![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lcmfdvdsb | Structured version Visualization version GIF version |
Description: Biconditional form of lcmfdvds 16675. (Contributed by AV, 26-Aug-2020.) |
Ref | Expression |
---|---|
lcmfdvdsb | ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ↔ (lcm‘𝑍) ∥ 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmfdvds 16675 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → (lcm‘𝑍) ∥ 𝐾)) | |
2 | dvdslcmf 16664 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) | |
3 | breq1 5150 | . . . . . . . . 9 ⊢ (𝑥 = 𝑚 → (𝑥 ∥ (lcm‘𝑍) ↔ 𝑚 ∥ (lcm‘𝑍))) | |
4 | 3 | rspcv 3617 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → (∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍) → 𝑚 ∥ (lcm‘𝑍))) |
5 | ssel 3988 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑍 ⊆ ℤ → (𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ)) | |
6 | 5 | adantr 480 | . . . . . . . . . . . . . . . . 17 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ)) |
7 | 6 | com12 32 | . . . . . . . . . . . . . . . 16 ⊢ (𝑚 ∈ 𝑍 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∈ ℤ)) |
8 | 7 | adantr 480 | . . . . . . . . . . . . . . 15 ⊢ ((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∈ ℤ)) |
9 | 8 | imp 406 | . . . . . . . . . . . . . 14 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → 𝑚 ∈ ℤ) |
10 | lcmfcl 16661 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℕ0) | |
11 | 10 | nn0zd 12636 | . . . . . . . . . . . . . . 15 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℤ) |
12 | 11 | adantl 481 | . . . . . . . . . . . . . 14 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘𝑍) ∈ ℤ) |
13 | simplr 769 | . . . . . . . . . . . . . 14 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → 𝐾 ∈ ℤ) | |
14 | dvdstr 16327 | . . . . . . . . . . . . . 14 ⊢ ((𝑚 ∈ ℤ ∧ (lcm‘𝑍) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∥ (lcm‘𝑍) ∧ (lcm‘𝑍) ∥ 𝐾) → 𝑚 ∥ 𝐾)) | |
15 | 9, 12, 13, 14 | syl3anc 1370 | . . . . . . . . . . . . 13 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → ((𝑚 ∥ (lcm‘𝑍) ∧ (lcm‘𝑍) ∥ 𝐾) → 𝑚 ∥ 𝐾)) |
16 | 15 | expd 415 | . . . . . . . . . . . 12 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (𝑚 ∥ (lcm‘𝑍) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))) |
17 | 16 | exp31 419 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ 𝑍 → (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝑚 ∥ (lcm‘𝑍) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))))) |
18 | 17 | com23 86 | . . . . . . . . . 10 ⊢ (𝑚 ∈ 𝑍 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝐾 ∈ ℤ → (𝑚 ∥ (lcm‘𝑍) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))))) |
19 | 18 | com24 95 | . . . . . . . . 9 ⊢ (𝑚 ∈ 𝑍 → (𝑚 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))))) |
20 | 19 | com45 97 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → (𝑚 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∥ 𝐾))))) |
21 | 4, 20 | syld 47 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → (∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∥ 𝐾))))) |
22 | 21 | com15 101 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾))))) |
23 | 2, 22 | mpd 15 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾)))) |
24 | 23 | com12 32 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾)))) |
25 | 24 | 3impib 1115 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾))) |
26 | 25 | ralrimdv 3149 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) |
27 | 1, 26 | impbid 212 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ↔ (lcm‘𝑍) ∥ 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 ∀wral 3058 ⊆ wss 3962 class class class wbr 5147 ‘cfv 6562 Fincfn 8983 ℤcz 12610 ∥ cdvds 16286 lcmclcmf 16622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-fz 13544 df-fzo 13691 df-fl 13828 df-mod 13906 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-prod 15936 df-dvds 16287 df-gcd 16528 df-lcm 16623 df-lcmf 16624 |
This theorem is referenced by: aks4d1p3 42059 |
Copyright terms: Public domain | W3C validator |