| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lcmfdvdsb | Structured version Visualization version GIF version | ||
| Description: Biconditional form of lcmfdvds 16612. (Contributed by AV, 26-Aug-2020.) |
| Ref | Expression |
|---|---|
| lcmfdvdsb | ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ↔ (lcm‘𝑍) ∥ 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmfdvds 16612 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → (lcm‘𝑍) ∥ 𝐾)) | |
| 2 | dvdslcmf 16601 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) | |
| 3 | breq1 5110 | . . . . . . . . 9 ⊢ (𝑥 = 𝑚 → (𝑥 ∥ (lcm‘𝑍) ↔ 𝑚 ∥ (lcm‘𝑍))) | |
| 4 | 3 | rspcv 3584 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → (∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍) → 𝑚 ∥ (lcm‘𝑍))) |
| 5 | ssel 3940 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑍 ⊆ ℤ → (𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ)) | |
| 6 | 5 | adantr 480 | . . . . . . . . . . . . . . . . 17 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ)) |
| 7 | 6 | com12 32 | . . . . . . . . . . . . . . . 16 ⊢ (𝑚 ∈ 𝑍 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∈ ℤ)) |
| 8 | 7 | adantr 480 | . . . . . . . . . . . . . . 15 ⊢ ((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∈ ℤ)) |
| 9 | 8 | imp 406 | . . . . . . . . . . . . . 14 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → 𝑚 ∈ ℤ) |
| 10 | lcmfcl 16598 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℕ0) | |
| 11 | 10 | nn0zd 12555 | . . . . . . . . . . . . . . 15 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℤ) |
| 12 | 11 | adantl 481 | . . . . . . . . . . . . . 14 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘𝑍) ∈ ℤ) |
| 13 | simplr 768 | . . . . . . . . . . . . . 14 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → 𝐾 ∈ ℤ) | |
| 14 | dvdstr 16264 | . . . . . . . . . . . . . 14 ⊢ ((𝑚 ∈ ℤ ∧ (lcm‘𝑍) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∥ (lcm‘𝑍) ∧ (lcm‘𝑍) ∥ 𝐾) → 𝑚 ∥ 𝐾)) | |
| 15 | 9, 12, 13, 14 | syl3anc 1373 | . . . . . . . . . . . . 13 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → ((𝑚 ∥ (lcm‘𝑍) ∧ (lcm‘𝑍) ∥ 𝐾) → 𝑚 ∥ 𝐾)) |
| 16 | 15 | expd 415 | . . . . . . . . . . . 12 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (𝑚 ∥ (lcm‘𝑍) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))) |
| 17 | 16 | exp31 419 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ 𝑍 → (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝑚 ∥ (lcm‘𝑍) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))))) |
| 18 | 17 | com23 86 | . . . . . . . . . 10 ⊢ (𝑚 ∈ 𝑍 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝐾 ∈ ℤ → (𝑚 ∥ (lcm‘𝑍) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))))) |
| 19 | 18 | com24 95 | . . . . . . . . 9 ⊢ (𝑚 ∈ 𝑍 → (𝑚 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))))) |
| 20 | 19 | com45 97 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → (𝑚 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∥ 𝐾))))) |
| 21 | 4, 20 | syld 47 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → (∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∥ 𝐾))))) |
| 22 | 21 | com15 101 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾))))) |
| 23 | 2, 22 | mpd 15 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾)))) |
| 24 | 23 | com12 32 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾)))) |
| 25 | 24 | 3impib 1116 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾))) |
| 26 | 25 | ralrimdv 3131 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) |
| 27 | 1, 26 | impbid 212 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ↔ (lcm‘𝑍) ∥ 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 Fincfn 8918 ℤcz 12529 ∥ cdvds 16222 lcmclcmf 16559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-prod 15870 df-dvds 16223 df-gcd 16465 df-lcm 16560 df-lcmf 16561 |
| This theorem is referenced by: aks4d1p3 42066 |
| Copyright terms: Public domain | W3C validator |