Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lcmfdvdsb | Structured version Visualization version GIF version |
Description: Biconditional form of lcmfdvds 16343. (Contributed by AV, 26-Aug-2020.) |
Ref | Expression |
---|---|
lcmfdvdsb | ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ↔ (lcm‘𝑍) ∥ 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcmfdvds 16343 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → (lcm‘𝑍) ∥ 𝐾)) | |
2 | dvdslcmf 16332 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍)) | |
3 | breq1 5082 | . . . . . . . . 9 ⊢ (𝑥 = 𝑚 → (𝑥 ∥ (lcm‘𝑍) ↔ 𝑚 ∥ (lcm‘𝑍))) | |
4 | 3 | rspcv 3556 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → (∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍) → 𝑚 ∥ (lcm‘𝑍))) |
5 | ssel 3919 | . . . . . . . . . . . . . . . . . 18 ⊢ (𝑍 ⊆ ℤ → (𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ)) | |
6 | 5 | adantr 481 | . . . . . . . . . . . . . . . . 17 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ)) |
7 | 6 | com12 32 | . . . . . . . . . . . . . . . 16 ⊢ (𝑚 ∈ 𝑍 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∈ ℤ)) |
8 | 7 | adantr 481 | . . . . . . . . . . . . . . 15 ⊢ ((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∈ ℤ)) |
9 | 8 | imp 407 | . . . . . . . . . . . . . 14 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → 𝑚 ∈ ℤ) |
10 | lcmfcl 16329 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℕ0) | |
11 | 10 | nn0zd 12421 | . . . . . . . . . . . . . . 15 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (lcm‘𝑍) ∈ ℤ) |
12 | 11 | adantl 482 | . . . . . . . . . . . . . 14 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (lcm‘𝑍) ∈ ℤ) |
13 | simplr 766 | . . . . . . . . . . . . . 14 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → 𝐾 ∈ ℤ) | |
14 | dvdstr 15999 | . . . . . . . . . . . . . 14 ⊢ ((𝑚 ∈ ℤ ∧ (lcm‘𝑍) ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑚 ∥ (lcm‘𝑍) ∧ (lcm‘𝑍) ∥ 𝐾) → 𝑚 ∥ 𝐾)) | |
15 | 9, 12, 13, 14 | syl3anc 1370 | . . . . . . . . . . . . 13 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → ((𝑚 ∥ (lcm‘𝑍) ∧ (lcm‘𝑍) ∥ 𝐾) → 𝑚 ∥ 𝐾)) |
16 | 15 | expd 416 | . . . . . . . . . . . 12 ⊢ (((𝑚 ∈ 𝑍 ∧ 𝐾 ∈ ℤ) ∧ (𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin)) → (𝑚 ∥ (lcm‘𝑍) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))) |
17 | 16 | exp31 420 | . . . . . . . . . . 11 ⊢ (𝑚 ∈ 𝑍 → (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝑚 ∥ (lcm‘𝑍) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))))) |
18 | 17 | com23 86 | . . . . . . . . . 10 ⊢ (𝑚 ∈ 𝑍 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝐾 ∈ ℤ → (𝑚 ∥ (lcm‘𝑍) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))))) |
19 | 18 | com24 95 | . . . . . . . . 9 ⊢ (𝑚 ∈ 𝑍 → (𝑚 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → 𝑚 ∥ 𝐾))))) |
20 | 19 | com45 97 | . . . . . . . 8 ⊢ (𝑚 ∈ 𝑍 → (𝑚 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∥ 𝐾))))) |
21 | 4, 20 | syld 47 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → (∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → 𝑚 ∥ 𝐾))))) |
22 | 21 | com15 101 | . . . . . 6 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑥 ∈ 𝑍 𝑥 ∥ (lcm‘𝑍) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾))))) |
23 | 2, 22 | mpd 15 | . . . . 5 ⊢ ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (𝐾 ∈ ℤ → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾)))) |
24 | 23 | com12 32 | . . . 4 ⊢ (𝐾 ∈ ℤ → ((𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾)))) |
25 | 24 | 3impib 1115 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → (𝑚 ∈ 𝑍 → 𝑚 ∥ 𝐾))) |
26 | 25 | ralrimdv 3114 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → ((lcm‘𝑍) ∥ 𝐾 → ∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾)) |
27 | 1, 26 | impbid 211 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin) → (∀𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ↔ (lcm‘𝑍) ∥ 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2110 ∀wral 3066 ⊆ wss 3892 class class class wbr 5079 ‘cfv 6431 Fincfn 8714 ℤcz 12317 ∥ cdvds 15959 lcmclcmf 16290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-inf2 9375 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 ax-pre-sup 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-isom 6440 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-sup 9177 df-inf 9178 df-oi 9245 df-card 9696 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-div 11631 df-nn 11972 df-2 12034 df-3 12035 df-n0 12232 df-z 12318 df-uz 12580 df-rp 12728 df-fz 13237 df-fzo 13380 df-fl 13508 df-mod 13586 df-seq 13718 df-exp 13779 df-hash 14041 df-cj 14806 df-re 14807 df-im 14808 df-sqrt 14942 df-abs 14943 df-clim 15193 df-prod 15612 df-dvds 15960 df-gcd 16198 df-lcm 16291 df-lcmf 16292 |
This theorem is referenced by: aks4d1p3 40081 |
Copyright terms: Public domain | W3C validator |