Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgoldbach Structured version   Visualization version   GIF version

Theorem tgoldbach 45269
Description: The ternary Goldbach conjecture is valid. Main theorem in [Helfgott] p. 2. This follows from tgoldbachlt 45268 and ax-tgoldbachgt 45263. (Contributed by AV, 2-Aug-2020.) (Revised by AV, 9-Sep-2021.)
Assertion
Ref Expression
tgoldbach 𝑛 ∈ Odd (7 < 𝑛𝑛 ∈ GoldbachOdd )

Proof of Theorem tgoldbach
Dummy variables 𝑚 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddz 45083 . . . . 5 (𝑛 ∈ Odd → 𝑛 ∈ ℤ)
21zred 12426 . . . 4 (𝑛 ∈ Odd → 𝑛 ∈ ℝ)
3 10re 12456 . . . . 5 10 ∈ ℝ
4 2nn0 12250 . . . . . . 7 2 ∈ ℕ0
5 7nn 12065 . . . . . . 7 7 ∈ ℕ
64, 5decnncl 12457 . . . . . 6 27 ∈ ℕ
76nnnn0i 12241 . . . . 5 27 ∈ ℕ0
8 reexpcl 13799 . . . . 5 ((10 ∈ ℝ ∧ 27 ∈ ℕ0) → (10↑27) ∈ ℝ)
93, 7, 8mp2an 689 . . . 4 (10↑27) ∈ ℝ
10 lelttric 11082 . . . 4 ((𝑛 ∈ ℝ ∧ (10↑27) ∈ ℝ) → (𝑛 ≤ (10↑27) ∨ (10↑27) < 𝑛))
112, 9, 10sylancl 586 . . 3 (𝑛 ∈ Odd → (𝑛 ≤ (10↑27) ∨ (10↑27) < 𝑛))
12 tgoldbachlt 45268 . . . . 5 𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑜 ∈ Odd ((7 < 𝑜𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ))
13 breq2 5078 . . . . . . . . . . . . 13 (𝑜 = 𝑛 → (7 < 𝑜 ↔ 7 < 𝑛))
14 breq1 5077 . . . . . . . . . . . . 13 (𝑜 = 𝑛 → (𝑜 < 𝑚𝑛 < 𝑚))
1513, 14anbi12d 631 . . . . . . . . . . . 12 (𝑜 = 𝑛 → ((7 < 𝑜𝑜 < 𝑚) ↔ (7 < 𝑛𝑛 < 𝑚)))
16 eleq1w 2821 . . . . . . . . . . . 12 (𝑜 = 𝑛 → (𝑜 ∈ GoldbachOdd ↔ 𝑛 ∈ GoldbachOdd ))
1715, 16imbi12d 345 . . . . . . . . . . 11 (𝑜 = 𝑛 → (((7 < 𝑜𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ) ↔ ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )))
1817rspcv 3557 . . . . . . . . . 10 (𝑛 ∈ Odd → (∀𝑜 ∈ Odd ((7 < 𝑜𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ) → ((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )))
199recni 10989 . . . . . . . . . . . . . . . . . . . . . . 23 (10↑27) ∈ ℂ
2019mulid2i 10980 . . . . . . . . . . . . . . . . . . . . . 22 (1 · (10↑27)) = (10↑27)
21 1re 10975 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℝ
22 8re 12069 . . . . . . . . . . . . . . . . . . . . . . . . 25 8 ∈ ℝ
2321, 22pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ∈ ℝ ∧ 8 ∈ ℝ)
2423a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (1 ∈ ℝ ∧ 8 ∈ ℝ))
25 0le1 11498 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ≤ 1
26 1lt8 12171 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 < 8
2725, 26pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 ≤ 1 ∧ 1 < 8)
2827a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (0 ≤ 1 ∧ 1 < 8))
29 3nn 12052 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 ∈ ℕ
3029decnncl2 12461 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 30 ∈ ℕ
3130nnnn0i 12241 . . . . . . . . . . . . . . . . . . . . . . . . . 26 30 ∈ ℕ0
32 reexpcl 13799 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((10 ∈ ℝ ∧ 30 ∈ ℕ0) → (10↑30) ∈ ℝ)
333, 31, 32mp2an 689 . . . . . . . . . . . . . . . . . . . . . . . . 25 (10↑30) ∈ ℝ
349, 33pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . 24 ((10↑27) ∈ ℝ ∧ (10↑30) ∈ ℝ)
3534a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → ((10↑27) ∈ ℝ ∧ (10↑30) ∈ ℝ))
36 10nn0 12455 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 10 ∈ ℕ0
3736, 7nn0expcli 13809 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (10↑27) ∈ ℕ0
3837nn0ge0i 12260 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ≤ (10↑27)
396nnzi 12344 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 27 ∈ ℤ
4030nnzi 12344 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 30 ∈ ℤ
413, 39, 403pm3.2i 1338 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (10 ∈ ℝ ∧ 27 ∈ ℤ ∧ 30 ∈ ℤ)
42 1lt10 12576 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 < 10
43 3nn0 12251 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 ∈ ℕ0
44 7nn0 12255 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7 ∈ ℕ0
45 0nn0 12248 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 ∈ ℕ0
46 7lt10 12570 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7 < 10
47 2lt3 12145 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2 < 3
484, 43, 44, 45, 46, 47decltc 12466 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 27 < 30
4942, 48pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (1 < 10 ∧ 27 < 30)
50 ltexp2a 13884 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((10 ∈ ℝ ∧ 27 ∈ ℤ ∧ 30 ∈ ℤ) ∧ (1 < 10 ∧ 27 < 30)) → (10↑27) < (10↑30))
5141, 49, 50mp2an 689 . . . . . . . . . . . . . . . . . . . . . . . . 25 (10↑27) < (10↑30)
5238, 51pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 ≤ (10↑27) ∧ (10↑27) < (10↑30))
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (0 ≤ (10↑27) ∧ (10↑27) < (10↑30)))
54 ltmul12a 11831 . . . . . . . . . . . . . . . . . . . . . . 23 ((((1 ∈ ℝ ∧ 8 ∈ ℝ) ∧ (0 ≤ 1 ∧ 1 < 8)) ∧ (((10↑27) ∈ ℝ ∧ (10↑30) ∈ ℝ) ∧ (0 ≤ (10↑27) ∧ (10↑27) < (10↑30)))) → (1 · (10↑27)) < (8 · (10↑30)))
5524, 28, 35, 53, 54syl22anc 836 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (1 · (10↑27)) < (8 · (10↑30)))
5620, 55eqbrtrrid 5110 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (10↑27) < (8 · (10↑30)))
579a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (10↑27) ∈ ℝ)
5822, 33remulcli 10991 . . . . . . . . . . . . . . . . . . . . . . 23 (8 · (10↑30)) ∈ ℝ
5958a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (8 · (10↑30)) ∈ ℝ)
60 nnre 11980 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
6160adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℝ)
62 lttr 11051 . . . . . . . . . . . . . . . . . . . . . 22 (((10↑27) ∈ ℝ ∧ (8 · (10↑30)) ∈ ℝ ∧ 𝑚 ∈ ℝ) → (((10↑27) < (8 · (10↑30)) ∧ (8 · (10↑30)) < 𝑚) → (10↑27) < 𝑚))
6357, 59, 61, 62syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (((10↑27) < (8 · (10↑30)) ∧ (8 · (10↑30)) < 𝑚) → (10↑27) < 𝑚))
6456, 63mpand 692 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → ((8 · (10↑30)) < 𝑚 → (10↑27) < 𝑚))
6564imp 407 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) → (10↑27) < 𝑚)
662adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → 𝑛 ∈ ℝ)
6766, 57, 613jca 1127 . . . . . . . . . . . . . . . . . . . . 21 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → (𝑛 ∈ ℝ ∧ (10↑27) ∈ ℝ ∧ 𝑚 ∈ ℝ))
6867adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) → (𝑛 ∈ ℝ ∧ (10↑27) ∈ ℝ ∧ 𝑚 ∈ ℝ))
69 lelttr 11065 . . . . . . . . . . . . . . . . . . . 20 ((𝑛 ∈ ℝ ∧ (10↑27) ∈ ℝ ∧ 𝑚 ∈ ℝ) → ((𝑛 ≤ (10↑27) ∧ (10↑27) < 𝑚) → 𝑛 < 𝑚))
7068, 69syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) → ((𝑛 ≤ (10↑27) ∧ (10↑27) < 𝑚) → 𝑛 < 𝑚))
7165, 70mpan2d 691 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) → (𝑛 ≤ (10↑27) → 𝑛 < 𝑚))
7271imp 407 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) ∧ 𝑛 ≤ (10↑27)) → 𝑛 < 𝑚)
7372anim1i 615 . . . . . . . . . . . . . . . 16 (((((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) ∧ 𝑛 ≤ (10↑27)) ∧ 7 < 𝑛) → (𝑛 < 𝑚 ∧ 7 < 𝑛))
7473ancomd 462 . . . . . . . . . . . . . . 15 (((((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) ∧ 𝑛 ≤ (10↑27)) ∧ 7 < 𝑛) → (7 < 𝑛𝑛 < 𝑚))
75 pm2.27 42 . . . . . . . . . . . . . . 15 ((7 < 𝑛𝑛 < 𝑚) → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd ))
7674, 75syl 17 . . . . . . . . . . . . . 14 (((((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) ∧ 𝑛 ≤ (10↑27)) ∧ 7 < 𝑛) → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd ))
7776ex 413 . . . . . . . . . . . . 13 ((((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) ∧ 𝑛 ≤ (10↑27)) → (7 < 𝑛 → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd )))
7877com23 86 . . . . . . . . . . . 12 ((((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) ∧ (8 · (10↑30)) < 𝑚) ∧ 𝑛 ≤ (10↑27)) → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → (7 < 𝑛𝑛 ∈ GoldbachOdd )))
7978exp41 435 . . . . . . . . . . 11 (𝑛 ∈ Odd → (𝑚 ∈ ℕ → ((8 · (10↑30)) < 𝑚 → (𝑛 ≤ (10↑27) → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))))
8079com25 99 . . . . . . . . . 10 (𝑛 ∈ Odd → (((7 < 𝑛𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd ) → ((8 · (10↑30)) < 𝑚 → (𝑛 ≤ (10↑27) → (𝑚 ∈ ℕ → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))))
8118, 80syld 47 . . . . . . . . 9 (𝑛 ∈ Odd → (∀𝑜 ∈ Odd ((7 < 𝑜𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ) → ((8 · (10↑30)) < 𝑚 → (𝑛 ≤ (10↑27) → (𝑚 ∈ ℕ → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))))
8281com15 101 . . . . . . . 8 (𝑚 ∈ ℕ → (∀𝑜 ∈ Odd ((7 < 𝑜𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ) → ((8 · (10↑30)) < 𝑚 → (𝑛 ≤ (10↑27) → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))))
8382com23 86 . . . . . . 7 (𝑚 ∈ ℕ → ((8 · (10↑30)) < 𝑚 → (∀𝑜 ∈ Odd ((7 < 𝑜𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ) → (𝑛 ≤ (10↑27) → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))))
8483imp32 419 . . . . . 6 ((𝑚 ∈ ℕ ∧ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑜 ∈ Odd ((7 < 𝑜𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd ))) → (𝑛 ≤ (10↑27) → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))
8584rexlimiva 3210 . . . . 5 (∃𝑚 ∈ ℕ ((8 · (10↑30)) < 𝑚 ∧ ∀𝑜 ∈ Odd ((7 < 𝑜𝑜 < 𝑚) → 𝑜 ∈ GoldbachOdd )) → (𝑛 ≤ (10↑27) → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))
8612, 85ax-mp 5 . . . 4 (𝑛 ≤ (10↑27) → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd )))
87 tgoldbachgtALTV 45264 . . . . 5 𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑜 ∈ Odd (𝑚 < 𝑜𝑜 ∈ GoldbachOdd ))
88 breq2 5078 . . . . . . . . . . 11 (𝑜 = 𝑛 → (𝑚 < 𝑜𝑚 < 𝑛))
8988, 16imbi12d 345 . . . . . . . . . 10 (𝑜 = 𝑛 → ((𝑚 < 𝑜𝑜 ∈ GoldbachOdd ) ↔ (𝑚 < 𝑛𝑛 ∈ GoldbachOdd )))
9089rspcv 3557 . . . . . . . . 9 (𝑛 ∈ Odd → (∀𝑜 ∈ Odd (𝑚 < 𝑜𝑜 ∈ GoldbachOdd ) → (𝑚 < 𝑛𝑛 ∈ GoldbachOdd )))
91 lelttr 11065 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ ℝ ∧ (10↑27) ∈ ℝ ∧ 𝑛 ∈ ℝ) → ((𝑚 ≤ (10↑27) ∧ (10↑27) < 𝑛) → 𝑚 < 𝑛))
9261, 57, 66, 91syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → ((𝑚 ≤ (10↑27) ∧ (10↑27) < 𝑛) → 𝑚 < 𝑛))
9392expcomd 417 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ Odd ∧ 𝑚 ∈ ℕ) → ((10↑27) < 𝑛 → (𝑚 ≤ (10↑27) → 𝑚 < 𝑛)))
9493ex 413 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ Odd → (𝑚 ∈ ℕ → ((10↑27) < 𝑛 → (𝑚 ≤ (10↑27) → 𝑚 < 𝑛))))
9594com23 86 . . . . . . . . . . . . . . . 16 (𝑛 ∈ Odd → ((10↑27) < 𝑛 → (𝑚 ∈ ℕ → (𝑚 ≤ (10↑27) → 𝑚 < 𝑛))))
9695imp43 428 . . . . . . . . . . . . . . 15 (((𝑛 ∈ Odd ∧ (10↑27) < 𝑛) ∧ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27))) → 𝑚 < 𝑛)
97 pm2.27 42 . . . . . . . . . . . . . . 15 (𝑚 < 𝑛 → ((𝑚 < 𝑛𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd ))
9896, 97syl 17 . . . . . . . . . . . . . 14 (((𝑛 ∈ Odd ∧ (10↑27) < 𝑛) ∧ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27))) → ((𝑚 < 𝑛𝑛 ∈ GoldbachOdd ) → 𝑛 ∈ GoldbachOdd ))
9998a1dd 50 . . . . . . . . . . . . 13 (((𝑛 ∈ Odd ∧ (10↑27) < 𝑛) ∧ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27))) → ((𝑚 < 𝑛𝑛 ∈ GoldbachOdd ) → (7 < 𝑛𝑛 ∈ GoldbachOdd )))
10099ex 413 . . . . . . . . . . . 12 ((𝑛 ∈ Odd ∧ (10↑27) < 𝑛) → ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27)) → ((𝑚 < 𝑛𝑛 ∈ GoldbachOdd ) → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))
101100com23 86 . . . . . . . . . . 11 ((𝑛 ∈ Odd ∧ (10↑27) < 𝑛) → ((𝑚 < 𝑛𝑛 ∈ GoldbachOdd ) → ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27)) → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))
102101ex 413 . . . . . . . . . 10 (𝑛 ∈ Odd → ((10↑27) < 𝑛 → ((𝑚 < 𝑛𝑛 ∈ GoldbachOdd ) → ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27)) → (7 < 𝑛𝑛 ∈ GoldbachOdd )))))
103102com23 86 . . . . . . . . 9 (𝑛 ∈ Odd → ((𝑚 < 𝑛𝑛 ∈ GoldbachOdd ) → ((10↑27) < 𝑛 → ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27)) → (7 < 𝑛𝑛 ∈ GoldbachOdd )))))
10490, 103syld 47 . . . . . . . 8 (𝑛 ∈ Odd → (∀𝑜 ∈ Odd (𝑚 < 𝑜𝑜 ∈ GoldbachOdd ) → ((10↑27) < 𝑛 → ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27)) → (7 < 𝑛𝑛 ∈ GoldbachOdd )))))
105104com14 96 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑚 ≤ (10↑27)) → (∀𝑜 ∈ Odd (𝑚 < 𝑜𝑜 ∈ GoldbachOdd ) → ((10↑27) < 𝑛 → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd )))))
106105impr 455 . . . . . 6 ((𝑚 ∈ ℕ ∧ (𝑚 ≤ (10↑27) ∧ ∀𝑜 ∈ Odd (𝑚 < 𝑜𝑜 ∈ GoldbachOdd ))) → ((10↑27) < 𝑛 → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))
107106rexlimiva 3210 . . . . 5 (∃𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑜 ∈ Odd (𝑚 < 𝑜𝑜 ∈ GoldbachOdd )) → ((10↑27) < 𝑛 → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd ))))
10887, 107ax-mp 5 . . . 4 ((10↑27) < 𝑛 → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd )))
10986, 108jaoi 854 . . 3 ((𝑛 ≤ (10↑27) ∨ (10↑27) < 𝑛) → (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd )))
11011, 109mpcom 38 . 2 (𝑛 ∈ Odd → (7 < 𝑛𝑛 ∈ GoldbachOdd ))
111110rgen 3074 1 𝑛 ∈ Odd (7 < 𝑛𝑛 ∈ GoldbachOdd )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010  cn 11973  2c2 12028  3c3 12029  7c7 12033  8c8 12034  0cn0 12233  cz 12319  cdc 12437  cexp 13782   Odd codd 45077   GoldbachOdd cgbo 45199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-bgbltosilva 45262  ax-tgoldbachgt 45263  ax-hgprmladder 45266
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-dvds 15964  df-prm 16377  df-iccp 44866  df-even 45078  df-odd 45079  df-gbe 45200  df-gbo 45202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator