Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zerdivemp1x Structured version   Visualization version   GIF version

Theorem zerdivemp1x 37954
Description: In a unital ring a left invertible element is not a zero divisor. See also ringinvnzdiv 20298. (Contributed by Jeff Madsen, 18-Apr-2010.)
Hypotheses
Ref Expression
zerdivempx.1 𝐺 = (1st𝑅)
zerdivempx.2 𝐻 = (2nd𝑅)
zerdivempx.3 𝑍 = (GId‘𝐺)
zerdivempx.4 𝑋 = ran 𝐺
zerdivempx.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
zerdivemp1x ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ ∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈) → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))
Distinct variable groups:   𝐴,𝑎   𝐵,𝑎   𝐻,𝑎   𝑅,𝑎   𝑋,𝑎   𝑍,𝑎
Allowed substitution hints:   𝑈(𝑎)   𝐺(𝑎)

Proof of Theorem zerdivemp1x
StepHypRef Expression
1 oveq2 7439 . . . . . . 7 ((𝐴𝐻𝐵) = 𝑍 → (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍))
2 simpl1 1192 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝑅 ∈ RingOps)
3 simpr1 1195 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝑎𝑋)
4 simpr3 1197 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝐴𝑋)
5 simpl3 1194 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝐵𝑋)
6 zerdivempx.1 . . . . . . . . . . 11 𝐺 = (1st𝑅)
7 zerdivempx.2 . . . . . . . . . . 11 𝐻 = (2nd𝑅)
8 zerdivempx.4 . . . . . . . . . . 11 𝑋 = ran 𝐺
96, 7, 8rngoass 37913 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ (𝑎𝑋𝐴𝑋𝐵𝑋)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)))
102, 3, 4, 5, 9syl13anc 1374 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)))
11 eqtr 2760 . . . . . . . . . . . . 13 ((((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍)) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍))
1211ex 412 . . . . . . . . . . . 12 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)))
13 eqtr 2760 . . . . . . . . . . . . . . . . . . 19 (((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) ∧ ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)) → (𝑈𝐻𝐵) = (𝑎𝐻𝑍))
14 zerdivempx.3 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑍 = (GId‘𝐺)
1514, 8, 6, 7rngorz 37930 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ RingOps ∧ 𝑎𝑋) → (𝑎𝐻𝑍) = 𝑍)
16153adant3 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑎𝑋𝐵𝑋) → (𝑎𝐻𝑍) = 𝑍)
176rneqi 5948 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ran 𝐺 = ran (1st𝑅)
188, 17eqtri 2765 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑋 = ran (1st𝑅)
19 zerdivempx.5 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑈 = (GId‘𝐻)
207, 18, 19rngolidm 37944 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ RingOps ∧ 𝐵𝑋) → (𝑈𝐻𝐵) = 𝐵)
21203adant2 1132 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑎𝑋𝐵𝑋) → (𝑈𝐻𝐵) = 𝐵)
22 simp1 1137 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑈𝐻𝐵) = (𝑎𝐻𝑍))
23 simp2 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑈𝐻𝐵) = 𝐵)
24 simp3 1139 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝑎𝐻𝑍) = 𝑍)
2522, 23, 243eqtr3d 2785 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → 𝐵 = 𝑍)
2625a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑈𝐻𝐵) = (𝑎𝐻𝑍) ∧ (𝑈𝐻𝐵) = 𝐵 ∧ (𝑎𝐻𝑍) = 𝑍) → (𝐴𝑋𝐵 = 𝑍))
27263exp 1120 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → ((𝑈𝐻𝐵) = 𝐵 → ((𝑎𝐻𝑍) = 𝑍 → (𝐴𝑋𝐵 = 𝑍))))
2827com14 96 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴𝑋 → ((𝑈𝐻𝐵) = 𝐵 → ((𝑎𝐻𝑍) = 𝑍 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍))))
2928com13 88 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑎𝐻𝑍) = 𝑍 → ((𝑈𝐻𝐵) = 𝐵 → (𝐴𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍))))
3016, 21, 29sylc 65 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ RingOps ∧ 𝑎𝑋𝐵𝑋) → (𝐴𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍)))
31303exp 1120 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ RingOps → (𝑎𝑋 → (𝐵𝑋 → (𝐴𝑋 → ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → 𝐵 = 𝑍)))))
3231com15 101 . . . . . . . . . . . . . . . . . . . 20 ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → (𝑎𝑋 → (𝐵𝑋 → (𝐴𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
3332com24 95 . . . . . . . . . . . . . . . . . . 19 ((𝑈𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
3413, 33syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) ∧ ((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍)) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
3534ex 412 . . . . . . . . . . . . . . . . 17 ((𝑈𝐻𝐵) = ((𝑎𝐻𝐴)𝐻𝐵) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
3635eqcoms 2745 . . . . . . . . . . . . . . . 16 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐴𝑋 → (𝐵𝑋 → (𝑎𝑋 → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
3736com25 99 . . . . . . . . . . . . . . 15 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵) → (𝑎𝑋 → (𝐴𝑋 → (𝐵𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
38 oveq1 7438 . . . . . . . . . . . . . . 15 ((𝑎𝐻𝐴) = 𝑈 → ((𝑎𝐻𝐴)𝐻𝐵) = (𝑈𝐻𝐵))
3937, 38syl11 33 . . . . . . . . . . . . . 14 (𝑎𝑋 → ((𝑎𝐻𝐴) = 𝑈 → (𝐴𝑋 → (𝐵𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))))
40393imp 1111 . . . . . . . . . . . . 13 ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝐵𝑋 → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))
4140com13 88 . . . . . . . . . . . 12 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝑅 ∈ RingOps → 𝐵 = 𝑍))))
4212, 41syl6 35 . . . . . . . . . . 11 (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝑅 ∈ RingOps → 𝐵 = 𝑍)))))
4342com15 101 . . . . . . . . . 10 (𝑅 ∈ RingOps → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → 𝐵 = 𝑍)))))
44433imp1 1348 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → (((𝑎𝐻𝐴)𝐻𝐵) = (𝑎𝐻(𝐴𝐻𝐵)) → 𝐵 = 𝑍))
4510, 44mpd 15 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ (𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) ∧ 𝐵𝑋) ∧ (𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋)) → 𝐵 = 𝑍)
46453exp1 1353 . . . . . . 7 (𝑅 ∈ RingOps → ((𝑎𝐻(𝐴𝐻𝐵)) = (𝑎𝐻𝑍) → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → 𝐵 = 𝑍))))
471, 46syl5com 31 . . . . . 6 ((𝐴𝐻𝐵) = 𝑍 → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → 𝐵 = 𝑍))))
4847com14 96 . . . . 5 ((𝑎𝑋 ∧ (𝑎𝐻𝐴) = 𝑈𝐴𝑋) → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍))))
49483exp 1120 . . . 4 (𝑎𝑋 → ((𝑎𝐻𝐴) = 𝑈 → (𝐴𝑋 → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍))))))
5049rexlimiv 3148 . . 3 (∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈 → (𝐴𝑋 → (𝑅 ∈ RingOps → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))))
5150com13 88 . 2 (𝑅 ∈ RingOps → (𝐴𝑋 → (∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈 → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))))
52513imp 1111 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋 ∧ ∃𝑎𝑋 (𝑎𝐻𝐴) = 𝑈) → (𝐵𝑋 → ((𝐴𝐻𝐵) = 𝑍𝐵 = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  ran crn 5686  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  GIdcgi 30509  RingOpscrngo 37901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fo 6567  df-fv 6569  df-riota 7388  df-ov 7434  df-1st 8014  df-2nd 8015  df-grpo 30512  df-gid 30513  df-ablo 30564  df-ass 37850  df-exid 37852  df-mgmOLD 37856  df-sgrOLD 37868  df-mndo 37874  df-rngo 37902
This theorem is referenced by:  isdrngo2  37965
  Copyright terms: Public domain W3C validator