MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthonepeq Structured version   Visualization version   GIF version

Theorem spthonepeq 27527
Description: The endpoints of a simple path between two vertices are equal iff the path is of length 0. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 18-Jan-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
spthonepeq (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0))

Proof of Theorem spthonepeq
StepHypRef Expression
1 eqid 2821 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21spthonprop 27520 . 2 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃)))
31istrlson 27482 . . . . . 6 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
433adantl1 1162 . . . . 5 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
5 isspth 27499 . . . . . 6 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
65a1i 11 . . . . 5 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃)))
74, 6anbi12d 632 . . . 4 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃) ↔ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃) ∧ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))))
81wlkonprop 27434 . . . . . . . 8 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
9 wlkcl 27391 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
101wlkp 27392 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
11 df-f1 6355 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ↔ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun 𝑃))
12 eqeq2 2833 . . . . . . . . . . . . . . . . . 18 (𝐴 = 𝐵 → ((𝑃‘0) = 𝐴 ↔ (𝑃‘0) = 𝐵))
13 eqtr3 2843 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘(♯‘𝐹)) = 𝐵 ∧ (𝑃‘0) = 𝐵) → (𝑃‘(♯‘𝐹)) = (𝑃‘0))
14 elnn0uz 12277 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (ℤ‘0))
15 eluzfz2 12909 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝐹) ∈ (ℤ‘0) → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
1614, 15sylbi 219 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
17 0elfz 12998 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
1816, 17jca 514 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
19 f1veqaeq 7009 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) → ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → (♯‘𝐹) = 0))
2018, 19sylan2 594 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → (♯‘𝐹) = 0))
2120ex 415 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → ((♯‘𝐹) ∈ ℕ0 → ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → (♯‘𝐹) = 0)))
2221com13 88 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘𝐹) = 0)))
2313, 22syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘(♯‘𝐹)) = 𝐵 ∧ (𝑃‘0) = 𝐵) → ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘𝐹) = 0)))
2423expcom 416 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) = 𝐵 → ((𝑃‘(♯‘𝐹)) = 𝐵 → ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘𝐹) = 0))))
2512, 24syl6bi 255 . . . . . . . . . . . . . . . . 17 (𝐴 = 𝐵 → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘𝐹) = 0)))))
2625com15 101 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → ((♯‘𝐹) ∈ ℕ0 → (𝐴 = 𝐵 → (♯‘𝐹) = 0)))))
2711, 26sylbir 237 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun 𝑃) → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → ((♯‘𝐹) ∈ ℕ0 → (𝐴 = 𝐵 → (♯‘𝐹) = 0)))))
2827expcom 416 . . . . . . . . . . . . . 14 (Fun 𝑃 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → ((♯‘𝐹) ∈ ℕ0 → (𝐴 = 𝐵 → (♯‘𝐹) = 0))))))
2928com15 101 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → (Fun 𝑃 → (𝐴 = 𝐵 → (♯‘𝐹) = 0))))))
309, 10, 29sylc 65 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → (Fun 𝑃 → (𝐴 = 𝐵 → (♯‘𝐹) = 0)))))
31303imp1 1343 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ Fun 𝑃) → (𝐴 = 𝐵 → (♯‘𝐹) = 0))
32 fveqeq2 6674 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 0 → ((𝑃‘(♯‘𝐹)) = 𝐵 ↔ (𝑃‘0) = 𝐵))
3332anbi2d 630 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 0 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵)))
34 eqtr2 2842 . . . . . . . . . . . . . . 15 (((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵) → 𝐴 = 𝐵)
3533, 34syl6bi 255 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 0 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → 𝐴 = 𝐵))
3635com12 32 . . . . . . . . . . . . 13 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((♯‘𝐹) = 0 → 𝐴 = 𝐵))
37363adant1 1126 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((♯‘𝐹) = 0 → 𝐴 = 𝐵))
3837adantr 483 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ Fun 𝑃) → ((♯‘𝐹) = 0 → 𝐴 = 𝐵))
3931, 38impbid 214 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ Fun 𝑃) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0))
4039ex 415 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (Fun 𝑃 → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
41403ad2ant3 1131 . . . . . . . 8 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (Fun 𝑃 → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
428, 41syl 17 . . . . . . 7 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → (Fun 𝑃 → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
4342adantld 493 . . . . . 6 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
4443adantr 483 . . . . 5 ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃) → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
4544imp 409 . . . 4 (((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃) ∧ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃)) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0))
467, 45syl6bi 255 . . 3 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
47463impia 1113 . 2 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃)) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0))
482, 47syl 17 1 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3495   class class class wbr 5059  ccnv 5549  Fun wfun 6344  wf 6346  1-1wf1 6347  cfv 6350  (class class class)co 7150  0cc0 10531  0cn0 11891  cuz 12237  ...cfz 12886  chash 13684  Vtxcvtx 26775  Walkscwlks 27372  WalksOncwlkson 27373  Trailsctrls 27466  TrailsOnctrlson 27467  SPathscspths 27488  SPathsOncspthson 27490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-hash 13685  df-word 13856  df-wlks 27375  df-wlkson 27376  df-trls 27468  df-trlson 27469  df-pths 27491  df-spths 27492  df-spthson 27494
This theorem is referenced by:  wspthsnonn0vne  27690
  Copyright terms: Public domain W3C validator