Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbach Structured version   Visualization version   GIF version

Theorem tgoldbach 47801
Description: The ternary Goldbach conjecture is valid. Main theorem in [Helfgott] p. 2. This follows from tgoldbachlt 47800 and ax-tgoldbachgt 47795. (Contributed by AV, 2-Aug-2020.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
tgoldbach 𝑛 ∈ Odd (7 < 𝑛𝑛 ∈ GoldbachOdd )

Proof of Theorem tgoldbach
Dummy variables 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddz 47615 . . . . 5 (𝑛 ∈ Odd → 𝑛 ∈ ℤ)
21zred 12580 . . . 4 (𝑛 ∈ Odd → 𝑛 ∈ ℝ)
3 10re 12610 . . . . 5 10 ∈ ℝ
4 2nn0 12401 . . . . . . 7 2 ∈ ℕ0
5 7nn 12220 . . . . . . 7 7 ∈ ℕ
64, 5decnncl 12611 . . . . . 6 27 ∈ ℕ
76nnnn0i 12392 . . . . 5 27 ∈ ℕ0
8 reexpcl 13985 . . . . 5 ((10 ∈ ℝ ∧ 27 ∈ ℕ0) → (10↑27) ∈ ℝ)
93, 7, 8mp2an 692 . . . 4 (10↑27) ∈ ℝ
10 lelttric 11223 . . . 4 ((𝑛 ∈ ℝ ∧ (10↑27) ∈ ℝ) → (𝑛 ≤ (10↑27) ∨ (10↑27) < 𝑛))
112, 9, 10sylancl 586 . . 3 (𝑛 ∈ Odd → (𝑛 ≤ (10↑27) ∨ (10↑27) < 𝑛))
12 tgoldbachlt 47800 . . . . 5 𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑜 ∈ Odd ((7 < 𝑜𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ))
13 breq2 5096 . . . . . . . . . . . . 13 (𝑜 = 𝑛 → (7 < 𝑜 ↔ 7 < 𝑛))
14 breq1 5095 . . . . . . . . . . . . 13 (𝑜 = 𝑛 → (𝑜 < 𝑚𝑛 < 𝑚))
1513, 14anbi12d 632 . . . . . . . . . . . 12 (𝑜 = 𝑛 → ((7 < 𝑜𝑜 < 𝑚) ↔ (7 < 𝑛𝑛 < 𝑚)))
16 eleq1w 2811 . . . . . . . . . . . 12 (𝑜 = 𝑛 → (𝑜 ∈ GoldbachOdd ↔ 𝑛 ∈ GoldbachOdd ))
1715, 16imbi12d 344 . . . . . . . . . . 11 (𝑜 = 𝑛 → (((7 < 𝑜𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ) ↔ ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )))
1817rspcv 3573 . . . . . . . . . 10 (𝑛 ∈ Odd → (∀𝑜 ∈ Odd ((7 < 𝑜𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ) → ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )))
199recni 11129 . . . . . . . . . . . . . . . . . . . . . . 23 (10↑27) ∈ ℂ
2019mullidi 11120 . . . . . . . . . . . . . . . . . . . . . 22 (1 · (10↑27)) = (10↑27)
21 1re 11115 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℝ
22 8re 12224 . . . . . . . . . . . . . . . . . . . . . . . . 25 8 ∈ ℝ
2321, 22pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ∈ ℝ ∧ 8 ∈ ℝ)
2423a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (1 ∈ ℝ ∧ 8 ∈ ℝ))
25 0le1 11643 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ≤ 1
26 1lt8 12321 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 < 8
2725, 26pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 ≤ 1 ∧ 1 < 8)
2827a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (0 ≤ 1 ∧ 1 < 8))
29 3nn 12207 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 ∈ ℕ
3029decnncl2 12615 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 30 ∈ ℕ
3130nnnn0i 12392 . . . . . . . . . . . . . . . . . . . . . . . . . 26 30 ∈ ℕ0
32 reexpcl 13985 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((10 ∈ ℝ ∧ 30 ∈ ℕ0) → (10↑30) ∈ ℝ)
333, 31, 32mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 (10↑30) ∈ ℝ
349, 33pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . 24 ((10↑27) ∈ ℝ ∧ (10↑30) ∈ ℝ)
3534a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → ((10↑27) ∈ ℝ ∧ (10↑30) ∈ ℝ))
36 10nn0 12609 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 10 ∈ ℕ0
3736, 7nn0expcli 13995 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (10↑27) ∈ ℕ0
3837nn0ge0i 12411 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ≤ (10↑27)
396nnzi 12499 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 27 ∈ ℤ
4030nnzi 12499 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 30 ∈ ℤ
413, 39, 403pm3.2i 1340 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (10 ∈ ℝ ∧ 27 ∈ ℤ ∧ 30 ∈ ℤ)
42 1lt10 12730 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 < 10
43 3nn0 12402 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 ∈ ℕ0
44 7nn0 12406 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7 ∈ ℕ0
45 0nn0 12399 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 ∈ ℕ0
46 7lt10 12724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7 < 10
47 2lt3 12295 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 < 3
484, 43, 44, 45, 46, 47decltc 12620 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 27 < 30
4942, 48pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 < 10 ∧ 27 < 30)
50 ltexp2a 14073 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((10 ∈ ℝ ∧ 27 ∈ ℤ ∧ 30 ∈ ℤ) ∧ (1 < 10 ∧ 27 < 30)) → (10↑27) < (10↑30))
5141, 49, 50mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 (10↑27) < (10↑30)
5238, 51pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 ≤ (10↑27) ∧ (10↑27) < (10↑30))
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (0 ≤ (10↑27) ∧ (10↑27) < (10↑30)))
54 ltmul12a 11980 . . . . . . . . . . . . . . . . . . . . . . 23 ((((1 ∈ ℝ ∧ 8 ∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < 8)) ∧ (((10↑27) ∈ ℝ ∧ (10↑30) ∈ ℝ) ∧ (0 ≤ (10↑27) ∧ (10↑27) < (10↑30)))) → (1 · (10↑27)) < (8 · (10↑30)))
5524, 28, 35, 53, 54syl22anc 838 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (1 · (10↑27)) < (8 · (10↑30)))
5620, 55eqbrtrrid 5128 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (10↑27) < (8 · (10↑30)))
579a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (10↑27) ∈ ℝ)
5822, 33remulcli 11131 . . . . . . . . . . . . . . . . . . . . . . 23 (8 · (10↑30)) ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (8 · (10↑30)) ∈ ℝ)
60 nnre 12135 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
6160adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
62 lttr 11192 . . . . . . . . . . . . . . . . . . . . . 22 (((10↑27) ∈ ℝ ∧ (8 · (10↑30)) ∈ ℝ ∧ 𝑚 ∈ ℝ) → (((10↑27) < (8 · (10↑30)) ∧ (8 · (10↑30)) < 𝑚) → (10↑27) < 𝑚))
6357, 59, 61, 62syl3anc 1373 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (((10↑27) < (8 · (10↑30)) ∧ (8 · (10↑30)) < 𝑚) → (10↑27) < 𝑚))
6456, 63mpand 695 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → ((8 · (10↑30)) < 𝑚 → (10↑27) < 𝑚))
6564imp 406 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) → (10↑27) < 𝑚)
662adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → 𝑛 ∈ ℝ)
6766, 57, 613jca 1128 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (𝑛 ∈ ℝ ∧ (10↑27) ∈ ℝ ∧ 𝑚 ∈ ℝ))
6867adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) → (𝑛 ∈ ℝ ∧ (10↑27) ∈ ℝ ∧ 𝑚 ∈ ℝ))
69 lelttr 11206 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℝ ∧ (10↑27) ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝑛 ≤ (10↑27) ∧ (10↑27) < 𝑚) → 𝑛 < 𝑚))
7068, 69syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) → ((𝑛 ≤ (10↑27) ∧ (10↑27) < 𝑚) → 𝑛 < 𝑚))
7165, 70mpan2d 694 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) → (𝑛 ≤ (10↑27) → 𝑛 < 𝑚))
7271imp 406 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) ∧ 𝑛 ≤ (10↑27)) → 𝑛 < 𝑚)
7372anim1i 615 . . . . . . . . . . . . . . . 16 (((((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) ∧ 𝑛 ≤ (10↑27)) ∧ 7 < 𝑛) → (𝑛 < 𝑚 ∧ 7 < 𝑛))
7473ancomd 461 . . . . . . . . . . . . . . 15 (((((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) ∧ 𝑛 ≤ (10↑27)) ∧ 7 < 𝑛) → (7 < 𝑛𝑛 < 𝑚))
75 pm2.27 42 . . . . . . . . . . . . . . 15 ((7 < 𝑛𝑛 < 𝑚) → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd ))
7674, 75syl 17 . . . . . . . . . . . . . 14 (((((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) ∧ 𝑛 ≤ (10↑27)) ∧ 7 < 𝑛) → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd ))
7776ex 412 . . . . . . . . . . . . 13 ((((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) ∧ 𝑛 ≤ (10↑27)) → (7 < 𝑛 → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd )))
7877com23 86 . . . . . . . . . . . 12 ((((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) ∧ 𝑛 ≤ (10↑27)) → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → (7 < 𝑛𝑛 ∈ GoldbachOdd )))
7978exp41 434 . . . . . . . . . . 11 (𝑛 ∈ Odd → (𝑚 ∈ ℕ → ((8 · (10↑30)) < 𝑚 → (𝑛 ≤ (10↑27) → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))))
8079com25 99 . . . . . . . . . 10 (𝑛 ∈ Odd → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → ((8 · (10↑30)) < 𝑚 → (𝑛 ≤ (10↑27) → (𝑚 ∈ ℕ → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))))
8118, 80syld 47 . . . . . . . . 9 (𝑛 ∈ Odd → (∀𝑜 ∈ Odd ((7 < 𝑜𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ) → ((8 · (10↑30)) < 𝑚 → (𝑛 ≤ (10↑27) → (𝑚 ∈ ℕ → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))))
8281com15 101 . . . . . . . 8 (𝑚 ∈ ℕ → (∀𝑜 ∈ Odd ((7 < 𝑜𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ) → ((8 · (10↑30)) < 𝑚 → (𝑛 ≤ (10↑27) → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))))
8382com23 86 . . . . . . 7 (𝑚 ∈ ℕ → ((8 · (10↑30)) < 𝑚 → (∀𝑜 ∈ Odd ((7 < 𝑜𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ) → (𝑛 ≤ (10↑27) → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))))
8483imp32 418 . . . . . 6 ((𝑚 ∈ ℕ ∧ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑜 ∈ Odd ((7 < 𝑜𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ))) → (𝑛 ≤ (10↑27) → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))
8584rexlimiva 3122 . . . . 5 (∃𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑜 ∈ Odd ((7 < 𝑜𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd )) → (𝑛 ≤ (10↑27) → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))
8612, 85ax-mp 5 . . . 4 (𝑛 ≤ (10↑27) → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd )))
87 tgoldbachgtALTV 47796 . . . . 5 𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑜 ∈ Odd (𝑚 < 𝑜𝑜 ∈ GoldbachOdd ))
88 breq2 5096 . . . . . . . . . . 11 (𝑜 = 𝑛 → (𝑚 < 𝑜𝑚 < 𝑛))
8988, 16imbi12d 344 . . . . . . . . . 10 (𝑜 = 𝑛 → ((𝑚 < 𝑜𝑜 ∈ GoldbachOdd ) ↔ (𝑚 < 𝑛𝑛 ∈ GoldbachOdd )))
9089rspcv 3573 . . . . . . . . 9 (𝑛 ∈ Odd → (∀𝑜 ∈ Odd (𝑚 < 𝑜𝑜 ∈ GoldbachOdd ) → (𝑚 < 𝑛𝑛 ∈ GoldbachOdd )))
91 lelttr 11206 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℝ ∧ (10↑27) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((𝑚 ≤ (10↑27) ∧ (10↑27) < 𝑛) → 𝑚 < 𝑛))
9261, 57, 66, 91syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → ((𝑚 ≤ (10↑27) ∧ (10↑27) < 𝑛) → 𝑚 < 𝑛))
9392expcomd 416 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → ((10↑27) < 𝑛 → (𝑚 ≤ (10↑27) → 𝑚 < 𝑛)))
9493ex 412 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ Odd → (𝑚 ∈ ℕ → ((10↑27) < 𝑛 → (𝑚 ≤ (10↑27) → 𝑚 < 𝑛))))
9594com23 86 . . . . . . . . . . . . . . . 16 (𝑛 ∈ Odd → ((10↑27) < 𝑛 → (𝑚 ∈ ℕ → (𝑚 ≤ (10↑27) → 𝑚 < 𝑛))))
9695imp43 427 . . . . . . . . . . . . . . 15 (((𝑛 ∈ Odd ∧ (10↑27) < 𝑛) ∧ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27))) → 𝑚 < 𝑛)
97 pm2.27 42 . . . . . . . . . . . . . . 15 (𝑚 < 𝑛 → ((𝑚 < 𝑛𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd ))
9896, 97syl 17 . . . . . . . . . . . . . 14 (((𝑛 ∈ Odd ∧ (10↑27) < 𝑛) ∧ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27))) → ((𝑚 < 𝑛𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd ))
9998a1dd 50 . . . . . . . . . . . . 13 (((𝑛 ∈ Odd ∧ (10↑27) < 𝑛) ∧ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27))) → ((𝑚 < 𝑛𝑛 ∈ GoldbachOdd ) → (7 < 𝑛𝑛 ∈ GoldbachOdd )))
10099ex 412 . . . . . . . . . . . 12 ((𝑛 ∈ Odd ∧ (10↑27) < 𝑛) → ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27)) → ((𝑚 < 𝑛𝑛 ∈ GoldbachOdd ) → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))
101100com23 86 . . . . . . . . . . 11 ((𝑛 ∈ Odd ∧ (10↑27) < 𝑛) → ((𝑚 < 𝑛𝑛 ∈ GoldbachOdd ) → ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27)) → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))
102101ex 412 . . . . . . . . . 10 (𝑛 ∈ Odd → ((10↑27) < 𝑛 → ((𝑚 < 𝑛𝑛 ∈ GoldbachOdd ) → ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27)) → (7 < 𝑛𝑛 ∈ GoldbachOdd )))))
103102com23 86 . . . . . . . . 9 (𝑛 ∈ Odd → ((𝑚 < 𝑛𝑛 ∈ GoldbachOdd ) → ((10↑27) < 𝑛 → ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27)) → (7 < 𝑛𝑛 ∈ GoldbachOdd )))))
10490, 103syld 47 . . . . . . . 8 (𝑛 ∈ Odd → (∀𝑜 ∈ Odd (𝑚 < 𝑜𝑜 ∈ GoldbachOdd ) → ((10↑27) < 𝑛 → ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27)) → (7 < 𝑛𝑛 ∈ GoldbachOdd )))))
105104com14 96 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27)) → (∀𝑜 ∈ Odd (𝑚 < 𝑜𝑜 ∈ GoldbachOdd ) → ((10↑27) < 𝑛 → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd )))))
106105impr 454 . . . . . 6 ((𝑚 ∈ ℕ ∧ (𝑚 ≤ (10↑27) ∧ ∀𝑜 ∈ Odd (𝑚 < 𝑜𝑜 ∈ GoldbachOdd ))) → ((10↑27) < 𝑛 → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))
107106rexlimiva 3122 . . . . 5 (∃𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑜 ∈ Odd (𝑚 < 𝑜𝑜 ∈ GoldbachOdd )) → ((10↑27) < 𝑛 → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))
10887, 107ax-mp 5 . . . 4 ((10↑27) < 𝑛 → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd )))
10986, 108jaoi 857 . . 3 ((𝑛 ≤ (10↑27) ∨ (10↑27) < 𝑛) → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd )))
11011, 109mpcom 38 . 2 (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd ))
111110rgen 3046 1 𝑛 ∈ Odd (7 < 𝑛𝑛 ∈ GoldbachOdd )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053   class class class wbr 5092  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010   · cmul 11014   < clt 11149  cle 11150  cn 12128  2c2 12183  3c3 12184  7c7 12188  8c8 12189  0cn0 12384  cz 12471  cdc 12591  cexp 13968   Odd codd 47609   GoldbachOdd cgbo 47731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-bgbltosilva 47794  ax-tgoldbachgt 47795  ax-hgprmladder 47798
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-ico 13254  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-prm 16583  df-iccp 47398  df-even 47610  df-odd 47611  df-gbe 47732  df-gbo 47734
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator