Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infordmin Structured version   Visualization version   GIF version

Theorem infordmin 41163
Description: ω is the smallest infinite ordinal. (Contributed by RP, 27-Sep-2023.)
Assertion
Ref Expression
infordmin 𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥

Proof of Theorem infordmin
StepHypRef Expression
1 eldif 3899 . . 3 (𝑥 ∈ (On ∖ Fin) ↔ (𝑥 ∈ On ∧ ¬ 𝑥 ∈ Fin))
2 omelon 9432 . . . . . 6 ω ∈ On
3 ontri1 6304 . . . . . . . . 9 ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω))
43bicomd 222 . . . . . . . 8 ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 ∈ ω ↔ ω ⊆ 𝑥))
54con1bid 355 . . . . . . 7 ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ ω ⊆ 𝑥𝑥 ∈ ω))
6 nnfi 8975 . . . . . . 7 (𝑥 ∈ ω → 𝑥 ∈ Fin)
75, 6syl6bi 252 . . . . . 6 ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ ω ⊆ 𝑥𝑥 ∈ Fin))
82, 7mpan 686 . . . . 5 (𝑥 ∈ On → (¬ ω ⊆ 𝑥𝑥 ∈ Fin))
98con1d 145 . . . 4 (𝑥 ∈ On → (¬ 𝑥 ∈ Fin → ω ⊆ 𝑥))
109imp 406 . . 3 ((𝑥 ∈ On ∧ ¬ 𝑥 ∈ Fin) → ω ⊆ 𝑥)
111, 10sylbi 216 . 2 (𝑥 ∈ (On ∖ Fin) → ω ⊆ 𝑥)
1211rgen 3061 1 𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2101  wral 3059  cdif 3886  wss 3889  Oncon0 6270  ωcom 7732  Fincfn 8753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7608  ax-inf2 9427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-om 7733  df-en 8754  df-fin 8757
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator