MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthonepeq Structured version   Visualization version   GIF version

Theorem spthonepeq 28120
Description: The endpoints of a simple path between two vertices are equal iff the path is of length 0. (Contributed by Alexander van der Vekens, 1-Mar-2018.) (Revised by AV, 18-Jan-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
spthonepeq (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0))

Proof of Theorem spthonepeq
StepHypRef Expression
1 eqid 2738 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21spthonprop 28113 . 2 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃)))
31istrlson 28075 . . . . . 6 (((𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
433adantl1 1165 . . . . 5 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃 ↔ (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃)))
5 isspth 28092 . . . . . 6 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
65a1i 11 . . . . 5 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃)))
74, 6anbi12d 631 . . . 4 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃) ↔ ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃) ∧ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))))
81wlkonprop 28026 . . . . . . . 8 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)))
9 wlkcl 27982 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
101wlkp 27983 . . . . . . . . . . . . 13 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
11 df-f1 6438 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ↔ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun 𝑃))
12 eqeq2 2750 . . . . . . . . . . . . . . . . . 18 (𝐴 = 𝐵 → ((𝑃‘0) = 𝐴 ↔ (𝑃‘0) = 𝐵))
13 eqtr3 2764 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘(♯‘𝐹)) = 𝐵 ∧ (𝑃‘0) = 𝐵) → (𝑃‘(♯‘𝐹)) = (𝑃‘0))
14 elnn0uz 12623 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (ℤ‘0))
15 eluzfz2 13264 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝐹) ∈ (ℤ‘0) → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
1614, 15sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
17 0elfz 13353 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
1816, 17jca 512 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
19 f1veqaeq 7130 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) → ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → (♯‘𝐹) = 0))
2018, 19sylan2 593 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → (♯‘𝐹) = 0))
2120ex 413 . . . . . . . . . . . . . . . . . . . . 21 (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → ((♯‘𝐹) ∈ ℕ0 → ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → (♯‘𝐹) = 0)))
2221com13 88 . . . . . . . . . . . . . . . . . . . 20 ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘𝐹) = 0)))
2313, 22syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑃‘(♯‘𝐹)) = 𝐵 ∧ (𝑃‘0) = 𝐵) → ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘𝐹) = 0)))
2423expcom 414 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) = 𝐵 → ((𝑃‘(♯‘𝐹)) = 𝐵 → ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘𝐹) = 0))))
2512, 24syl6bi 252 . . . . . . . . . . . . . . . . 17 (𝐴 = 𝐵 → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → (♯‘𝐹) = 0)))))
2625com15 101 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → ((♯‘𝐹) ∈ ℕ0 → (𝐴 = 𝐵 → (♯‘𝐹) = 0)))))
2711, 26sylbir 234 . . . . . . . . . . . . . . 15 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun 𝑃) → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → ((♯‘𝐹) ∈ ℕ0 → (𝐴 = 𝐵 → (♯‘𝐹) = 0)))))
2827expcom 414 . . . . . . . . . . . . . 14 (Fun 𝑃 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → ((♯‘𝐹) ∈ ℕ0 → (𝐴 = 𝐵 → (♯‘𝐹) = 0))))))
2928com15 101 . . . . . . . . . . . . 13 ((♯‘𝐹) ∈ ℕ0 → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → (Fun 𝑃 → (𝐴 = 𝐵 → (♯‘𝐹) = 0))))))
309, 10, 29sylc 65 . . . . . . . . . . . 12 (𝐹(Walks‘𝐺)𝑃 → ((𝑃‘0) = 𝐴 → ((𝑃‘(♯‘𝐹)) = 𝐵 → (Fun 𝑃 → (𝐴 = 𝐵 → (♯‘𝐹) = 0)))))
31303imp1 1346 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ Fun 𝑃) → (𝐴 = 𝐵 → (♯‘𝐹) = 0))
32 fveqeq2 6783 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 0 → ((𝑃‘(♯‘𝐹)) = 𝐵 ↔ (𝑃‘0) = 𝐵))
3332anbi2d 629 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 0 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ↔ ((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵)))
34 eqtr2 2762 . . . . . . . . . . . . . . 15 (((𝑃‘0) = 𝐴 ∧ (𝑃‘0) = 𝐵) → 𝐴 = 𝐵)
3533, 34syl6bi 252 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 0 → (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → 𝐴 = 𝐵))
3635com12 32 . . . . . . . . . . . . 13 (((𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((♯‘𝐹) = 0 → 𝐴 = 𝐵))
37363adant1 1129 . . . . . . . . . . . 12 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → ((♯‘𝐹) = 0 → 𝐴 = 𝐵))
3837adantr 481 . . . . . . . . . . 11 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ Fun 𝑃) → ((♯‘𝐹) = 0 → 𝐴 = 𝐵))
3931, 38impbid 211 . . . . . . . . . 10 (((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) ∧ Fun 𝑃) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0))
4039ex 413 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵) → (Fun 𝑃 → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
41403ad2ant3 1134 . . . . . . . 8 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(♯‘𝐹)) = 𝐵)) → (Fun 𝑃 → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
428, 41syl 17 . . . . . . 7 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → (Fun 𝑃 → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
4342adantld 491 . . . . . 6 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
4443adantr 481 . . . . 5 ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃) → ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
4544imp 407 . . . 4 (((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐹(Trails‘𝐺)𝑃) ∧ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃)) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0))
467, 45syl6bi 252 . . 3 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0)))
47463impia 1116 . 2 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(𝐴(TrailsOn‘𝐺)𝐵)𝑃𝐹(SPaths‘𝐺)𝑃)) → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0))
482, 47syl 17 1 (𝐹(𝐴(SPathsOn‘𝐺)𝐵)𝑃 → (𝐴 = 𝐵 ↔ (♯‘𝐹) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432   class class class wbr 5074  ccnv 5588  Fun wfun 6427  wf 6429  1-1wf1 6430  cfv 6433  (class class class)co 7275  0cc0 10871  0cn0 12233  cuz 12582  ...cfz 13239  chash 14044  Vtxcvtx 27366  Walkscwlks 27963  WalksOncwlkson 27964  Trailsctrls 28058  TrailsOnctrlson 28059  SPathscspths 28081  SPathsOncspthson 28083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-wlks 27966  df-wlkson 27967  df-trls 28060  df-trlson 28061  df-spths 28085  df-spthson 28087
This theorem is referenced by:  wspthsnonn0vne  28282
  Copyright terms: Public domain W3C validator