Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zerdivemp1x Structured version   Visualization version   GIF version

Theorem zerdivemp1x 37941
Description: In a unital ring a left invertible element is not a zero divisor. See also ringinvnzdiv 20210. (Contributed by Jeff Madsen, 18-Apr-2010.)
Hypotheses
Ref Expression
zerdivempx.1 𝐺 = (1st𝑅)
zerdivempx.2 𝐻 = (2nd𝑅)
zerdivempx.3 𝑍 = (GId‘𝐺)
zerdivempx.4 𝑋 = ran 𝐺
zerdivempx.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
zerdivemp1x ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ ∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈) → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝐻,𝑎   𝑅,𝑎   𝑋,𝑎   𝑍,𝑎
Allowed substitution hints:   𝑈(𝑎)   𝐺(𝑎)

Proof of Theorem zerdivemp1x
StepHypRef Expression
1 oveq2 7395 . . . . . . 7 ((𝐴𝐻𝐵) = 𝑍 → (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍))
2 simpl1 1192 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝑅 ∈ RingOps)
3 simpr1 1195 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝑎𝑋)
4 simpr3 1197 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝐴𝑋)
5 simpl3 1194 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝐵𝑋)
6 zerdivempx.1 . . . . . . . . . . 11 𝐺 = (1st𝑅)
7 zerdivempx.2 . . . . . . . . . . 11 𝐻 = (2nd𝑅)
8 zerdivempx.4 . . . . . . . . . . 11 𝑋 = ran 𝐺
96, 7, 8rngoass 37900 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (𝑎𝑋𝐴𝑋𝐵𝑋)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)))
102, 3, 4, 5, 9syl13anc 1374 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)))
11 eqtr 2749 . . . . . . . . . . . . 13 ((((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍))
1211ex 412 . . . . . . . . . . . 12 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)))
13 eqtr 2749 . . . . . . . . . . . . . . . . . . 19 (((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) ∧ ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)) → (𝑈𝐻𝐵) = (𝑎𝐻𝑍))
14 zerdivempx.3 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑍 = (GId‘𝐺)
1514, 8, 6, 7rngorz 37917 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ RingOps ∧ 𝑎𝑋) → (𝑎𝐻𝑍) = 𝑍)
16153adant3 1132 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑎𝑋𝐵𝑋) → (𝑎𝐻𝑍) = 𝑍)
176rneqi 5901 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ran 𝐺 = ran (1st𝑅)
188, 17eqtri 2752 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑋 = ran (1st𝑅)
19 zerdivempx.5 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑈 = (GId‘𝐻)
207, 18, 19rngolidm 37931 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ RingOps ∧ 𝐵𝑋) → (𝑈𝐻𝐵) = 𝐵)
21203adant2 1131 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑎𝑋𝐵𝑋) → (𝑈𝐻𝐵) = 𝐵)
22 simp1 1136 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑈𝐻𝐵) = (𝑎𝐻𝑍))
23 simp2 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑈𝐻𝐵) = 𝐵)
24 simp3 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑎𝐻𝑍) = 𝑍)
2522, 23, 243eqtr3d 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → 𝐵 = 𝑍)
2625a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝐴𝑋𝐵 = 𝑍))
27263exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → ((𝑈𝐻𝐵) = 𝐵 → ((𝑎𝐻𝑍) = 𝑍 → (𝐴𝑋𝐵 = 𝑍))))
2827com14 96 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴𝑋 → ((𝑈𝐻𝐵) = 𝐵 → ((𝑎𝐻𝑍) = 𝑍 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍))))
2928com13 88 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝐻𝑍) = 𝑍 → ((𝑈𝐻𝐵) = 𝐵 → (𝐴𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍))))
3016, 21, 29sylc 65 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ RingOps ∧ 𝑎𝑋𝐵𝑋) → (𝐴𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍)))
31303exp 1119 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ RingOps → (𝑎𝑋 → (𝐵𝑋 → (𝐴𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍)))))
3231com15 101 . . . . . . . . . . . . . . . . . . . 20 ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → (𝑎𝑋 → (𝐵𝑋 → (𝐴𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
3332com24 95 . . . . . . . . . . . . . . . . . . 19 ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
3413, 33syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) ∧ ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
3534ex 412 . . . . . . . . . . . . . . . . 17 ((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
3635eqcoms 2737 . . . . . . . . . . . . . . . 16 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
3736com25 99 . . . . . . . . . . . . . . 15 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵) → (𝑎𝑋 → (𝐴𝑋 → (𝐵𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
38 oveq1 7394 . . . . . . . . . . . . . . 15 ((𝑎𝐻𝐴) = 𝑈 → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵))
3937, 38syl11 33 . . . . . . . . . . . . . 14 (𝑎𝑋 → ((𝑎𝐻𝐴) = 𝑈 → (𝐴𝑋 → (𝐵𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
40393imp 1110 . . . . . . . . . . . . 13 ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝐵𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))
4140com13 88 . . . . . . . . . . . 12 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))
4212, 41syl6 35 . . . . . . . . . . 11 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
4342com15 101 . . . . . . . . . 10 (𝑅 ∈ RingOps → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → 𝐵 = 𝑍)))))
44433imp1 1348 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → 𝐵 = 𝑍))
4510, 44mpd 15 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝐵 = 𝑍)
46453exp1 1353 . . . . . . 7 (𝑅 ∈ RingOps → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → 𝐵 = 𝑍))))
471, 46syl5com 31 . . . . . 6 ((𝐴𝐻𝐵) = 𝑍 → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → 𝐵 = 𝑍))))
4847com14 96 . . . . 5 ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍))))
49483exp 1119 . . . 4 (𝑎𝑋 → ((𝑎𝐻𝐴) = 𝑈 → (𝐴𝑋 → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍))))))
5049rexlimiv 3127 . . 3 (∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈 → (𝐴𝑋 → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))))
5150com13 88 . 2 (𝑅 ∈ RingOps → (𝐴𝑋 → (∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈 → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))))
52513imp 1110 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ ∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈) → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  ran crn 5639  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  GIdcgi 30419  RingOpscrngo 37888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-riota 7344  df-ov 7390  df-1st 7968  df-2nd 7969  df-grpo 30422  df-gid 30423  df-ablo 30474  df-ass 37837  df-exid 37839  df-mgmOLD 37843  df-sgrOLD 37855  df-mndo 37861  df-rngo 37889
This theorem is referenced by:  isdrngo2  37952
  Copyright terms: Public domain W3C validator