![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infordmin | Structured version Visualization version GIF version |
Description: ω is the smallest infinite ordinal. (Contributed by RP, 27-Sep-2023.) |
Ref | Expression |
---|---|
infordmin | ⊢ ∀𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3986 | . . 3 ⊢ (𝑥 ∈ (On ∖ Fin) ↔ (𝑥 ∈ On ∧ ¬ 𝑥 ∈ Fin)) | |
2 | omelon 9715 | . . . . . 6 ⊢ ω ∈ On | |
3 | ontri1 6429 | . . . . . . . . 9 ⊢ ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω)) | |
4 | 3 | bicomd 223 | . . . . . . . 8 ⊢ ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 ∈ ω ↔ ω ⊆ 𝑥)) |
5 | 4 | con1bid 355 | . . . . . . 7 ⊢ ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ ω ⊆ 𝑥 ↔ 𝑥 ∈ ω)) |
6 | nnfi 9233 | . . . . . . 7 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
7 | 5, 6 | biimtrdi 253 | . . . . . 6 ⊢ ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ ω ⊆ 𝑥 → 𝑥 ∈ Fin)) |
8 | 2, 7 | mpan 689 | . . . . 5 ⊢ (𝑥 ∈ On → (¬ ω ⊆ 𝑥 → 𝑥 ∈ Fin)) |
9 | 8 | con1d 145 | . . . 4 ⊢ (𝑥 ∈ On → (¬ 𝑥 ∈ Fin → ω ⊆ 𝑥)) |
10 | 9 | imp 406 | . . 3 ⊢ ((𝑥 ∈ On ∧ ¬ 𝑥 ∈ Fin) → ω ⊆ 𝑥) |
11 | 1, 10 | sylbi 217 | . 2 ⊢ (𝑥 ∈ (On ∖ Fin) → ω ⊆ 𝑥) |
12 | 11 | rgen 3069 | 1 ⊢ ∀𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 ⊆ wss 3976 Oncon0 6395 ωcom 7903 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-inf2 9710 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-om 7904 df-en 9004 df-fin 9007 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |