![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infordmin | Structured version Visualization version GIF version |
Description: ω is the smallest infinite ordinal. (Contributed by RP, 27-Sep-2023.) |
Ref | Expression |
---|---|
infordmin | ⊢ ∀𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3959 | . . 3 ⊢ (𝑥 ∈ (On ∖ Fin) ↔ (𝑥 ∈ On ∧ ¬ 𝑥 ∈ Fin)) | |
2 | omelon 9641 | . . . . . 6 ⊢ ω ∈ On | |
3 | ontri1 6399 | . . . . . . . . 9 ⊢ ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω)) | |
4 | 3 | bicomd 222 | . . . . . . . 8 ⊢ ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 ∈ ω ↔ ω ⊆ 𝑥)) |
5 | 4 | con1bid 356 | . . . . . . 7 ⊢ ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ ω ⊆ 𝑥 ↔ 𝑥 ∈ ω)) |
6 | nnfi 9167 | . . . . . . 7 ⊢ (𝑥 ∈ ω → 𝑥 ∈ Fin) | |
7 | 5, 6 | syl6bi 253 | . . . . . 6 ⊢ ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ ω ⊆ 𝑥 → 𝑥 ∈ Fin)) |
8 | 2, 7 | mpan 689 | . . . . 5 ⊢ (𝑥 ∈ On → (¬ ω ⊆ 𝑥 → 𝑥 ∈ Fin)) |
9 | 8 | con1d 145 | . . . 4 ⊢ (𝑥 ∈ On → (¬ 𝑥 ∈ Fin → ω ⊆ 𝑥)) |
10 | 9 | imp 408 | . . 3 ⊢ ((𝑥 ∈ On ∧ ¬ 𝑥 ∈ Fin) → ω ⊆ 𝑥) |
11 | 1, 10 | sylbi 216 | . 2 ⊢ (𝑥 ∈ (On ∖ Fin) → ω ⊆ 𝑥) |
12 | 11 | rgen 3064 | 1 ⊢ ∀𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∈ wcel 2107 ∀wral 3062 ∖ cdif 3946 ⊆ wss 3949 Oncon0 6365 ωcom 7855 Fincfn 8939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 ax-inf2 9636 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-om 7856 df-en 8940 df-fin 8943 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |