Step | Hyp | Ref
| Expression |
1 | | oddz 45083 |
. . . . 5
⊢ (𝑛 ∈ Odd → 𝑛 ∈
ℤ) |
2 | 1 | zred 12426 |
. . . 4
⊢ (𝑛 ∈ Odd → 𝑛 ∈
ℝ) |
3 | | 10re 12456 |
. . . . 5
⊢ ;10 ∈ ℝ |
4 | | 2nn0 12250 |
. . . . . . 7
⊢ 2 ∈
ℕ0 |
5 | | 7nn 12065 |
. . . . . . 7
⊢ 7 ∈
ℕ |
6 | 4, 5 | decnncl 12457 |
. . . . . 6
⊢ ;27 ∈ ℕ |
7 | 6 | nnnn0i 12241 |
. . . . 5
⊢ ;27 ∈
ℕ0 |
8 | | reexpcl 13799 |
. . . . 5
⊢ ((;10 ∈ ℝ ∧ ;27 ∈ ℕ0) →
(;10↑;27) ∈ ℝ) |
9 | 3, 7, 8 | mp2an 689 |
. . . 4
⊢ (;10↑;27) ∈ ℝ |
10 | | lelttric 11082 |
. . . 4
⊢ ((𝑛 ∈ ℝ ∧ (;10↑;27) ∈ ℝ) → (𝑛 ≤ (;10↑;27) ∨ (;10↑;27) < 𝑛)) |
11 | 2, 9, 10 | sylancl 586 |
. . 3
⊢ (𝑛 ∈ Odd → (𝑛 ≤ (;10↑;27) ∨ (;10↑;27) < 𝑛)) |
12 | | tgoldbachlt 45268 |
. . . . 5
⊢
∃𝑚 ∈
ℕ ((8 · (;10↑;30)) < 𝑚 ∧ ∀𝑜 ∈ Odd ((7 < 𝑜 ∧ 𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd )) |
13 | | breq2 5078 |
. . . . . . . . . . . . 13
⊢ (𝑜 = 𝑛 → (7 < 𝑜 ↔ 7 < 𝑛)) |
14 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢ (𝑜 = 𝑛 → (𝑜 < 𝑚 ↔ 𝑛 < 𝑚)) |
15 | 13, 14 | anbi12d 631 |
. . . . . . . . . . . 12
⊢ (𝑜 = 𝑛 → ((7 < 𝑜 ∧ 𝑜 < 𝑚) ↔ (7 < 𝑛 ∧ 𝑛 < 𝑚))) |
16 | | eleq1w 2821 |
. . . . . . . . . . . 12
⊢ (𝑜 = 𝑛 → (𝑜 ∈ GoldbachOdd ↔ 𝑛 ∈ GoldbachOdd )) |
17 | 15, 16 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑜 = 𝑛 → (((7 < 𝑜 ∧ 𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ) ↔ ((7 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ))) |
18 | 17 | rspcv 3557 |
. . . . . . . . . 10
⊢ (𝑛 ∈ Odd →
(∀𝑜 ∈ Odd ((7
< 𝑜 ∧ 𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ) → ((7 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ))) |
19 | 9 | recni 10989 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (;10↑;27) ∈ ℂ |
20 | 19 | mulid2i 10980 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1
· (;10↑;27)) = (;10↑;27) |
21 | | 1re 10975 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 ∈
ℝ |
22 | | 8re 12069 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 8 ∈
ℝ |
23 | 21, 22 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (1 ∈
ℝ ∧ 8 ∈ ℝ) |
24 | 23 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (1
∈ ℝ ∧ 8 ∈ ℝ)) |
25 | | 0le1 11498 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ≤
1 |
26 | | 1lt8 12171 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 <
8 |
27 | 25, 26 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 ≤ 1
∧ 1 < 8) |
28 | 27 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (0 ≤
1 ∧ 1 < 8)) |
29 | | 3nn 12052 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 3 ∈
ℕ |
30 | 29 | decnncl2 12461 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ;30 ∈ ℕ |
31 | 30 | nnnn0i 12241 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ;30 ∈
ℕ0 |
32 | | reexpcl 13799 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((;10 ∈ ℝ ∧ ;30 ∈ ℕ0) →
(;10↑;30) ∈ ℝ) |
33 | 3, 31, 32 | mp2an 689 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (;10↑;30) ∈ ℝ |
34 | 9, 33 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((;10↑;27) ∈ ℝ ∧ (;10↑;30) ∈ ℝ) |
35 | 34 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → ((;10↑;27) ∈ ℝ ∧ (;10↑;30) ∈ ℝ)) |
36 | | 10nn0 12455 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ;10 ∈
ℕ0 |
37 | 36, 7 | nn0expcli 13809 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (;10↑;27) ∈ ℕ0 |
38 | 37 | nn0ge0i 12260 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ≤
(;10↑;27) |
39 | 6 | nnzi 12344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ;27 ∈ ℤ |
40 | 30 | nnzi 12344 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ;30 ∈ ℤ |
41 | 3, 39, 40 | 3pm3.2i 1338 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (;10 ∈ ℝ ∧ ;27 ∈ ℤ ∧ ;30 ∈ ℤ) |
42 | | 1lt10 12576 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 1 <
;10 |
43 | | 3nn0 12251 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 3 ∈
ℕ0 |
44 | | 7nn0 12255 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 7 ∈
ℕ0 |
45 | | 0nn0 12248 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 0 ∈
ℕ0 |
46 | | 7lt10 12570 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 7 <
;10 |
47 | | 2lt3 12145 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 2 <
3 |
48 | 4, 43, 44, 45, 46, 47 | decltc 12466 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ;27 < ;30 |
49 | 42, 48 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (1 <
;10 ∧ ;27 < ;30) |
50 | | ltexp2a 13884 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((;10 ∈ ℝ ∧ ;27 ∈ ℤ ∧ ;30 ∈ ℤ) ∧ (1 < ;10 ∧ ;27 < ;30)) → (;10↑;27) < (;10↑;30)) |
51 | 41, 49, 50 | mp2an 689 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (;10↑;27) < (;10↑;30) |
52 | 38, 51 | pm3.2i 471 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (0 ≤
(;10↑;27) ∧ (;10↑;27) < (;10↑;30)) |
53 | 52 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (0 ≤
(;10↑;27) ∧ (;10↑;27) < (;10↑;30))) |
54 | | ltmul12a 11831 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((1
∈ ℝ ∧ 8 ∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < 8)) ∧
(((;10↑;27) ∈ ℝ ∧ (;10↑;30) ∈ ℝ) ∧ (0 ≤ (;10↑;27) ∧ (;10↑;27) < (;10↑;30)))) → (1 · (;10↑;27)) < (8 · (;10↑;30))) |
55 | 24, 28, 35, 53, 54 | syl22anc 836 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (1
· (;10↑;27)) < (8 · (;10↑;30))) |
56 | 20, 55 | eqbrtrrid 5110 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (;10↑;27) < (8 · (;10↑;30))) |
57 | 9 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (;10↑;27) ∈ ℝ) |
58 | 22, 33 | remulcli 10991 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (8
· (;10↑;30)) ∈ ℝ |
59 | 58 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (8
· (;10↑;30)) ∈ ℝ) |
60 | | nnre 11980 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℝ) |
61 | 60 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → 𝑚 ∈
ℝ) |
62 | | lttr 11051 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((;10↑;27) ∈ ℝ ∧ (8 · (;10↑;30)) ∈ ℝ ∧ 𝑚 ∈ ℝ) → (((;10↑;27) < (8 · (;10↑;30)) ∧ (8 · (;10↑;30)) < 𝑚) → (;10↑;27) < 𝑚)) |
63 | 57, 59, 61, 62 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (((;10↑;27) < (8 · (;10↑;30)) ∧ (8 · (;10↑;30)) < 𝑚) → (;10↑;27) < 𝑚)) |
64 | 56, 63 | mpand 692 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → ((8
· (;10↑;30)) < 𝑚 → (;10↑;27) < 𝑚)) |
65 | 64 | imp 407 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8
· (;10↑;30)) < 𝑚) → (;10↑;27) < 𝑚) |
66 | 2 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → 𝑛 ∈
ℝ) |
67 | 66, 57, 61 | 3jca 1127 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (𝑛 ∈ ℝ ∧ (;10↑;27) ∈ ℝ ∧ 𝑚 ∈ ℝ)) |
68 | 67 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8
· (;10↑;30)) < 𝑚) → (𝑛 ∈ ℝ ∧ (;10↑;27) ∈ ℝ ∧ 𝑚 ∈ ℝ)) |
69 | | lelttr 11065 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑛 ∈ ℝ ∧ (;10↑;27) ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝑛 ≤ (;10↑;27) ∧ (;10↑;27) < 𝑚) → 𝑛 < 𝑚)) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8
· (;10↑;30)) < 𝑚) → ((𝑛 ≤ (;10↑;27) ∧ (;10↑;27) < 𝑚) → 𝑛 < 𝑚)) |
71 | 65, 70 | mpan2d 691 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8
· (;10↑;30)) < 𝑚) → (𝑛 ≤ (;10↑;27) → 𝑛 < 𝑚)) |
72 | 71 | imp 407 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8
