Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zerdivemp1x Structured version   Visualization version   GIF version

Theorem zerdivemp1x 36032
Description: In a unitary ring a left invertible element is not a zero divisor. See also ringinvnzdiv 19747. (Contributed by Jeff Madsen, 18-Apr-2010.)
Hypotheses
Ref Expression
zerdivempx.1 𝐺 = (1st𝑅)
zerdivempx.2 𝐻 = (2nd𝑅)
zerdivempx.3 𝑍 = (GId‘𝐺)
zerdivempx.4 𝑋 = ran 𝐺
zerdivempx.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
zerdivemp1x ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ ∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈) → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝐻,𝑎   𝑅,𝑎   𝑋,𝑎   𝑍,𝑎
Allowed substitution hints:   𝑈(𝑎)   𝐺(𝑎)

Proof of Theorem zerdivemp1x
StepHypRef Expression
1 oveq2 7263 . . . . . . 7 ((𝐴𝐻𝐵) = 𝑍 → (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍))
2 simpl1 1189 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝑅 ∈ RingOps)
3 simpr1 1192 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝑎𝑋)
4 simpr3 1194 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝐴𝑋)
5 simpl3 1191 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝐵𝑋)
6 zerdivempx.1 . . . . . . . . . . 11 𝐺 = (1st𝑅)
7 zerdivempx.2 . . . . . . . . . . 11 𝐻 = (2nd𝑅)
8 zerdivempx.4 . . . . . . . . . . 11 𝑋 = ran 𝐺
96, 7, 8rngoass 35991 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (𝑎𝑋𝐴𝑋𝐵𝑋)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)))
102, 3, 4, 5, 9syl13anc 1370 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)))
11 eqtr 2761 . . . . . . . . . . . . 13 ((((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍))
1211ex 412 . . . . . . . . . . . 12 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)))
13 eqtr 2761 . . . . . . . . . . . . . . . . . . 19 (((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) ∧ ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)) → (𝑈𝐻𝐵) = (𝑎𝐻𝑍))
14 zerdivempx.3 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑍 = (GId‘𝐺)
1514, 8, 6, 7rngorz 36008 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ RingOps ∧ 𝑎𝑋) → (𝑎𝐻𝑍) = 𝑍)
16153adant3 1130 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑎𝑋𝐵𝑋) → (𝑎𝐻𝑍) = 𝑍)
176rneqi 5835 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ran 𝐺 = ran (1st𝑅)
188, 17eqtri 2766 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑋 = ran (1st𝑅)
19 zerdivempx.5 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑈 = (GId‘𝐻)
207, 18, 19rngolidm 36022 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ RingOps ∧ 𝐵𝑋) → (𝑈𝐻𝐵) = 𝐵)
21203adant2 1129 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑎𝑋𝐵𝑋) → (𝑈𝐻𝐵) = 𝐵)
22 simp1 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑈𝐻𝐵) = (𝑎𝐻𝑍))
23 simp2 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑈𝐻𝐵) = 𝐵)
24 simp3 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑎𝐻𝑍) = 𝑍)
2522, 23, 243eqtr3d 2786 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → 𝐵 = 𝑍)
2625a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝐴𝑋𝐵 = 𝑍))
27263exp 1117 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → ((𝑈𝐻𝐵) = 𝐵 → ((𝑎𝐻𝑍) = 𝑍 → (𝐴𝑋𝐵 = 𝑍))))
2827com14 96 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴𝑋 → ((𝑈𝐻𝐵) = 𝐵 → ((𝑎𝐻𝑍) = 𝑍 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍))))
2928com13 88 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝐻𝑍) = 𝑍 → ((𝑈𝐻𝐵) = 𝐵 → (𝐴𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍))))
3016, 21, 29sylc 65 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ RingOps ∧ 𝑎𝑋𝐵𝑋) → (𝐴𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍)))
31303exp 1117 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ RingOps → (𝑎𝑋 → (𝐵𝑋 → (𝐴𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍)))))
3231com15 101 . . . . . . . . . . . . . . . . . . . 20 ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → (𝑎𝑋 → (𝐵𝑋 → (𝐴𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
3332com24 95 . . . . . . . . . . . . . . . . . . 19 ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
3413, 33syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) ∧ ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
3534ex 412 . . . . . . . . . . . . . . . . 17 ((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
3635eqcoms 2746 . . . . . . . . . . . . . . . 16 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
3736com25 99 . . . . . . . . . . . . . . 15 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵) → (𝑎𝑋 → (𝐴𝑋 → (𝐵𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
38 oveq1 7262 . . . . . . . . . . . . . . 15 ((𝑎𝐻𝐴) = 𝑈 → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵))
3937, 38syl11 33 . . . . . . . . . . . . . 14 (𝑎𝑋 → ((𝑎𝐻𝐴) = 𝑈 → (𝐴𝑋 → (𝐵𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
40393imp 1109 . . . . . . . . . . . . 13 ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝐵𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))
4140com13 88 . . . . . . . . . . . 12 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))
4212, 41syl6 35 . . . . . . . . . . 11 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
4342com15 101 . . . . . . . . . 10 (𝑅 ∈ RingOps → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → 𝐵 = 𝑍)))))
44433imp1 1345 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → 𝐵 = 𝑍))
4510, 44mpd 15 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝐵 = 𝑍)
46453exp1 1350 . . . . . . 7 (𝑅 ∈ RingOps → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → 𝐵 = 𝑍))))
471, 46syl5com 31 . . . . . 6 ((𝐴𝐻𝐵) = 𝑍 → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → 𝐵 = 𝑍))))
4847com14 96 . . . . 5 ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍))))
49483exp 1117 . . . 4 (𝑎𝑋 → ((𝑎𝐻𝐴) = 𝑈 → (𝐴𝑋 → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍))))))
5049rexlimiv 3208 . . 3 (∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈 → (𝐴𝑋 → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))))
5150com13 88 . 2 (𝑅 ∈ RingOps → (𝐴𝑋 → (∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈 → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))))
52513imp 1109 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ ∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈) → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  ran crn 5581  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  GIdcgi 28753  RingOpscrngo 35979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-riota 7212  df-ov 7258  df-1st 7804  df-2nd 7805  df-grpo 28756  df-gid 28757  df-ablo 28808  df-ass 35928  df-exid 35930  df-mgmOLD 35934  df-sgrOLD 35946  df-mndo 35952  df-rngo 35980
This theorem is referenced by:  isdrngo2  36043
  Copyright terms: Public domain W3C validator