MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrnbnb Structured version   Visualization version   GIF version

Theorem frgrnbnb 27530
Description: If two neighbors 𝑈 and 𝑊 of a vertex 𝑋 have a common neighbor 𝐴 in a friendship graph, then this common neighbor 𝐴 must be the vertex 𝑋. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 2-Apr-2021.) (Proof shortened by AV, 13-Feb-2022.)
Hypotheses
Ref Expression
frgrnbnb.e 𝐸 = (Edg‘𝐺)
frgrnbnb.n 𝐷 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
frgrnbnb ((𝐺 ∈ FriendGraph ∧ (𝑈𝐷𝑊𝐷) ∧ 𝑈𝑊) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))

Proof of Theorem frgrnbnb
StepHypRef Expression
1 frgrusgr 27497 . . 3 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
2 frgrnbnb.n . . . . . . . . . 10 𝐷 = (𝐺 NeighbVtx 𝑋)
32eleq2i 2835 . . . . . . . . 9 (𝑈𝐷𝑈 ∈ (𝐺 NeighbVtx 𝑋))
4 frgrnbnb.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
54nbusgreledg 26527 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝑈 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝑈, 𝑋} ∈ 𝐸))
65biimpd 220 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑈 ∈ (𝐺 NeighbVtx 𝑋) → {𝑈, 𝑋} ∈ 𝐸))
73, 6syl5bi 233 . . . . . . . 8 (𝐺 ∈ USGraph → (𝑈𝐷 → {𝑈, 𝑋} ∈ 𝐸))
82eleq2i 2835 . . . . . . . . 9 (𝑊𝐷𝑊 ∈ (𝐺 NeighbVtx 𝑋))
94nbusgreledg 26527 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝑊 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝑊, 𝑋} ∈ 𝐸))
109biimpd 220 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑊 ∈ (𝐺 NeighbVtx 𝑋) → {𝑊, 𝑋} ∈ 𝐸))
118, 10syl5bi 233 . . . . . . . 8 (𝐺 ∈ USGraph → (𝑊𝐷 → {𝑊, 𝑋} ∈ 𝐸))
127, 11anim12d 602 . . . . . . 7 (𝐺 ∈ USGraph → ((𝑈𝐷𝑊𝐷) → ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)))
1312imp 395 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸))
14 eqid 2764 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
1514nbgrisvtx 26513 . . . . . . . . 9 (𝑈 ∈ (𝐺 NeighbVtx 𝑋) → 𝑈 ∈ (Vtx‘𝐺))
1615, 2eleq2s 2861 . . . . . . . 8 (𝑈𝐷𝑈 ∈ (Vtx‘𝐺))
1714nbgrisvtx 26513 . . . . . . . . 9 (𝑊 ∈ (𝐺 NeighbVtx 𝑋) → 𝑊 ∈ (Vtx‘𝐺))
1817, 2eleq2s 2861 . . . . . . . 8 (𝑊𝐷𝑊 ∈ (Vtx‘𝐺))
1916, 18anim12i 606 . . . . . . 7 ((𝑈𝐷𝑊𝐷) → (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))
2019adantl 473 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))
214, 14usgrpredgv 26366 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ {𝑈, 𝐴} ∈ 𝐸) → (𝑈 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
2221ad2ant2r 753 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝑈 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
23 ax-1 6 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 = 𝑋 → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))
24232a1d 26 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 = 𝑋 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))
25242a1d 26 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 = 𝑋 → (𝑈𝑊 → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))))
26 simpll 783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝐺 ∈ USGraph)
27 simprrr 800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) → 𝑊 ∈ (Vtx‘𝐺))
2827adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝑊 ∈ (Vtx‘𝐺))
29 simprrl 799 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) → 𝑈 ∈ (Vtx‘𝐺))
3029adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝑈 ∈ (Vtx‘𝐺))
31 necom 2989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑈𝑊𝑊𝑈)
3231biimpi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑈𝑊𝑊𝑈)
3332adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐴𝑋𝑈𝑊) → 𝑊𝑈)
3433adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝑊𝑈)
3528, 30, 343jca 1158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → (𝑊 ∈ (Vtx‘𝐺) ∧ 𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊𝑈))
36 simprll 797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) → 𝑋 ∈ (Vtx‘𝐺))
3736adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝑋 ∈ (Vtx‘𝐺))
38 simprlr 798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) → 𝐴 ∈ (Vtx‘𝐺))
3938adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝐴 ∈ (Vtx‘𝐺))
40 necom 2989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐴𝑋𝑋𝐴)
4140biimpi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐴𝑋𝑋𝐴)
4241adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐴𝑋𝑈𝑊) → 𝑋𝐴)
4342adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝑋𝐴)
4437, 39, 433jca 1158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → (𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝑋𝐴))
4526, 35, 443jca 1158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → (𝐺 ∈ USGraph ∧ (𝑊 ∈ (Vtx‘𝐺) ∧ 𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊𝑈) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝑋𝐴)))
4645ad4ant14 759 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴𝑋𝑈𝑊)) → (𝐺 ∈ USGraph ∧ (𝑊 ∈ (Vtx‘𝐺) ∧ 𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊𝑈) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝑋𝐴)))
47 prcom 4421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 {𝑈, 𝑋} = {𝑋, 𝑈}
4847eleq1i 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ({𝑈, 𝑋} ∈ 𝐸 ↔ {𝑋, 𝑈} ∈ 𝐸)
4948biimpi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ({𝑈, 𝑋} ∈ 𝐸 → {𝑋, 𝑈} ∈ 𝐸)
5049anim1i 608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → ({𝑋, 𝑈} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸))
5150ancomd 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → ({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸))
5251adantl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸))
53 prcom 4421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 {𝑊, 𝐴} = {𝐴, 𝑊}
5453eleq1i 2834 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ({𝑊, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝑊} ∈ 𝐸)
5554biimpi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ({𝑊, 𝐴} ∈ 𝐸 → {𝐴, 𝑊} ∈ 𝐸)
5655anim2i 610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝑊} ∈ 𝐸))
5752, 56anim12i 606 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝑊} ∈ 𝐸)))
5857adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴𝑋𝑈𝑊)) → (({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝑊} ∈ 𝐸)))
5914, 44cyclusnfrgr 27529 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐺 ∈ USGraph ∧ (𝑊 ∈ (Vtx‘𝐺) ∧ 𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊𝑈) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝑋𝐴)) → ((({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝑊} ∈ 𝐸)) → 𝐺 ∉ FriendGraph ))
6046, 58, 59sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴𝑋𝑈𝑊)) → 𝐺 ∉ FriendGraph )
61 df-nel 3040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
6260, 61sylib 209 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴𝑋𝑈𝑊)) → ¬ 𝐺 ∈ FriendGraph )
6362pm2.21d 119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴𝑋𝑈𝑊)) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))
6463ex 401 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → ((𝐴𝑋𝑈𝑊) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))
6564com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → ((𝐴𝑋𝑈𝑊) → 𝐴 = 𝑋)))
6665exp41 425 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐺 ∈ USGraph → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (𝐺 ∈ FriendGraph → ((𝐴𝑋𝑈𝑊) → 𝐴 = 𝑋))))))
6766com25 99 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → ((𝐴𝑋𝑈𝑊) → 𝐴 = 𝑋))))))
681, 67mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐺 ∈ FriendGraph → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → ((𝐴𝑋𝑈𝑊) → 𝐴 = 𝑋)))))
6968com15 101 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴𝑋𝑈𝑊) → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))))
7069ex 401 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴𝑋 → (𝑈𝑊 → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))))
7125, 70pm2.61ine 3019 . . . . . . . . . . . . . . . . . . . . 21 (𝑈𝑊 → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))))
7271imp 395 . . . . . . . . . . . . . . . . . . . 20 ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))
7372com13 88 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))
7473ex 401 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))))
7574com25 99 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋)))))
7675ex 401 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (Vtx‘𝐺) → (𝐴 ∈ (Vtx‘𝐺) → (𝐺 ∈ FriendGraph → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋))))))
7714nbgrcl 26505 . . . . . . . . . . . . . . . . . . 19 (𝑈 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ (Vtx‘𝐺))
7877, 2eleq2s 2861 . . . . . . . . . . . . . . . . . 18 (𝑈𝐷𝑋 ∈ (Vtx‘𝐺))
7978adantr 472 . . . . . . . . . . . . . . . . 17 ((𝑈𝐷𝑊𝐷) → 𝑋 ∈ (Vtx‘𝐺))
8079adantl 473 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → 𝑋 ∈ (Vtx‘𝐺))
8176, 80syl11 33 . . . . . . . . . . . . . . 15 (𝐴 ∈ (Vtx‘𝐺) → ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (𝐺 ∈ FriendGraph → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋))))))
8281com34 91 . . . . . . . . . . . . . 14 (𝐴 ∈ (Vtx‘𝐺) → ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋))))))
8382impd 398 . . . . . . . . . . . . 13 (𝐴 ∈ (Vtx‘𝐺) → (((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋)))))
8483adantl 473 . . . . . . . . . . . 12 ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋)))))
8522, 84mpcom 38 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋))))
8685ex 401 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋)))))
8786com25 99 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)))))
8887com14 96 . . . . . . . 8 ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)))))
8988ex 401 . . . . . . 7 (𝑈𝑊 → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))))))
9089com15 101 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → (𝑈𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))))))
9113, 20, 90mp2d 49 . . . . 5 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (𝐺 ∈ FriendGraph → (𝑈𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))))
9291ex 401 . . . 4 (𝐺 ∈ USGraph → ((𝑈𝐷𝑊𝐷) → (𝐺 ∈ FriendGraph → (𝑈𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)))))
9392com23 86 . . 3 (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph → ((𝑈𝐷𝑊𝐷) → (𝑈𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)))))
941, 93mpcom 38 . 2 (𝐺 ∈ FriendGraph → ((𝑈𝐷𝑊𝐷) → (𝑈𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))))
95943imp 1137 1 ((𝐺 ∈ FriendGraph ∧ (𝑈𝐷𝑊𝐷) ∧ 𝑈𝑊) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2936  wnel 3039  {cpr 4335  cfv 6067  (class class class)co 6841  Vtxcvtx 26164  Edgcedg 26215  USGraphcusgr 26321   NeighbVtx cnbgr 26502   FriendGraph cfrgr 27493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-1st 7365  df-2nd 7366  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-2o 7764  df-oadd 7767  df-er 7946  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-card 9015  df-cda 9242  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-nn 11274  df-2 11334  df-n0 11538  df-xnn0 11610  df-z 11624  df-uz 11886  df-fz 12533  df-hash 13321  df-edg 26216  df-upgr 26253  df-umgr 26254  df-usgr 26323  df-nbgr 26503  df-frgr 27494
This theorem is referenced by:  frgrncvvdeqlem8  27543
  Copyright terms: Public domain W3C validator