Proof of Theorem zerdivemp1x
Step | Hyp | Ref
| Expression |
1 | | oveq2 7263 |
. . . . . . 7
⊢ ((𝐴𝐻𝐵) = 𝑍 → (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍)) |
2 | | simpl1 1189 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋)) → 𝑅 ∈ RingOps) |
3 | | simpr1 1192 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋)) → 𝑎 ∈ 𝑋) |
4 | | simpr3 1194 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
5 | | simpl3 1191 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋)) → 𝐵 ∈ 𝑋) |
6 | | zerdivempx.1 |
. . . . . . . . . . 11
⊢ 𝐺 = (1st ‘𝑅) |
7 | | zerdivempx.2 |
. . . . . . . . . . 11
⊢ 𝐻 = (2nd ‘𝑅) |
8 | | zerdivempx.4 |
. . . . . . . . . . 11
⊢ 𝑋 = ran 𝐺 |
9 | 6, 7, 8 | rngoass 35991 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ RingOps ∧ (𝑎 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵))) |
10 | 2, 3, 4, 5, 9 | syl13anc 1370 |
. . . . . . . . 9
⊢ (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵))) |
11 | | eqtr 2761 |
. . . . . . . . . . . . 13
⊢ ((((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)) |
12 | 11 | ex 412 |
. . . . . . . . . . . 12
⊢ (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍))) |
13 | | eqtr 2761 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) ∧ ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)) → (𝑈𝐻𝐵) = (𝑎𝐻𝑍)) |
14 | | zerdivempx.3 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑍 = (GId‘𝐺) |
15 | 14, 8, 6, 7 | rngorz 36008 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 ∈ RingOps ∧ 𝑎 ∈ 𝑋) → (𝑎𝐻𝑍) = 𝑍) |
16 | 15 | 3adant3 1130 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ RingOps ∧ 𝑎 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑎𝐻𝑍) = 𝑍) |
17 | 6 | rneqi 5835 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ran 𝐺 = ran (1st
‘𝑅) |
18 | 8, 17 | eqtri 2766 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑋 = ran (1st
‘𝑅) |
19 | | zerdivempx.5 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 𝑈 = (GId‘𝐻) |
20 | 7, 18, 19 | rngolidm 36022 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 ∈ RingOps ∧ 𝐵 ∈ 𝑋) → (𝑈𝐻𝐵) = 𝐵) |
21 | 20 | 3adant2 1129 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ RingOps ∧ 𝑎 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑈𝐻𝐵) = 𝐵) |
22 | | simp1 1134 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑈𝐻𝐵) = (𝑎𝐻𝑍)) |
23 | | simp2 1135 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑈𝐻𝐵) = 𝐵) |
24 | | simp3 1136 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑎𝐻𝑍) = 𝑍) |
25 | 22, 23, 24 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → 𝐵 = 𝑍) |
26 | 25 | a1d 25 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝐴 ∈ 𝑋 → 𝐵 = 𝑍)) |
27 | 26 | 3exp 1117 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → ((𝑈𝐻𝐵) = 𝐵 → ((𝑎𝐻𝑍) = 𝑍 → (𝐴 ∈ 𝑋 → 𝐵 = 𝑍)))) |
28 | 27 | com14 96 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐴 ∈ 𝑋 → ((𝑈𝐻𝐵) = 𝐵 → ((𝑎𝐻𝑍) = 𝑍 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍)))) |
29 | 28 | com13 88 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑎𝐻𝑍) = 𝑍 → ((𝑈𝐻𝐵) = 𝐵 → (𝐴 ∈ 𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍)))) |
30 | 16, 21, 29 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ RingOps ∧ 𝑎 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∈ 𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍))) |
31 | 30 | 3exp 1117 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 ∈ RingOps → (𝑎 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴 ∈ 𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍))))) |
32 | 31 | com15 101 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → (𝑎 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴 ∈ 𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))) |
33 | 32 | com24 95 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝑎 ∈ 𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))) |
34 | 13, 33 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) ∧ ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)) → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝑎 ∈ 𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))) |
35 | 34 | ex 412 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝑎 ∈ 𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))) |
36 | 35 | eqcoms 2746 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝑎 ∈ 𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))) |
37 | 36 | com25 99 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵) → (𝑎 ∈ 𝑋 → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))) |
38 | | oveq1 7262 |
. . . . . . . . . . . . . . 15
⊢ ((𝑎𝐻𝐴) = 𝑈 → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵)) |
39 | 37, 38 | syl11 33 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ 𝑋 → ((𝑎𝐻𝐴) = 𝑈 → (𝐴 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))) |
40 | 39 | 3imp 1109 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋) → (𝐵 ∈ 𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))) |
41 | 40 | com13 88 |
. . . . . . . . . . . 12
⊢ (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐵 ∈ 𝑋 → ((𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋) → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))) |
42 | 12, 41 | syl6 35 |
. . . . . . . . . . 11
⊢ (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵 ∈ 𝑋 → ((𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))) |
43 | 42 | com15 101 |
. . . . . . . . . 10
⊢ (𝑅 ∈ RingOps → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵 ∈ 𝑋 → ((𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → 𝐵 = 𝑍))))) |
44 | 43 | 3imp1 1345 |
. . . . . . . . 9
⊢ (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋)) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → 𝐵 = 𝑍)) |
45 | 10, 44 | mpd 15 |
. . . . . . . 8
⊢ (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵 ∈ 𝑋) ∧ (𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋)) → 𝐵 = 𝑍) |
46 | 45 | 3exp1 1350 |
. . . . . . 7
⊢ (𝑅 ∈ RingOps → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵 ∈ 𝑋 → ((𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐵 = 𝑍)))) |
47 | 1, 46 | syl5com 31 |
. . . . . 6
⊢ ((𝐴𝐻𝐵) = 𝑍 → (𝑅 ∈ RingOps → (𝐵 ∈ 𝑋 → ((𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐵 = 𝑍)))) |
48 | 47 | com14 96 |
. . . . 5
⊢ ((𝑎 ∈ 𝑋 ∧ (𝑎𝐻𝐴) = 𝑈 ∧ 𝐴 ∈ 𝑋) → (𝑅 ∈ RingOps → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) = 𝑍 → 𝐵 = 𝑍)))) |
49 | 48 | 3exp 1117 |
. . . 4
⊢ (𝑎 ∈ 𝑋 → ((𝑎𝐻𝐴) = 𝑈 → (𝐴 ∈ 𝑋 → (𝑅 ∈ RingOps → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) = 𝑍 → 𝐵 = 𝑍)))))) |
50 | 49 | rexlimiv 3208 |
. . 3
⊢
(∃𝑎 ∈
𝑋 (𝑎𝐻𝐴) = 𝑈 → (𝐴 ∈ 𝑋 → (𝑅 ∈ RingOps → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) = 𝑍 → 𝐵 = 𝑍))))) |
51 | 50 | com13 88 |
. 2
⊢ (𝑅 ∈ RingOps → (𝐴 ∈ 𝑋 → (∃𝑎 ∈ 𝑋 (𝑎𝐻𝐴) = 𝑈 → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) = 𝑍 → 𝐵 = 𝑍))))) |
52 | 51 | 3imp 1109 |
1
⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ ∃𝑎 ∈ 𝑋 (𝑎𝐻𝐴) = 𝑈) → (𝐵 ∈ 𝑋 → ((𝐴𝐻𝐵) = 𝑍 → 𝐵 = 𝑍))) |