| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcmfdvdsb | Structured version Visualization version GIF version | ||
| Description: Biconditional form of lcmfdvds 16619. (Contributed by AV, 26-Aug-2020.) |
| Ref | Expression |
|---|---|
| lcmfdvdsb | ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ↔ (lcm‘𝑍) ∥ 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmfdvds 16619 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → (lcm‘𝑍) ∥ 𝐾)) | |
| 2 | dvdslcmf 16608 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) | |
| 3 | breq1 5113 | . . . . . . . . 9 ⊢ (𝑥 = 𝑚 → (𝑥 ∥ (lcm‘𝑍) ↔ 𝑚 ∥ (lcm‘𝑍))) | |
| 4 | 3 | rspcv 3587 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → (∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍) → 𝑚 ∥ (lcm‘𝑍))) |
| 5 | ssel 3943 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑍 ⊆ ℤ → (𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ)) | |
| 6 | 5 | adantr 480 | . . . . . . . . . . . . . . . . 17 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ)) |
| 7 | 6 | com12 32 | . . . . . . . . . . . . . . . 16 ⊢ (𝑚 ∈ 𝑍 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∈ ℤ)) |
| 8 | 7 | adantr 480 | . . . . . . . . . . . . . . 15 ⊢ ((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∈ ℤ)) |
| 9 | 8 | imp 406 | . . . . . . . . . . . . . 14 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → 𝑚 ∈ ℤ) |
| 10 | lcmfcl 16605 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℕ0) | |
| 11 | 10 | nn0zd 12562 | . . . . . . . . . . . . . . 15 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℤ) |
| 12 | 11 | adantl 481 | . . . . . . . . . . . . . 14 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘𝑍) ∈ ℤ) |
| 13 | simplr 768 | . . . . . . . . . . . . . 14 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → 𝐾 ∈ ℤ) | |
| 14 | dvdstr 16271 | . . . . . . . . . . . . . 14 ⊢ ((𝑚 ∈ ℤ ∧ (lcm‘𝑍) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∥ (lcm‘𝑍) ∧ (lcm‘𝑍) ∥ 𝐾) → 𝑚 ∥ 𝐾)) | |
| 15 | 9, 12, 13, 14 | syl3anc 1373 | . . . . . . . . . . . . 13 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → ((𝑚 ∥ (lcm‘𝑍) ∧ (lcm‘𝑍) ∥ 𝐾) → 𝑚 ∥ 𝐾)) |
| 16 | 15 | expd 415 | . . . . . . . . . . . 12 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (𝑚 ∥ (lcm‘𝑍) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))) |
| 17 | 16 | exp31 419 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ 𝑍 → (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝑚 ∥ (lcm‘𝑍) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))))) |
| 18 | 17 | com23 86 | . . . . . . . . . 10 ⊢ (𝑚 ∈ 𝑍 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝐾 ∈ ℤ → (𝑚 ∥ (lcm‘𝑍) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))))) |
| 19 | 18 | com24 95 | . . . . . . . . 9 ⊢ (𝑚 ∈ 𝑍 → (𝑚 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))))) |
| 20 | 19 | com45 97 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → (𝑚 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∥ 𝐾))))) |
| 21 | 4, 20 | syld 47 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → (∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∥ 𝐾))))) |
| 22 | 21 | com15 101 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾))))) |
| 23 | 2, 22 | mpd 15 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾)))) |
| 24 | 23 | com12 32 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾)))) |
| 25 | 24 | 3impib 1116 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾))) |
| 26 | 25 | ralrimdv 3132 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) |
| 27 | 1, 26 | impbid 212 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ↔ (lcm‘𝑍) ∥ 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 class class class wbr 5110 ‘cfv 6514 Fincfn 8921 ℤcz 12536 ∥ cdvds 16229 lcmclcmf 16566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-prod 15877 df-dvds 16230 df-gcd 16472 df-lcm 16567 df-lcmf 16568 |
| This theorem is referenced by: aks4d1p3 42073 |
| Copyright terms: Public domain | W3C validator |