Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . 3
β’
(VtxβπΊ) =
(VtxβπΊ) |
2 | 1 | spthonprop 28991 |
. 2
β’ (πΉ(π΄(SPathsOnβπΊ)π΅)π β ((πΊ β V β§ π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(SPathsβπΊ)π))) |
3 | 1 | istrlson 28953 |
. . . . . 6
β’ (((π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V)) β (πΉ(π΄(TrailsOnβπΊ)π΅)π β (πΉ(π΄(WalksOnβπΊ)π΅)π β§ πΉ(TrailsβπΊ)π))) |
4 | 3 | 3adantl1 1166 |
. . . . 5
β’ (((πΊ β V β§ π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V)) β (πΉ(π΄(TrailsOnβπΊ)π΅)π β (πΉ(π΄(WalksOnβπΊ)π΅)π β§ πΉ(TrailsβπΊ)π))) |
5 | | isspth 28970 |
. . . . . 6
β’ (πΉ(SPathsβπΊ)π β (πΉ(TrailsβπΊ)π β§ Fun β‘π)) |
6 | 5 | a1i 11 |
. . . . 5
β’ (((πΊ β V β§ π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V)) β (πΉ(SPathsβπΊ)π β (πΉ(TrailsβπΊ)π β§ Fun β‘π))) |
7 | 4, 6 | anbi12d 631 |
. . . 4
β’ (((πΊ β V β§ π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V)) β ((πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(SPathsβπΊ)π) β ((πΉ(π΄(WalksOnβπΊ)π΅)π β§ πΉ(TrailsβπΊ)π) β§ (πΉ(TrailsβπΊ)π β§ Fun β‘π)))) |
8 | 1 | wlkonprop 28904 |
. . . . . . . 8
β’ (πΉ(π΄(WalksOnβπΊ)π΅)π β ((πΊ β V β§ π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
9 | | wlkcl 28861 |
. . . . . . . . . . . . 13
β’ (πΉ(WalksβπΊ)π β (β―βπΉ) β
β0) |
10 | 1 | wlkp 28862 |
. . . . . . . . . . . . 13
β’ (πΉ(WalksβπΊ)π β π:(0...(β―βπΉ))βΆ(VtxβπΊ)) |
11 | | df-f1 6545 |
. . . . . . . . . . . . . . . 16
β’ (π:(0...(β―βπΉ))β1-1β(VtxβπΊ) β (π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ Fun β‘π)) |
12 | | eqeq2 2744 |
. . . . . . . . . . . . . . . . . 18
β’ (π΄ = π΅ β ((πβ0) = π΄ β (πβ0) = π΅)) |
13 | | eqtr3 2758 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((πβ(β―βπΉ)) = π΅ β§ (πβ0) = π΅) β (πβ(β―βπΉ)) = (πβ0)) |
14 | | elnn0uz 12863 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’
((β―βπΉ)
β β0 β (β―βπΉ) β
(β€β₯β0)) |
15 | | eluzfz2 13505 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
β’
((β―βπΉ)
β (β€β₯β0) β (β―βπΉ) β (0...(β―βπΉ))) |
16 | 14, 15 | sylbi 216 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
((β―βπΉ)
β β0 β (β―βπΉ) β (0...(β―βπΉ))) |
17 | | 0elfz 13594 |
. . . . . . . . . . . . . . . . . . . . . . . 24
β’
((β―βπΉ)
β β0 β 0 β (0...(β―βπΉ))) |
18 | 16, 17 | jca 512 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’
((β―βπΉ)
β β0 β ((β―βπΉ) β (0...(β―βπΉ)) β§ 0 β
(0...(β―βπΉ)))) |
19 | | f1veqaeq 7252 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ ((π:(0...(β―βπΉ))β1-1β(VtxβπΊ) β§ ((β―βπΉ) β (0...(β―βπΉ)) β§ 0 β
(0...(β―βπΉ))))
β ((πβ(β―βπΉ)) = (πβ0) β (β―βπΉ) = 0)) |
20 | 18, 19 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ ((π:(0...(β―βπΉ))β1-1β(VtxβπΊ) β§ (β―βπΉ) β β0) β ((πβ(β―βπΉ)) = (πβ0) β (β―βπΉ) = 0)) |
21 | 20 | ex 413 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π:(0...(β―βπΉ))β1-1β(VtxβπΊ) β ((β―βπΉ) β β0 β ((πβ(β―βπΉ)) = (πβ0) β (β―βπΉ) = 0))) |
22 | 21 | com13 88 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((πβ(β―βπΉ)) = (πβ0) β ((β―βπΉ) β β0
β (π:(0...(β―βπΉ))β1-1β(VtxβπΊ) β (β―βπΉ) = 0))) |
23 | 13, 22 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
β’ (((πβ(β―βπΉ)) = π΅ β§ (πβ0) = π΅) β ((β―βπΉ) β β0 β (π:(0...(β―βπΉ))β1-1β(VtxβπΊ) β (β―βπΉ) = 0))) |
24 | 23 | expcom 414 |
. . . . . . . . . . . . . . . . . 18
β’ ((πβ0) = π΅ β ((πβ(β―βπΉ)) = π΅ β ((β―βπΉ) β β0 β (π:(0...(β―βπΉ))β1-1β(VtxβπΊ) β (β―βπΉ) = 0)))) |
25 | 12, 24 | syl6bi 252 |
. . . . . . . . . . . . . . . . 17
β’ (π΄ = π΅ β ((πβ0) = π΄ β ((πβ(β―βπΉ)) = π΅ β ((β―βπΉ) β β0 β (π:(0...(β―βπΉ))β1-1β(VtxβπΊ) β (β―βπΉ) = 0))))) |
26 | 25 | com15 101 |
. . . . . . . . . . . . . . . 16
β’ (π:(0...(β―βπΉ))β1-1β(VtxβπΊ) β ((πβ0) = π΄ β ((πβ(β―βπΉ)) = π΅ β ((β―βπΉ) β β0 β (π΄ = π΅ β (β―βπΉ) = 0))))) |
27 | 11, 26 | sylbir 234 |
. . . . . . . . . . . . . . 15
β’ ((π:(0...(β―βπΉ))βΆ(VtxβπΊ) β§ Fun β‘π) β ((πβ0) = π΄ β ((πβ(β―βπΉ)) = π΅ β ((β―βπΉ) β β0 β (π΄ = π΅ β (β―βπΉ) = 0))))) |
28 | 27 | expcom 414 |
. . . . . . . . . . . . . 14
β’ (Fun
β‘π β (π:(0...(β―βπΉ))βΆ(VtxβπΊ) β ((πβ0) = π΄ β ((πβ(β―βπΉ)) = π΅ β ((β―βπΉ) β β0 β (π΄ = π΅ β (β―βπΉ) = 0)))))) |
29 | 28 | com15 101 |
. . . . . . . . . . . . 13
β’
((β―βπΉ)
β β0 β (π:(0...(β―βπΉ))βΆ(VtxβπΊ) β ((πβ0) = π΄ β ((πβ(β―βπΉ)) = π΅ β (Fun β‘π β (π΄ = π΅ β (β―βπΉ) = 0)))))) |
30 | 9, 10, 29 | sylc 65 |
. . . . . . . . . . . 12
β’ (πΉ(WalksβπΊ)π β ((πβ0) = π΄ β ((πβ(β―βπΉ)) = π΅ β (Fun β‘π β (π΄ = π΅ β (β―βπΉ) = 0))))) |
31 | 30 | 3imp1 1347 |
. . . . . . . . . . 11
β’ (((πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β§ Fun β‘π) β (π΄ = π΅ β (β―βπΉ) = 0)) |
32 | | fveqeq2 6897 |
. . . . . . . . . . . . . . . 16
β’
((β―βπΉ) =
0 β ((πβ(β―βπΉ)) = π΅ β (πβ0) = π΅)) |
33 | 32 | anbi2d 629 |
. . . . . . . . . . . . . . 15
β’
((β―βπΉ) =
0 β (((πβ0) =
π΄ β§ (πβ(β―βπΉ)) = π΅) β ((πβ0) = π΄ β§ (πβ0) = π΅))) |
34 | | eqtr2 2756 |
. . . . . . . . . . . . . . 15
β’ (((πβ0) = π΄ β§ (πβ0) = π΅) β π΄ = π΅) |
35 | 33, 34 | syl6bi 252 |
. . . . . . . . . . . . . 14
β’
((β―βπΉ) =
0 β (((πβ0) =
π΄ β§ (πβ(β―βπΉ)) = π΅) β π΄ = π΅)) |
36 | 35 | com12 32 |
. . . . . . . . . . . . 13
β’ (((πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β ((β―βπΉ) = 0 β π΄ = π΅)) |
37 | 36 | 3adant1 1130 |
. . . . . . . . . . . 12
β’ ((πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β ((β―βπΉ) = 0 β π΄ = π΅)) |
38 | 37 | adantr 481 |
. . . . . . . . . . 11
β’ (((πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β§ Fun β‘π) β ((β―βπΉ) = 0 β π΄ = π΅)) |
39 | 31, 38 | impbid 211 |
. . . . . . . . . 10
β’ (((πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β§ Fun β‘π) β (π΄ = π΅ β (β―βπΉ) = 0)) |
40 | 39 | ex 413 |
. . . . . . . . 9
β’ ((πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅) β (Fun β‘π β (π΄ = π΅ β (β―βπΉ) = 0))) |
41 | 40 | 3ad2ant3 1135 |
. . . . . . . 8
β’ (((πΊ β V β§ π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β (Fun β‘π β (π΄ = π΅ β (β―βπΉ) = 0))) |
42 | 8, 41 | syl 17 |
. . . . . . 7
β’ (πΉ(π΄(WalksOnβπΊ)π΅)π β (Fun β‘π β (π΄ = π΅ β (β―βπΉ) = 0))) |
43 | 42 | adantld 491 |
. . . . . 6
β’ (πΉ(π΄(WalksOnβπΊ)π΅)π β ((πΉ(TrailsβπΊ)π β§ Fun β‘π) β (π΄ = π΅ β (β―βπΉ) = 0))) |
44 | 43 | adantr 481 |
. . . . 5
β’ ((πΉ(π΄(WalksOnβπΊ)π΅)π β§ πΉ(TrailsβπΊ)π) β ((πΉ(TrailsβπΊ)π β§ Fun β‘π) β (π΄ = π΅ β (β―βπΉ) = 0))) |
45 | 44 | imp 407 |
. . . 4
β’ (((πΉ(π΄(WalksOnβπΊ)π΅)π β§ πΉ(TrailsβπΊ)π) β§ (πΉ(TrailsβπΊ)π β§ Fun β‘π)) β (π΄ = π΅ β (β―βπΉ) = 0)) |
46 | 7, 45 | syl6bi 252 |
. . 3
β’ (((πΊ β V β§ π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V)) β ((πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(SPathsβπΊ)π) β (π΄ = π΅ β (β―βπΉ) = 0))) |
47 | 46 | 3impia 1117 |
. 2
β’ (((πΊ β V β§ π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(π΄(TrailsOnβπΊ)π΅)π β§ πΉ(SPathsβπΊ)π)) β (π΄ = π΅ β (β―βπΉ) = 0)) |
48 | 2, 47 | syl 17 |
1
β’ (πΉ(π΄(SPathsOnβπΊ)π΅)π β (π΄ = π΅ β (β―βπΉ) = 0)) |