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝑊 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝑊, 𝑋} ∈ 𝐸))
109biimpd 232 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑊 ∈ (𝐺 NeighbVtx 𝑋) → {𝑊, 𝑋} ∈ 𝐸))
118, 10syl5bi 245 . . . . . . . 8 (𝐺 ∈ USGraph → (𝑊𝐷 → {𝑊, 𝑋} ∈ 𝐸))
127, 11anim12d 612 . . . . . . 7 (𝐺 ∈ USGraph → ((𝑈𝐷𝑊𝐷) → ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)))
1312imp 411 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸))
14 eqid 2759 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
1514nbgrisvtx 27223 . . . . . . . . 9 (𝑈 ∈ (𝐺 NeighbVtx 𝑋) → 𝑈 ∈ (Vtx‘𝐺))
1615, 2eleq2s 2871 . . . . . . . 8 (𝑈𝐷𝑈 ∈ (Vtx‘𝐺))
1714nbgrisvtx 27223 . . . . . . . . 9 (𝑊 ∈ (𝐺 NeighbVtx 𝑋) → 𝑊 ∈ (Vtx‘𝐺))
1817, 2eleq2s 2871 . . . . . . . 8 (𝑊𝐷𝑊 ∈ (Vtx‘𝐺))
1916, 18anim12i 616 . . . . . . 7 ((𝑈𝐷𝑊𝐷) → (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))
2019adantl 486 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))
214, 14usgrpredgv 27079 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ {𝑈, 𝐴} ∈ 𝐸) → (𝑈 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
2221ad2ant2r 747 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝑈 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
23 ax-1 6 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 = 𝑋 → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))
24232a1d 26 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 = 𝑋 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))
25242a1d 26 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 = 𝑋 → (𝑈𝑊 → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))))
26 simpll 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝐺 ∈ USGraph)
27 simprrr 782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) → 𝑊 ∈ (Vtx‘𝐺))
2827adantr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝑊 ∈ (Vtx‘𝐺))
29 simprrl 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) → 𝑈 ∈ (Vtx‘𝐺))
3029adantr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝑈 ∈ (Vtx‘𝐺))
31 necom 3005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑈𝑊𝑊𝑈)
3231biimpi 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑈𝑊𝑊𝑈)
3332adantl 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐴𝑋𝑈𝑊) → 𝑊𝑈)
3433adantl 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝑊𝑈)
3528, 30, 343jca 1126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → (𝑊 ∈ (Vtx‘𝐺) ∧ 𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊𝑈))
36 simprll 779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) → 𝑋 ∈ (Vtx‘𝐺))
3736adantr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝑋 ∈ (Vtx‘𝐺))
38 simprlr 780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) → 𝐴 ∈ (Vtx‘𝐺))
3938adantr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝐴 ∈ (Vtx‘𝐺))
40 necom 3005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐴𝑋𝑋𝐴)
4140biimpi 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐴𝑋𝑋𝐴)
4241adantr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐴𝑋𝑈𝑊) → 𝑋𝐴)
4342adantl 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝑋𝐴)
4437, 39, 433jca 1126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → (𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝑋𝐴))
4526, 35, 443jca 1126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → (𝐺 ∈ USGraph ∧ (𝑊 ∈ (Vtx‘𝐺) ∧ 𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊𝑈) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝑋𝐴)))
4645ad4ant14 752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴𝑋𝑈𝑊)) → (𝐺 ∈ USGraph ∧ (𝑊 ∈ (Vtx‘𝐺) ∧ 𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊𝑈) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝑋𝐴)))
47 prcom 4626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 {𝑈, 𝑋} = {𝑋, 𝑈}
4847eleq1i 2843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ({𝑈, 𝑋} ∈ 𝐸 ↔ {𝑋, 𝑈} ∈ 𝐸)
4948biimpi 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ({𝑈, 𝑋} ∈ 𝐸 → {𝑋, 𝑈} ∈ 𝐸)
5049anim1ci 619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → ({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸))
5150adantl 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸))
52 prcom 4626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 {𝑊, 𝐴} = {𝐴, 𝑊}
5352eleq1i 2843 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ({𝑊, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝑊} ∈ 𝐸)
5453biimpi 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ({𝑊, 𝐴} ∈ 𝐸 → {𝐴, 𝑊} ∈ 𝐸)
5554anim2i 620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝑊} ∈ 𝐸))
5651, 55anim12i 616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝑊} ∈ 𝐸)))
5756adantr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴𝑋𝑈𝑊)) → (({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝑊} ∈ 𝐸)))
5814, 44cyclusnfrgr 28169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐺 ∈ USGraph ∧ (𝑊 ∈ (Vtx‘𝐺) ∧ 𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊𝑈) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝑋𝐴)) → ((({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝑊} ∈ 𝐸)) → 𝐺 ∉ FriendGraph ))
5946, 57, 58sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴𝑋𝑈𝑊)) → 𝐺 ∉ FriendGraph )
60 df-nel 3057 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
6159, 60sylib 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴𝑋𝑈𝑊)) → ¬ 𝐺 ∈ FriendGraph )
6261pm2.21d 121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴𝑋𝑈𝑊)) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))
6362ex 417 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → ((𝐴𝑋𝑈𝑊) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))
6463com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → ((𝐴𝑋𝑈𝑊) → 𝐴 = 𝑋)))
6564exp41 439 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐺 ∈ USGraph → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (𝐺 ∈ FriendGraph → ((𝐴𝑋𝑈𝑊) → 𝐴 = 𝑋))))))
6665com25 99 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → ((𝐴𝑋𝑈𝑊) → 𝐴 = 𝑋))))))
671, 66mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐺 ∈ FriendGraph → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → ((𝐴𝑋𝑈𝑊) → 𝐴 = 𝑋)))))
6867com15 101 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴𝑋𝑈𝑊) → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))))
6968ex 417 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴𝑋 → (𝑈𝑊 → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))))
7025, 69pm2.61ine 3035 . . . . . . . . . . . . . . . . . . . . 21 (𝑈𝑊 → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))))
7170imp 411 . . . . . . . . . . . . . . . . . . . 20 ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))
7271com13 88 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))
7372ex 417 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))))
7473com25 99 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋)))))
7574ex 417 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (Vtx‘𝐺) → (𝐴 ∈ (Vtx‘𝐺) → (𝐺 ∈ FriendGraph → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋))))))
7614nbgrcl 27217 . . . . . . . . . . . . . . . . . . 19 (𝑈 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ (Vtx‘𝐺))
7776, 2eleq2s 2871 . . . . . . . . . . . . . . . . . 18 (𝑈𝐷𝑋 ∈ (Vtx‘𝐺))
7877adantr 485 . . . . . . . . . . . . . . . . 17 ((𝑈𝐷𝑊𝐷) → 𝑋 ∈ (Vtx‘𝐺))
7978adantl 486 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → 𝑋 ∈ (Vtx‘𝐺))
8075, 79syl11 33 . . . . . . . . . . . . . . 15 (𝐴 ∈ (Vtx‘𝐺) → ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (𝐺 ∈ FriendGraph → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋))))))
8180com34 91 . . . . . . . . . . . . . 14 (𝐴 ∈ (Vtx‘𝐺) → ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋))))))
8281impd 415 . . . . . . . . . . . . 13 (𝐴 ∈ (Vtx‘𝐺) → (((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋)))))
8382adantl 486 . . . . . . . . . . . 12 ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋)))))
8422, 83mpcom 38 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋))))
8584ex 417 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋)))))
8685com25 99 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)))))
8786com14 96 . . . . . . . 8 ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)))))
8887ex 417 . . . . . . 7 (𝑈𝑊 → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))))))
8988com15 101 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → (𝑈𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))))))
9013, 20, 89mp2d 49 . . . . 5 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (𝐺 ∈ FriendGraph → (𝑈𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))))
9190ex 417 . . . 4 (𝐺 ∈ USGraph → ((𝑈𝐷𝑊𝐷) → (𝐺 ∈ FriendGraph → (𝑈𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)))))
9291com23 86 . . 3 (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph → ((𝑈𝐷𝑊𝐷) → (𝑈𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)))))
931, 92mpcom 38 . 2 (𝐺 ∈ FriendGraph → ((𝑈𝐷𝑊𝐷) → (𝑈𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))))
94933imp 1109 1 ((𝐺 ∈ FriendGraph ∧ (𝑈𝐷𝑊𝐷) ∧ 𝑈𝑊) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2952  wnel 3056  {cpr 4525  cfv 6336  (class class class)co 7151  Vtxcvtx 26881  Edgcedg 26932  USGraphcusgr 27034   NeighbVtx cnbgr 27214   FriendGraph cfrgr 28135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-oadd 8117  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-dju 9356  df-card 9394  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-2 11730  df-n0 11928  df-xnn0 12000  df-z 12014  df-uz 12276  df-fz 12933  df-hash 13734  df-edg 26933  df-upgr 26967  df-umgr 26968  df-usgr 27036  df-nbgr 27215  df-frgr 28136
This theorem is referenced by:  frgrncvvdeqlem8  28183
  Copyright terms: Public domain W3C validator