MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthonepeq Structured version   Visualization version   GIF version

Theorem spthonepeq 29716
Description: The endpoints of a simple path between two vertices are equal iff the path is of length 0. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 18-Jan-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
spthonepeq (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0))

Proof of Theorem spthonepeq
StepHypRef Expression
1 eqid 2729 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21spthonprop 29709 . 2 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃)))
31istrlson 29669 . . . . . 6 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
433adantl1 1167 . . . . 5 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
5 isspth 29686 . . . . . 6 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
65a1i 11 . . . . 5 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃)))
74, 6anbi12d 632 . . . 4 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃) ↔ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃) ∧ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))))
81wlkonprop 29621 . . . . . . . 8 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
9 wlkcl 29580 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
101wlkp 29581 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
11 df-f1 6491 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ↔ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun 𝑃))
12 eqeq2 2741 . . . . . . . . . . . . . . . . . 18 (𝐴 = 𝐵 → ((𝑃‘0) = 𝐴 ↔ (𝑃‘0) = 𝐵))
13 eqtr3 2751 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘(♯‘𝐹)) = 𝐵 ∧ (𝑃‘0) = 𝐵) → (𝑃‘(♯‘𝐹)) = (𝑃‘0))
14 elnn0uz 12799 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (ℤ‘0))
15 eluzfz2 13454 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝐹) ∈ (ℤ‘0) → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
1614, 15sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
17 0elfz 13546 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
1816, 17jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
19 f1veqaeq 7197 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) → ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → (♯‘𝐹) = 0))
2018, 19sylan2 593 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → (♯‘𝐹) = 0))
2120ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → ((♯‘𝐹) ∈ ℕ0 → ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → (♯‘𝐹) = 0)))
2221com13 88 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘𝐹) = 0)))
2313, 22syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘(♯‘𝐹)) = 𝐵 ∧ (𝑃‘0) = 𝐵) → ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘𝐹) = 0)))
2423expcom 413 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) = 𝐵 → ((𝑃‘(♯‘𝐹)) = 𝐵 → ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘𝐹) = 0))))
2512, 24biimtrdi 253 . . . . . . . . . . . . . . . . 17 (𝐴 = 𝐵 → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘𝐹) = 0)))))
2625com15 101 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → ((♯‘𝐹) ∈ ℕ0 → (𝐴 = 𝐵 → (♯‘𝐹) = 0)))))
2711, 26sylbir 235 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun 𝑃) → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → ((♯‘𝐹) ∈ ℕ0 → (𝐴 = 𝐵 → (♯‘𝐹) = 0)))))
2827expcom 413 . . . . . . . . . . . . . 14 (Fun 𝑃 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → ((♯‘𝐹) ∈ ℕ0 → (𝐴 = 𝐵 → (♯‘𝐹) = 0))))))
2928com15 101 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → (Fun 𝑃 → (𝐴 = 𝐵 → (♯‘𝐹) = 0))))))
309, 10, 29sylc 65 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → (Fun 𝑃 → (𝐴 = 𝐵 → (♯‘𝐹) = 0)))))
31303imp1 1348 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ Fun 𝑃) → (𝐴 = 𝐵 → (♯‘𝐹) = 0))
32 fveqeq2 6835 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 0 → ((𝑃‘(♯‘𝐹)) = 𝐵 ↔ (𝑃‘0) = 𝐵))
3332anbi2d 630 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 0 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵)))
34 eqtr2 2750 . . . . . . . . . . . . . . 15 (((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵) → 𝐴 = 𝐵)
3533, 34biimtrdi 253 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 0 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → 𝐴 = 𝐵))
3635com12 32 . . . . . . . . . . . . 13 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((♯‘𝐹) = 0 → 𝐴 = 𝐵))
37363adant1 1130 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((♯‘𝐹) = 0 → 𝐴 = 𝐵))
3837adantr 480 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ Fun 𝑃) → ((♯‘𝐹) = 0 → 𝐴 = 𝐵))
3931, 38impbid 212 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ Fun 𝑃) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0))
4039ex 412 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (Fun 𝑃 → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
41403ad2ant3 1135 . . . . . . . 8 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (Fun 𝑃 → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
428, 41syl 17 . . . . . . 7 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → (Fun 𝑃 → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
4342adantld 490 . . . . . 6 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
4443adantr 480 . . . . 5 ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃) → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
4544imp 406 . . . 4 (((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃) ∧ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃)) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0))
467, 45biimtrdi 253 . . 3 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
47463impia 1117 . 2 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃)) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0))
482, 47syl 17 1 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438   class class class wbr 5095  ccnv 5622  Fun wfun 6480  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7353  0cc0 11028  0cn0 12403  cuz 12754  ...cfz 13429  chash 14256  Vtxcvtx 28960  Walkscwlks 29561  WalksOncwlkson 29562  Trailsctrls 29653  TrailsOnctrlson 29654  SPathscspths 29675  SPathsOncspthson 29677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-n0 12404  df-z 12491  df-uz 12755  df-fz 13430  df-fzo 13577  df-hash 14257  df-word 14440  df-wlks 29564  df-wlkson 29565  df-trls 29655  df-trlson 29656  df-spths 29679  df-spthson 29681
This theorem is referenced by:  wspthsnonn0vne  29881
  Copyright terms: Public domain W3C validator