Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zerdivemp1x Structured version   Visualization version   GIF version

Theorem zerdivemp1x 36907
Description: In a unital ring a left invertible element is not a zero divisor. See also ringinvnzdiv 20117. (Contributed by Jeff Madsen, 18-Apr-2010.)
Hypotheses
Ref Expression
zerdivempx.1 𝐺 = (1st𝑅)
zerdivempx.2 𝐻 = (2nd𝑅)
zerdivempx.3 𝑍 = (GId‘𝐺)
zerdivempx.4 𝑋 = ran 𝐺
zerdivempx.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
zerdivemp1x ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ ∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈) → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝐻,𝑎   𝑅,𝑎   𝑋,𝑎   𝑍,𝑎
Allowed substitution hints:   𝑈(𝑎)   𝐺(𝑎)

Proof of Theorem zerdivemp1x
StepHypRef Expression
1 oveq2 7419 . . . . . . 7 ((𝐴𝐻𝐵) = 𝑍 → (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍))
2 simpl1 1191 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝑅 ∈ RingOps)
3 simpr1 1194 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝑎𝑋)
4 simpr3 1196 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝐴𝑋)
5 simpl3 1193 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝐵𝑋)
6 zerdivempx.1 . . . . . . . . . . 11 𝐺 = (1st𝑅)
7 zerdivempx.2 . . . . . . . . . . 11 𝐻 = (2nd𝑅)
8 zerdivempx.4 . . . . . . . . . . 11 𝑋 = ran 𝐺
96, 7, 8rngoass 36866 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (𝑎𝑋𝐴𝑋𝐵𝑋)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)))
102, 3, 4, 5, 9syl13anc 1372 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)))
11 eqtr 2755 . . . . . . . . . . . . 13 ((((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍))
1211ex 413 . . . . . . . . . . . 12 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)))
13 eqtr 2755 . . . . . . . . . . . . . . . . . . 19 (((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) ∧ ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)) → (𝑈𝐻𝐵) = (𝑎𝐻𝑍))
14 zerdivempx.3 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑍 = (GId‘𝐺)
1514, 8, 6, 7rngorz 36883 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ RingOps ∧ 𝑎𝑋) → (𝑎𝐻𝑍) = 𝑍)
16153adant3 1132 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑎𝑋𝐵𝑋) → (𝑎𝐻𝑍) = 𝑍)
176rneqi 5936 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ran 𝐺 = ran (1st𝑅)
188, 17eqtri 2760 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑋 = ran (1st𝑅)
19 zerdivempx.5 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑈 = (GId‘𝐻)
207, 18, 19rngolidm 36897 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ RingOps ∧ 𝐵𝑋) → (𝑈𝐻𝐵) = 𝐵)
21203adant2 1131 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑎𝑋𝐵𝑋) → (𝑈𝐻𝐵) = 𝐵)
22 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑈𝐻𝐵) = (𝑎𝐻𝑍))
23 simp2 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑈𝐻𝐵) = 𝐵)
24 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑎𝐻𝑍) = 𝑍)
2522, 23, 243eqtr3d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → 𝐵 = 𝑍)
2625a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝐴𝑋𝐵 = 𝑍))
27263exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → ((𝑈𝐻𝐵) = 𝐵 → ((𝑎𝐻𝑍) = 𝑍 → (𝐴𝑋𝐵 = 𝑍))))
2827com14 96 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴𝑋 → ((𝑈𝐻𝐵) = 𝐵 → ((𝑎𝐻𝑍) = 𝑍 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍))))
2928com13 88 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝐻𝑍) = 𝑍 → ((𝑈𝐻𝐵) = 𝐵 → (𝐴𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍))))
3016, 21, 29sylc 65 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ RingOps ∧ 𝑎𝑋𝐵𝑋) → (𝐴𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍)))
31303exp 1119 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ RingOps → (𝑎𝑋 → (𝐵𝑋 → (𝐴𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍)))))
3231com15 101 . . . . . . . . . . . . . . . . . . . 20 ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → (𝑎𝑋 → (𝐵𝑋 → (𝐴𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
3332com24 95 . . . . . . . . . . . . . . . . . . 19 ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
3413, 33syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) ∧ ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
3534ex 413 . . . . . . . . . . . . . . . . 17 ((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
3635eqcoms 2740 . . . . . . . . . . . . . . . 16 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
3736com25 99 . . . . . . . . . . . . . . 15 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵) → (𝑎𝑋 → (𝐴𝑋 → (𝐵𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
38 oveq1 7418 . . . . . . . . . . . . . . 15 ((𝑎𝐻𝐴) = 𝑈 → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵))
3937, 38syl11 33 . . . . . . . . . . . . . 14 (𝑎𝑋 → ((𝑎𝐻𝐴) = 𝑈 → (𝐴𝑋 → (𝐵𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
40393imp 1111 . . . . . . . . . . . . 13 ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝐵𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))
4140com13 88 . . . . . . . . . . . 12 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))
4212, 41syl6 35 . . . . . . . . . . 11 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
4342com15 101 . . . . . . . . . 10 (𝑅 ∈ RingOps → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → 𝐵 = 𝑍)))))
44433imp1 1347 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → 𝐵 = 𝑍))
4510, 44mpd 15 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝐵 = 𝑍)
46453exp1 1352 . . . . . . 7 (𝑅 ∈ RingOps → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → 𝐵 = 𝑍))))
471, 46syl5com 31 . . . . . 6 ((𝐴𝐻𝐵) = 𝑍 → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → 𝐵 = 𝑍))))
4847com14 96 . . . . 5 ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍))))
49483exp 1119 . . . 4 (𝑎𝑋 → ((𝑎𝐻𝐴) = 𝑈 → (𝐴𝑋 → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍))))))
5049rexlimiv 3148 . . 3 (∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈 → (𝐴𝑋 → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))))
5150com13 88 . 2 (𝑅 ∈ RingOps → (𝐴𝑋 → (∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈 → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))))
52513imp 1111 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ ∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈) → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3070  ran crn 5677  cfv 6543  (class class class)co 7411  1st c1st 7975  2nd c2nd 7976  GIdcgi 29781  RingOpscrngo 36854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fo 6549  df-fv 6551  df-riota 7367  df-ov 7414  df-1st 7977  df-2nd 7978  df-grpo 29784  df-gid 29785  df-ablo 29836  df-ass 36803  df-exid 36805  df-mgmOLD 36809  df-sgrOLD 36821  df-mndo 36827  df-rngo 36855
This theorem is referenced by:  isdrngo2  36918
  Copyright terms: Public domain W3C validator