Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infordmin Structured version   Visualization version   GIF version

Theorem infordmin 41037
Description: ω is the smallest infinite ordinal. (Contributed by RP, 27-Sep-2023.)
Assertion
Ref Expression
infordmin 𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥

Proof of Theorem infordmin
StepHypRef Expression
1 eldif 3893 . . 3 (𝑥 ∈ (On ∖ Fin) ↔ (𝑥 ∈ On ∧ ¬ 𝑥 ∈ Fin))
2 omelon 9334 . . . . . 6 ω ∈ On
3 ontri1 6285 . . . . . . . . 9 ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω))
43bicomd 222 . . . . . . . 8 ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 ∈ ω ↔ ω ⊆ 𝑥))
54con1bid 355 . . . . . . 7 ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ ω ⊆ 𝑥𝑥 ∈ ω))
6 nnfi 8912 . . . . . . 7 (𝑥 ∈ ω → 𝑥 ∈ Fin)
75, 6syl6bi 252 . . . . . 6 ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ ω ⊆ 𝑥𝑥 ∈ Fin))
82, 7mpan 686 . . . . 5 (𝑥 ∈ On → (¬ ω ⊆ 𝑥𝑥 ∈ Fin))
98con1d 145 . . . 4 (𝑥 ∈ On → (¬ 𝑥 ∈ Fin → ω ⊆ 𝑥))
109imp 406 . . 3 ((𝑥 ∈ On ∧ ¬ 𝑥 ∈ Fin) → ω ⊆ 𝑥)
111, 10sylbi 216 . 2 (𝑥 ∈ (On ∖ Fin) → ω ⊆ 𝑥)
1211rgen 3073 1 𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wral 3063  cdif 3880  wss 3883  Oncon0 6251  ωcom 7687  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-om 7688  df-en 8692  df-fin 8695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator