MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrnbnb Structured version   Visualization version   GIF version

Theorem frgrnbnb 30312
Description: If two neighbors 𝑈 and 𝑊 of a vertex 𝑋 have a common neighbor 𝐴 in a friendship graph, then this common neighbor 𝐴 must be the vertex 𝑋. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 2-Apr-2021.) (Proof shortened by AV, 13-Feb-2022.)
Hypotheses
Ref Expression
frgrnbnb.e 𝐸 = (Edg‘𝐺)
frgrnbnb.n 𝐷 = (𝐺 NeighbVtx 𝑋)
Assertion
Ref Expression
frgrnbnb ((𝐺 ∈ FriendGraph ∧ (𝑈𝐷𝑊𝐷) ∧ 𝑈𝑊) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))

Proof of Theorem frgrnbnb
StepHypRef Expression
1 frgrusgr 30280 . . 3 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
2 frgrnbnb.n . . . . . . . . . 10 𝐷 = (𝐺 NeighbVtx 𝑋)
32eleq2i 2833 . . . . . . . . 9 (𝑈𝐷𝑈 ∈ (𝐺 NeighbVtx 𝑋))
4 frgrnbnb.e . . . . . . . . . . 11 𝐸 = (Edg‘𝐺)
54nbusgreledg 29370 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝑈 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝑈, 𝑋} ∈ 𝐸))
65biimpd 229 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑈 ∈ (𝐺 NeighbVtx 𝑋) → {𝑈, 𝑋} ∈ 𝐸))
73, 6biimtrid 242 . . . . . . . 8 (𝐺 ∈ USGraph → (𝑈𝐷 → {𝑈, 𝑋} ∈ 𝐸))
82eleq2i 2833 . . . . . . . . 9 (𝑊𝐷𝑊 ∈ (𝐺 NeighbVtx 𝑋))
94nbusgreledg 29370 . . . . . . . . . 10 (𝐺 ∈ USGraph → (𝑊 ∈ (𝐺 NeighbVtx 𝑋) ↔ {𝑊, 𝑋} ∈ 𝐸))
109biimpd 229 . . . . . . . . 9 (𝐺 ∈ USGraph → (𝑊 ∈ (𝐺 NeighbVtx 𝑋) → {𝑊, 𝑋} ∈ 𝐸))
118, 10biimtrid 242 . . . . . . . 8 (𝐺 ∈ USGraph → (𝑊𝐷 → {𝑊, 𝑋} ∈ 𝐸))
127, 11anim12d 609 . . . . . . 7 (𝐺 ∈ USGraph → ((𝑈𝐷𝑊𝐷) → ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)))
1312imp 406 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸))
14 eqid 2737 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
1514nbgrisvtx 29358 . . . . . . . . 9 (𝑈 ∈ (𝐺 NeighbVtx 𝑋) → 𝑈 ∈ (Vtx‘𝐺))
1615, 2eleq2s 2859 . . . . . . . 8 (𝑈𝐷𝑈 ∈ (Vtx‘𝐺))
1714nbgrisvtx 29358 . . . . . . . . 9 (𝑊 ∈ (𝐺 NeighbVtx 𝑋) → 𝑊 ∈ (Vtx‘𝐺))
1817, 2eleq2s 2859 . . . . . . . 8 (𝑊𝐷𝑊 ∈ (Vtx‘𝐺))
1916, 18anim12i 613 . . . . . . 7 ((𝑈𝐷𝑊𝐷) → (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))
2019adantl 481 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))
214, 14usgrpredgv 29214 . . . . . . . . . . . . 13 ((𝐺 ∈ USGraph ∧ {𝑈, 𝐴} ∈ 𝐸) → (𝑈 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
2221ad2ant2r 747 . . . . . . . . . . . 12 (((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝑈 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
23 ax-1 6 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 = 𝑋 → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))
24232a1d 26 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴 = 𝑋 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))
25242a1d 26 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 = 𝑋 → (𝑈𝑊 → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))))
26 simpll 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝐺 ∈ USGraph)
27 simprrr 782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) → 𝑊 ∈ (Vtx‘𝐺))
2827adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝑊 ∈ (Vtx‘𝐺))
29 simprrl 781 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) → 𝑈 ∈ (Vtx‘𝐺))
3029adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝑈 ∈ (Vtx‘𝐺))
31 necom 2994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑈𝑊𝑊𝑈)
3231biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑈𝑊𝑊𝑈)
3332adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐴𝑋𝑈𝑊) → 𝑊𝑈)
3433adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝑊𝑈)
3528, 30, 343jca 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → (𝑊 ∈ (Vtx‘𝐺) ∧ 𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊𝑈))
36 simprll 779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) → 𝑋 ∈ (Vtx‘𝐺))
3736adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝑋 ∈ (Vtx‘𝐺))
38 simprlr 780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) → 𝐴 ∈ (Vtx‘𝐺))
3938adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝐴 ∈ (Vtx‘𝐺))
40 necom 2994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐴𝑋𝑋𝐴)
4140biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝐴𝑋𝑋𝐴)
4241adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐴𝑋𝑈𝑊) → 𝑋𝐴)
4342adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → 𝑋𝐴)
4437, 39, 433jca 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → (𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝑋𝐴))
4526, 35, 443jca 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ (𝐴𝑋𝑈𝑊)) → (𝐺 ∈ USGraph ∧ (𝑊 ∈ (Vtx‘𝐺) ∧ 𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊𝑈) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝑋𝐴)))
4645ad4ant14 752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴𝑋𝑈𝑊)) → (𝐺 ∈ USGraph ∧ (𝑊 ∈ (Vtx‘𝐺) ∧ 𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊𝑈) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝑋𝐴)))
47 prcom 4732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 {𝑈, 𝑋} = {𝑋, 𝑈}
4847eleq1i 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ({𝑈, 𝑋} ∈ 𝐸 ↔ {𝑋, 𝑈} ∈ 𝐸)
4948biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ({𝑈, 𝑋} ∈ 𝐸 → {𝑋, 𝑈} ∈ 𝐸)
5049anim1ci 616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → ({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸))
5150adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸))
52 prcom 4732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 {𝑊, 𝐴} = {𝐴, 𝑊}
5352eleq1i 2832 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ({𝑊, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝑊} ∈ 𝐸)
5453biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ({𝑊, 𝐴} ∈ 𝐸 → {𝐴, 𝑊} ∈ 𝐸)
5554anim2i 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝑊} ∈ 𝐸))
5651, 55anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝑊} ∈ 𝐸)))
5756adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴𝑋𝑈𝑊)) → (({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝑊} ∈ 𝐸)))
5814, 44cyclusnfrgr 30311 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐺 ∈ USGraph ∧ (𝑊 ∈ (Vtx‘𝐺) ∧ 𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊𝑈) ∧ (𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝑋𝐴)) → ((({𝑊, 𝑋} ∈ 𝐸 ∧ {𝑋, 𝑈} ∈ 𝐸) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝑊} ∈ 𝐸)) → 𝐺 ∉ FriendGraph ))
5946, 57, 58sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴𝑋𝑈𝑊)) → 𝐺 ∉ FriendGraph )
60 df-nel 3047 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
6159, 60sylib 218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴𝑋𝑈𝑊)) → ¬ 𝐺 ∈ FriendGraph )
6261pm2.21d 121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) ∧ (𝐴𝑋𝑈𝑊)) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))
6362ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → ((𝐴𝑋𝑈𝑊) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))
6463com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐺 ∈ USGraph ∧ ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)))) ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → ((𝐴𝑋𝑈𝑊) → 𝐴 = 𝑋)))
6564exp41 434 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐺 ∈ USGraph → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (𝐺 ∈ FriendGraph → ((𝐴𝑋𝑈𝑊) → 𝐴 = 𝑋))))))
6665com25 99 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → ((𝐴𝑋𝑈𝑊) → 𝐴 = 𝑋))))))
671, 66mpcom 38 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐺 ∈ FriendGraph → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → ((𝐴𝑋𝑈𝑊) → 𝐴 = 𝑋)))))
6867com15 101 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴𝑋𝑈𝑊) → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))))
6968ex 412 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴𝑋 → (𝑈𝑊 → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))))
7025, 69pm2.61ine 3025 . . . . . . . . . . . . . . . . . . . . 21 (𝑈𝑊 → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))))
7170imp 406 . . . . . . . . . . . . . . . . . . . 20 ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))
7271com13 88 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) ∧ (𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺))) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋))))
7372ex 412 . . . . . . . . . . . . . . . . . 18 ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → 𝐴 = 𝑋)))))
7473com25 99 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋)))))
7574ex 412 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (Vtx‘𝐺) → (𝐴 ∈ (Vtx‘𝐺) → (𝐺 ∈ FriendGraph → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋))))))
7614nbgrcl 29352 . . . . . . . . . . . . . . . . . . 19 (𝑈 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ (Vtx‘𝐺))
7776, 2eleq2s 2859 . . . . . . . . . . . . . . . . . 18 (𝑈𝐷𝑋 ∈ (Vtx‘𝐺))
7877adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑈𝐷𝑊𝐷) → 𝑋 ∈ (Vtx‘𝐺))
7978adantl 481 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → 𝑋 ∈ (Vtx‘𝐺))
8075, 79syl11 33 . . . . . . . . . . . . . . 15 (𝐴 ∈ (Vtx‘𝐺) → ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (𝐺 ∈ FriendGraph → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋))))))
8180com34 91 . . . . . . . . . . . . . 14 (𝐴 ∈ (Vtx‘𝐺) → ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋))))))
8281impd 410 . . . . . . . . . . . . 13 (𝐴 ∈ (Vtx‘𝐺) → (((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋)))))
8382adantl 481 . . . . . . . . . . . 12 ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋)))))
8422, 83mpcom 38 . . . . . . . . . . 11 (((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) ∧ ({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸)) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋))))
8584ex 412 . . . . . . . . . 10 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → 𝐴 = 𝑋)))))
8685com25 99 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)))))
8786com14 96 . . . . . . . 8 ((𝑈𝑊 ∧ ({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸)) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)))))
8887ex 412 . . . . . . 7 (𝑈𝑊 → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))))))
8988com15 101 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (({𝑈, 𝑋} ∈ 𝐸 ∧ {𝑊, 𝑋} ∈ 𝐸) → ((𝑈 ∈ (Vtx‘𝐺) ∧ 𝑊 ∈ (Vtx‘𝐺)) → (𝐺 ∈ FriendGraph → (𝑈𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))))))
9013, 20, 89mp2d 49 . . . . 5 ((𝐺 ∈ USGraph ∧ (𝑈𝐷𝑊𝐷)) → (𝐺 ∈ FriendGraph → (𝑈𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))))
9190ex 412 . . . 4 (𝐺 ∈ USGraph → ((𝑈𝐷𝑊𝐷) → (𝐺 ∈ FriendGraph → (𝑈𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)))))
9291com23 86 . . 3 (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph → ((𝑈𝐷𝑊𝐷) → (𝑈𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋)))))
931, 92mpcom 38 . 2 (𝐺 ∈ FriendGraph → ((𝑈𝐷𝑊𝐷) → (𝑈𝑊 → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))))
94933imp 1111 1 ((𝐺 ∈ FriendGraph ∧ (𝑈𝐷𝑊𝐷) ∧ 𝑈𝑊) → (({𝑈, 𝐴} ∈ 𝐸 ∧ {𝑊, 𝐴} ∈ 𝐸) → 𝐴 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wnel 3046  {cpr 4628  cfv 6561  (class class class)co 7431  Vtxcvtx 29013  Edgcedg 29064  USGraphcusgr 29166   NeighbVtx cnbgr 29349   FriendGraph cfrgr 30277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370  df-edg 29065  df-upgr 29099  df-umgr 29100  df-usgr 29168  df-nbgr 29350  df-frgr 30278
This theorem is referenced by:  frgrncvvdeqlem8  30325
  Copyright terms: Public domain W3C validator