| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcmfdvdsb | Structured version Visualization version GIF version | ||
| Description: Biconditional form of lcmfdvds 16555. (Contributed by AV, 26-Aug-2020.) |
| Ref | Expression |
|---|---|
| lcmfdvdsb | ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ↔ (lcm‘𝑍) ∥ 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmfdvds 16555 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → (lcm‘𝑍) ∥ 𝐾)) | |
| 2 | dvdslcmf 16544 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) | |
| 3 | breq1 5096 | . . . . . . . . 9 ⊢ (𝑥 = 𝑚 → (𝑥 ∥ (lcm‘𝑍) ↔ 𝑚 ∥ (lcm‘𝑍))) | |
| 4 | 3 | rspcv 3569 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → (∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍) → 𝑚 ∥ (lcm‘𝑍))) |
| 5 | ssel 3924 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑍 ⊆ ℤ → (𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ)) | |
| 6 | 5 | adantr 480 | . . . . . . . . . . . . . . . . 17 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ)) |
| 7 | 6 | com12 32 | . . . . . . . . . . . . . . . 16 ⊢ (𝑚 ∈ 𝑍 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∈ ℤ)) |
| 8 | 7 | adantr 480 | . . . . . . . . . . . . . . 15 ⊢ ((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∈ ℤ)) |
| 9 | 8 | imp 406 | . . . . . . . . . . . . . 14 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → 𝑚 ∈ ℤ) |
| 10 | lcmfcl 16541 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℕ0) | |
| 11 | 10 | nn0zd 12500 | . . . . . . . . . . . . . . 15 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℤ) |
| 12 | 11 | adantl 481 | . . . . . . . . . . . . . 14 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘𝑍) ∈ ℤ) |
| 13 | simplr 768 | . . . . . . . . . . . . . 14 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → 𝐾 ∈ ℤ) | |
| 14 | dvdstr 16207 | . . . . . . . . . . . . . 14 ⊢ ((𝑚 ∈ ℤ ∧ (lcm‘𝑍) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∥ (lcm‘𝑍) ∧ (lcm‘𝑍) ∥ 𝐾) → 𝑚 ∥ 𝐾)) | |
| 15 | 9, 12, 13, 14 | syl3anc 1373 | . . . . . . . . . . . . 13 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → ((𝑚 ∥ (lcm‘𝑍) ∧ (lcm‘𝑍) ∥ 𝐾) → 𝑚 ∥ 𝐾)) |
| 16 | 15 | expd 415 | . . . . . . . . . . . 12 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (𝑚 ∥ (lcm‘𝑍) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))) |
| 17 | 16 | exp31 419 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ 𝑍 → (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝑚 ∥ (lcm‘𝑍) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))))) |
| 18 | 17 | com23 86 | . . . . . . . . . 10 ⊢ (𝑚 ∈ 𝑍 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝐾 ∈ ℤ → (𝑚 ∥ (lcm‘𝑍) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))))) |
| 19 | 18 | com24 95 | . . . . . . . . 9 ⊢ (𝑚 ∈ 𝑍 → (𝑚 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))))) |
| 20 | 19 | com45 97 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → (𝑚 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∥ 𝐾))))) |
| 21 | 4, 20 | syld 47 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → (∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∥ 𝐾))))) |
| 22 | 21 | com15 101 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾))))) |
| 23 | 2, 22 | mpd 15 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾)))) |
| 24 | 23 | com12 32 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾)))) |
| 25 | 24 | 3impib 1116 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾))) |
| 26 | 25 | ralrimdv 3131 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) |
| 27 | 1, 26 | impbid 212 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ↔ (lcm‘𝑍) ∥ 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 class class class wbr 5093 ‘cfv 6486 Fincfn 8875 ℤcz 12475 ∥ cdvds 16165 lcmclcmf 16502 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-prod 15813 df-dvds 16166 df-gcd 16408 df-lcm 16503 df-lcmf 16504 |
| This theorem is referenced by: aks4d1p3 42191 |
| Copyright terms: Public domain | W3C validator |