Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infordmin Structured version   Visualization version   GIF version

Theorem infordmin 39948
Description: ω is the smallest infinite ordinal. (Contributed by RP, 27-Sep-2023.)
Assertion
Ref Expression
infordmin 𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥

Proof of Theorem infordmin
StepHypRef Expression
1 eldif 3946 . . 3 (𝑥 ∈ (On ∖ Fin) ↔ (𝑥 ∈ On ∧ ¬ 𝑥 ∈ Fin))
2 omelon 9109 . . . . . 6 ω ∈ On
3 ontri1 6225 . . . . . . . . 9 ((ω ∈ On ∧ 𝑥 ∈ On) → (ω ⊆ 𝑥 ↔ ¬ 𝑥 ∈ ω))
43bicomd 225 . . . . . . . 8 ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ 𝑥 ∈ ω ↔ ω ⊆ 𝑥))
54con1bid 358 . . . . . . 7 ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ ω ⊆ 𝑥𝑥 ∈ ω))
6 nnfi 8711 . . . . . . 7 (𝑥 ∈ ω → 𝑥 ∈ Fin)
75, 6syl6bi 255 . . . . . 6 ((ω ∈ On ∧ 𝑥 ∈ On) → (¬ ω ⊆ 𝑥𝑥 ∈ Fin))
82, 7mpan 688 . . . . 5 (𝑥 ∈ On → (¬ ω ⊆ 𝑥𝑥 ∈ Fin))
98con1d 147 . . . 4 (𝑥 ∈ On → (¬ 𝑥 ∈ Fin → ω ⊆ 𝑥))
109imp 409 . . 3 ((𝑥 ∈ On ∧ ¬ 𝑥 ∈ Fin) → ω ⊆ 𝑥)
111, 10sylbi 219 . 2 (𝑥 ∈ (On ∖ Fin) → ω ⊆ 𝑥)
1211rgen 3148 1 𝑥 ∈ (On ∖ Fin)ω ⊆ 𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wcel 2114  wral 3138  cdif 3933  wss 3936  Oncon0 6191  ωcom 7580  Fincfn 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator