MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfdvdsb Structured version   Visualization version   GIF version

Theorem lcmfdvdsb 16620
Description: Biconditional form of lcmfdvds 16619. (Contributed by AV, 26-Aug-2020.)
Assertion
Ref Expression
lcmfdvdsb ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚𝑍 𝑚𝐾 ↔ (lcm𝑍) ∥ 𝐾))
Distinct variable groups:   𝑚,𝐾   𝑚,𝑍

Proof of Theorem lcmfdvdsb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lcmfdvds 16619 . 2 ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚𝑍 𝑚𝐾 → (lcm𝑍) ∥ 𝐾))
2 dvdslcmf 16608 . . . . . 6 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥𝑍 𝑥 ∥ (lcm𝑍))
3 breq1 5113 . . . . . . . . 9 (𝑥 = 𝑚 → (𝑥 ∥ (lcm𝑍) ↔ 𝑚 ∥ (lcm𝑍)))
43rspcv 3587 . . . . . . . 8 (𝑚𝑍 → (∀𝑥𝑍 𝑥 ∥ (lcm𝑍) → 𝑚 ∥ (lcm𝑍)))
5 ssel 3943 . . . . . . . . . . . . . . . . . 18 (𝑍 ⊆ ℤ → (𝑚𝑍𝑚 ∈ ℤ))
65adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝑚𝑍𝑚 ∈ ℤ))
76com12 32 . . . . . . . . . . . . . . . 16 (𝑚𝑍 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∈ ℤ))
87adantr 480 . . . . . . . . . . . . . . 15 ((𝑚𝑍𝐾 ∈ ℤ) → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∈ ℤ))
98imp 406 . . . . . . . . . . . . . 14 (((𝑚𝑍𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → 𝑚 ∈ ℤ)
10 lcmfcl 16605 . . . . . . . . . . . . . . . 16 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm𝑍) ∈ ℕ0)
1110nn0zd 12562 . . . . . . . . . . . . . . 15 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm𝑍) ∈ ℤ)
1211adantl 481 . . . . . . . . . . . . . 14 (((𝑚𝑍𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm𝑍) ∈ ℤ)
13 simplr 768 . . . . . . . . . . . . . 14 (((𝑚𝑍𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → 𝐾 ∈ ℤ)
14 dvdstr 16271 . . . . . . . . . . . . . 14 ((𝑚 ∈ ℤ ∧ (lcm𝑍) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∥ (lcm𝑍) ∧ (lcm𝑍) ∥ 𝐾) → 𝑚𝐾))
159, 12, 13, 14syl3anc 1373 . . . . . . . . . . . . 13 (((𝑚𝑍𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → ((𝑚 ∥ (lcm𝑍) ∧ (lcm𝑍) ∥ 𝐾) → 𝑚𝐾))
1615expd 415 . . . . . . . . . . . 12 (((𝑚𝑍𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (𝑚 ∥ (lcm𝑍) → ((lcm𝑍) ∥ 𝐾𝑚𝐾)))
1716exp31 419 . . . . . . . . . . 11 (𝑚𝑍 → (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝑚 ∥ (lcm𝑍) → ((lcm𝑍) ∥ 𝐾𝑚𝐾)))))
1817com23 86 . . . . . . . . . 10 (𝑚𝑍 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝐾 ∈ ℤ → (𝑚 ∥ (lcm𝑍) → ((lcm𝑍) ∥ 𝐾𝑚𝐾)))))
1918com24 95 . . . . . . . . 9 (𝑚𝑍 → (𝑚 ∥ (lcm𝑍) → (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm𝑍) ∥ 𝐾𝑚𝐾)))))
2019com45 97 . . . . . . . 8 (𝑚𝑍 → (𝑚 ∥ (lcm𝑍) → (𝐾 ∈ ℤ → ((lcm𝑍) ∥ 𝐾 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚𝐾)))))
214, 20syld 47 . . . . . . 7 (𝑚𝑍 → (∀𝑥𝑍 𝑥 ∥ (lcm𝑍) → (𝐾 ∈ ℤ → ((lcm𝑍) ∥ 𝐾 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚𝐾)))))
2221com15 101 . . . . . 6 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑥𝑍 𝑥 ∥ (lcm𝑍) → (𝐾 ∈ ℤ → ((lcm𝑍) ∥ 𝐾 → (𝑚𝑍𝑚𝐾)))))
232, 22mpd 15 . . . . 5 ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝐾 ∈ ℤ → ((lcm𝑍) ∥ 𝐾 → (𝑚𝑍𝑚𝐾))))
2423com12 32 . . . 4 (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm𝑍) ∥ 𝐾 → (𝑚𝑍𝑚𝐾))))
25243impib 1116 . . 3 ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm𝑍) ∥ 𝐾 → (𝑚𝑍𝑚𝐾)))
2625ralrimdv 3132 . 2 ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm𝑍) ∥ 𝐾 → ∀𝑚𝑍 𝑚𝐾))
271, 26impbid 212 1 ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚𝑍 𝑚𝐾 ↔ (lcm𝑍) ∥ 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wral 3045  wss 3917   class class class wbr 5110  cfv 6514  Fincfn 8921  cz 12536  cdvds 16229  lcmclcmf 16566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-prod 15877  df-dvds 16230  df-gcd 16472  df-lcm 16567  df-lcmf 16568
This theorem is referenced by:  aks4d1p3  42073
  Copyright terms: Public domain W3C validator