· (;10↑;30)) < 𝑚) ∧ 𝑛 ≤ (;10↑;27)) → 𝑛 < 𝑚) |
73 | 72 | anim1i 615 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑛 ∈ Odd
∧ 𝑚 ∈ ℕ)
∧ (8 · (;10↑;30)) < 𝑚) ∧ 𝑛 ≤ (;10↑;27)) ∧ 7 < 𝑛) → (𝑛 < 𝑚 ∧ 7 < 𝑛)) |
74 | 73 | ancomd 462 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑛 ∈ Odd
∧ 𝑚 ∈ ℕ)
∧ (8 · (;10↑;30)) < 𝑚) ∧ 𝑛 ≤ (;10↑;27)) ∧ 7 < 𝑛) → (7 < 𝑛 ∧ 𝑛 < 𝑚)) |
75 | | pm2.27 42 |
. . . . . . . . . . . . . . 15
⊢ ((7 <
𝑛 ∧ 𝑛 < 𝑚) → (((7 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd
)) |
76 | 74, 75 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝑛 ∈ Odd
∧ 𝑚 ∈ ℕ)
∧ (8 · (;10↑;30)) < 𝑚) ∧ 𝑛 ≤ (;10↑;27)) ∧ 7 < 𝑛) → (((7 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd
)) |
77 | 76 | ex 413 |
. . . . . . . . . . . . 13
⊢ ((((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8
· (;10↑;30)) < 𝑚) ∧ 𝑛 ≤ (;10↑;27)) → (7 < 𝑛 → (((7 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd
))) |
78 | 77 | com23 86 |
. . . . . . . . . . . 12
⊢ ((((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8
· (;10↑;30)) < 𝑚) ∧ 𝑛 ≤ (;10↑;27)) → (((7 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ))) |
79 | 78 | exp41 435 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ Odd → (𝑚 ∈ ℕ → ((8
· (;10↑;30)) < 𝑚 → (𝑛 ≤ (;10↑;27) → (((7 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd )))))) |
80 | 79 | com25 99 |
. . . . . . . . . 10
⊢ (𝑛 ∈ Odd → (((7 <
𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → ((8 ·
(;10↑;30)) < 𝑚 → (𝑛 ≤ (;10↑;27) → (𝑚 ∈ ℕ → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd )))))) |
81 | 18, 80 | syld 47 |
. . . . . . . . 9
⊢ (𝑛 ∈ Odd →
(∀𝑜 ∈ Odd ((7
< 𝑜 ∧ 𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ) → ((8 ·
(;10↑;30)) < 𝑚 → (𝑛 ≤ (;10↑;27) → (𝑚 ∈ ℕ → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd )))))) |
82 | 81 | com15 101 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ →
(∀𝑜 ∈ Odd ((7
< 𝑜 ∧ 𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ) → ((8 ·
(;10↑;30)) < 𝑚 → (𝑛 ≤ (;10↑;27) → (𝑛 ∈ Odd → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd )))))) |
83 | 82 | com23 86 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ → ((8
· (;10↑;30)) < 𝑚 → (∀𝑜 ∈ Odd ((7 < 𝑜 ∧ 𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ) → (𝑛 ≤ (;10↑;27) → (𝑛 ∈ Odd → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd )))))) |
84 | 83 | imp32 419 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ ∧ ((8
· (;10↑;30)) < 𝑚 ∧ ∀𝑜 ∈ Odd ((7 < 𝑜 ∧ 𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ))) → (𝑛 ≤ (;10↑;27) → (𝑛 ∈ Odd → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd )))) |
85 | 84 | rexlimiva 3210 |
. . . . 5
⊢
(∃𝑚 ∈
ℕ ((8 · (;10↑;30)) < 𝑚 ∧ ∀𝑜 ∈ Odd ((7 < 𝑜 ∧ 𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd )) → (𝑛 ≤ (;10↑;27) → (𝑛 ∈ Odd → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd )))) |
86 | 12, 85 | ax-mp 5 |
. . . 4
⊢ (𝑛 ≤ (;10↑;27) → (𝑛 ∈ Odd → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ))) |
87 | | tgoldbachgtALTV 45264 |
. . . . 5
⊢
∃𝑚 ∈
ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑜 ∈ Odd (𝑚 < 𝑜 → 𝑜 ∈ GoldbachOdd )) |
88 | | breq2 5078 |
. . . . . . . . . . 11
⊢ (𝑜 = 𝑛 → (𝑚 < 𝑜 ↔ 𝑚 < 𝑛)) |
89 | 88, 16 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑜 = 𝑛 → ((𝑚 < 𝑜 → 𝑜 ∈ GoldbachOdd ) ↔ (𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ))) |
90 | 89 | rspcv 3557 |
. . . . . . . . 9
⊢ (𝑛 ∈ Odd →
(∀𝑜 ∈ Odd
(𝑚 < 𝑜 → 𝑜 ∈ GoldbachOdd ) → (𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ))) |
