| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infordmin | Structured version Visualization version GIF version | ||
| Description: ω is the smallest infinite ordinal. (Contributed by RP, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| infordmin | ⊢ ∀𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3941 | . . 3 ⊢ (𝑥 ∈ (On ∖ Fin) ↔ (𝑥 ∈ On ∧ ¬ 𝑥 ∈ Fin)) | |
| 2 | omelon 9665 | . . . . . 6 ⊢ ω ∈ On | |
| 3 | ontri1 6391 | . . . . . . . . 9 ⊢ ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω)) | |
| 4 | 3 | bicomd 223 | . . . . . . . 8 ⊢ ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 ∈ ω ↔ ω ⊆ 𝑥)) |
| 5 | 4 | con1bid 355 | . . . . . . 7 ⊢ ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ ω ⊆ 𝑥 ↔ 𝑥 ∈ ω)) |
| 6 | nnfi 9186 | . . . . . . 7 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
| 7 | 5, 6 | biimtrdi 253 | . . . . . 6 ⊢ ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ ω ⊆ 𝑥 → 𝑥 ∈ Fin)) |
| 8 | 2, 7 | mpan 690 | . . . . 5 ⊢ (𝑥 ∈ On → (¬ ω ⊆ 𝑥 → 𝑥 ∈ Fin)) |
| 9 | 8 | con1d 145 | . . . 4 ⊢ (𝑥 ∈ On → (¬ 𝑥 ∈ Fin → ω ⊆ 𝑥)) |
| 10 | 9 | imp 406 | . . 3 ⊢ ((𝑥 ∈ On ∧ ¬ 𝑥 ∈ Fin) → ω ⊆ 𝑥) |
| 11 | 1, 10 | sylbi 217 | . 2 ⊢ (𝑥 ∈ (On ∖ Fin) → ω ⊆ 𝑥) |
| 12 | 11 | rgen 3054 | 1 ⊢ ∀𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 ∖ cdif 3928 ⊆ wss 3931 Oncon0 6357 ωcom 7866 Fincfn 8964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-inf2 9660 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-om 7867 df-en 8965 df-fin 8968 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |