Proof of Theorem zerdivemp1x
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | oveq2 7439 | . . . . . . 7
⊢ ((𝐴𝐻𝐵) = 𝑍 → (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍)) | 
| 2 |  | simpl1 1192 | . . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋)) → 𝑅 ∈ RingOps) | 
| 3 |  | simpr1 1195 | . . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋)) → 𝑎 ∈ 𝑋) | 
| 4 |  | simpr3 1197 | . . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | 
| 5 |  | simpl3 1194 | . . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | 
| 6 |  | zerdivempx.1 | . . . . . . . . . . 11
⊢ 𝐺 = (1st ‘𝑅) | 
| 7 |  | zerdivempx.2 | . . . . . . . . . . 11
⊢ 𝐻 = (2nd ‘𝑅) | 
| 8 |  | zerdivempx.4 | . . . . . . . . . . 11
⊢ 𝑋 = ran 𝐺 | 
| 9 | 6, 7, 8 | rngoass 37913 | . . . . . . . . . 10
⊢ ((𝑅 ∈ RingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵))) | 
| 10 | 2, 3, 4, 5, 9 | syl13anc 1374 | . . . . . . . . 9
⊢ (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵))) | 
| 11 |  | eqtr 2760 | . . . . . . . . . . . . 13
⊢ ((((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)) | 
| 12 | 11 | ex 412 | . . . . . . . . . . . 12
⊢ (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍))) | 
| 13 |  | eqtr 2760 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) ∧ ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)) → (𝑈𝐻𝐵) = (𝑎𝐻𝑍)) | 
| 14 |  | zerdivempx.3 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑍 = (GId‘𝐺) | 
| 15 | 14, 8, 6, 7 | rngorz 37930 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 ∈ RingOps ∧ 𝑎 ∈ 𝑋) → (𝑎𝐻𝑍) = 𝑍) | 
| 16 | 15 | 3adant3 1133 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ RingOps ∧ 𝑎 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑎𝐻𝑍) = 𝑍) | 
| 17 | 6 | rneqi 5948 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ran 𝐺 = ran (1st
‘𝑅) | 
| 18 | 8, 17 | eqtri 2765 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑋 = ran (1st
‘𝑅) | 
| 19 |  | zerdivempx.5 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑈 = (GId‘𝐻) | 
| 20 | 7, 18, 19 | rngolidm 37944 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 ∈ RingOps ∧ 𝐵 ∈ 𝑋) → (𝑈𝐻𝐵) = 𝐵) | 
| 21 | 20 | 3adant2 1132 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ RingOps ∧ 𝑎 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑈𝐻𝐵) = 𝐵) | 
| 22 |  | simp1 1137 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑈𝐻𝐵) = (𝑎𝐻𝑍)) | 
| 23 |  | simp2 1138 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑈𝐻𝐵) = 𝐵) | 
| 24 |  | simp3 1139 | . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑎𝐻𝑍) = 𝑍) | 
| 25 | 22, 23, 24 | 3eqtr3d 2785 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → 𝐵 = 𝑍) | 
| 26 | 25 | a1d 25 | . . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝐴 ∈ 𝑋 → 𝐵 = 𝑍)) | 
| 27 | 26 | 3exp 1120 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → ((𝑈𝐻𝐵) = 𝐵 → ((𝑎𝐻𝑍) = 𝑍 → (𝐴 ∈ 𝑋 → 𝐵 = 𝑍)))) | 
| 28 | 27 | com14 96 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ 𝑋 → ((𝑈𝐻𝐵) = 𝐵 → ((𝑎𝐻𝑍) = 𝑍 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍)))) | 
| 29 | 28 | com13 88 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑎𝐻𝑍) = 𝑍 → ((𝑈𝐻𝐵) = 𝐵 → (𝐴 ∈ 𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍)))) | 
| 30 | 16, 21, 29 | sylc 65 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ RingOps ∧ 𝑎 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∈ 𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍))) | 
| 31 | 30 | 3exp 1120 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 ∈ RingOps → (𝑎 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴 ∈ 𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍))))) | 
| 32 | 31 | com15 101 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → (𝑎 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴 ∈ 𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))) | 
| 33 | 32 | com24 95 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝑎 ∈ 𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))) | 
| 34 | 13, 33 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) ∧ ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)) → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝑎 ∈ 𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))) | 
| 35 | 34 | ex 412 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝑎 ∈ 𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))) | 
| 36 | 35 | eqcoms 2745 | . . . . . . . . . . . . . . . 16
⊢ (((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝑎 ∈ 𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))) | 
| 37 | 36 | com25 99 | . . . . . . . . . . . . . . 15
⊢ (((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵) → (𝑎 ∈ 𝑋 → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))) | 
| 38 |  | oveq1 7438 | . . . . . . . . . . . . . . 15
⊢ ((𝑎𝐻𝐴) = 𝑈 → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵)) | 
| 39 | 37, 38 | syl11 33 | . . . . . . . . . . . . . 14
⊢ (𝑎 ∈ 𝑋 → ((𝑎𝐻𝐴) = 𝑈 → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))) | 
| 40 | 39 | 3imp 1111 | . . . . . . . . . . . . 13
⊢ ((𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋) → (𝐵 ∈ 𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))) | 
| 41 | 40 | com13 88 | . . . . . . . . . . . 12
⊢ (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐵 ∈ 𝑋 → ((𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋) → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))) | 
| 42 | 12, 41 | syl6 35 | . . . . . . . . . . 11
⊢ (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵 ∈ 𝑋 → ((𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))) | 
| 43 | 42 | com15 101 | . . . . . . . . . 10
⊢ (𝑅 ∈ RingOps → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵 ∈ 𝑋 → ((𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → 𝐵 = 𝑍))))) | 
| 44 | 43 | 3imp1 1348 | . . . . . . . . 9
⊢ (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋)) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → 𝐵 = 𝑍)) | 
| 45 | 10, 44 | mpd 15 | . . . . . . . 8
⊢ (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋)) → 𝐵 = 𝑍) | 
| 46 | 45 | 3exp1 1353 | . . . . . . 7
⊢ (𝑅 ∈ RingOps → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵 ∈ 𝑋 → ((𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐵 = 𝑍)))) | 
| 47 | 1, 46 | syl5com 31 | . . . . . 6
⊢ ((𝐴𝐻𝐵) = 𝑍 → (𝑅 ∈ RingOps → (𝐵 ∈ 𝑋 → ((𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐵 = 𝑍)))) | 
| 48 | 47 | com14 96 | . . . . 5
⊢ ((𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋) → (𝑅 ∈ RingOps → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) = 𝑍 → 𝐵 = 𝑍)))) | 
| 49 | 48 | 3exp 1120 | . . . 4
⊢ (𝑎 ∈ 𝑋 → ((𝑎𝐻𝐴) = 𝑈 → (𝐴 ∈ 𝑋 → (𝑅 ∈ RingOps → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) = 𝑍 → 𝐵 = 𝑍)))))) | 
| 50 | 49 | rexlimiv 3148 | . . 3
⊢
(∃𝑎 ∈
𝑋 (𝑎𝐻𝐴) = 𝑈 → (𝐴 ∈ 𝑋 → (𝑅 ∈ RingOps → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) = 𝑍 → 𝐵 = 𝑍))))) | 
| 51 | 50 | com13 88 | . 2
⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → (∃𝑎 ∈ 𝑋 (𝑎𝐻𝐴) = 𝑈 → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) = 𝑍 → 𝐵 = 𝑍))))) | 
| 52 | 51 | 3imp 1111 | 1
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ ∃𝑎 ∈ 𝑋 (𝑎𝐻𝐴) = 𝑈) → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) = 𝑍 → 𝐵 = 𝑍))) |