91 | | lelttr 11065 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ ℝ ∧ (;10↑;27) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((𝑚 ≤ (;10↑;27) ∧ (;10↑;27) < 𝑛) → 𝑚 < 𝑛)) |
92 | 61, 57, 66, 91 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → ((𝑚 ≤ (;10↑;27) ∧ (;10↑;27) < 𝑛) → 𝑚 < 𝑛)) |
93 | 92 | expcomd 417 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → ((;10↑;27) < 𝑛 → (𝑚 ≤ (;10↑;27) → 𝑚 < 𝑛))) |
94 | 93 | ex 413 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ Odd → (𝑚 ∈ ℕ → ((;10↑;27) < 𝑛 → (𝑚 ≤ (;10↑;27) → 𝑚 < 𝑛)))) |
95 | 94 | com23 86 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ Odd → ((;10↑;27) < 𝑛 → (𝑚 ∈ ℕ → (𝑚 ≤ (;10↑;27) → 𝑚 < 𝑛)))) |
96 | 95 | imp43 428 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ Odd ∧ (;10↑;27) < 𝑛) ∧ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (;10↑;27))) → 𝑚 < 𝑛) |
97 | | pm2.27 42 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 < 𝑛 → ((𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd
)) |
98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ Odd ∧ (;10↑;27) < 𝑛) ∧ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (;10↑;27))) → ((𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd
)) |
99 | 98 | a1dd 50 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ Odd ∧ (;10↑;27) < 𝑛) ∧ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (;10↑;27))) → ((𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ))) |
100 | 99 | ex 413 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ Odd ∧ (;10↑;27) < 𝑛) → ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (;10↑;27)) → ((𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd )))) |
101 | 100 | com23 86 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ Odd ∧ (;10↑;27) < 𝑛) → ((𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (;10↑;27)) → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd )))) |
102 | 101 | ex 413 |
. . . . . . . . . 10
⊢ (𝑛 ∈ Odd → ((;10↑;27) < 𝑛 → ((𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (;10↑;27)) → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ))))) |
103 | 102 | com23 86 |
. . . . . . . . 9
⊢ (𝑛 ∈ Odd → ((𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ((;10↑;27) < 𝑛 → ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (;10↑;27)) → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ))))) |
104 | 90, 103 | syld 47 |
. . . . . . . 8
⊢ (𝑛 ∈ Odd →
(∀𝑜 ∈ Odd
(𝑚 < 𝑜 → 𝑜 ∈ GoldbachOdd ) → ((;10↑;27) < 𝑛 → ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (;10↑;27)) → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ))))) |
105 | 104 | com14 96 |
. . . . . . 7
⊢ ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (;10↑;27)) → (∀𝑜 ∈ Odd (𝑚 < 𝑜 → 𝑜 ∈ GoldbachOdd ) → ((;10↑;27) < 𝑛 → (𝑛 ∈ Odd → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ))))) |
106 | 105 | impr 455 |
. . . . . 6
⊢ ((𝑚 ∈ ℕ ∧ (𝑚 ≤ (;10↑;27) ∧ ∀𝑜 ∈ Odd (𝑚 < 𝑜 → 𝑜 ∈ GoldbachOdd ))) → ((;10↑;27) < 𝑛 → (𝑛 ∈ Odd → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd )))) |
107 | 106 | rexlimiva 3210 |
. . . . 5
⊢
(∃𝑚 ∈
ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑜 ∈ Odd (𝑚 < 𝑜 → 𝑜 ∈ GoldbachOdd )) → ((;10↑;27) < 𝑛 → (𝑛 ∈ Odd → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd )))) |
108 | 87, 107 | ax-mp 5 |
. . . 4
⊢ ((;10↑;27) < 𝑛 → (𝑛 ∈ Odd → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ))) |
109 | 86, 108 | jaoi 854 |
. . 3
⊢ ((𝑛 ≤ (;10↑;27) ∨ (;10↑;27) < 𝑛) → (𝑛 ∈ Odd → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ))) |
110 | 11, 109 | mpcom 38 |
. 2
⊢ (𝑛 ∈ Odd → (7 < 𝑛 → 𝑛 ∈ GoldbachOdd )) |
111 | 110 | rgen 3074 |
1
⊢
∀𝑛 ∈ Odd
(7 < 𝑛 → 𝑛 ∈ GoldbachOdd
) |