Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem13 Structured version   Visualization version   GIF version

Theorem dalawlem13 39981
Description: Lemma for dalaw 39984. Special case to eliminate the requirement ((𝑃 𝑄) 𝑅) ∈ 𝑂 in dalawlem1 39969. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l = (le‘𝐾)
dalawlem.j = (join‘𝐾)
dalawlem.m = (meet‘𝐾)
dalawlem.a 𝐴 = (Atoms‘𝐾)
dalawlem2.o 𝑂 = (LPlanes‘𝐾)
Assertion
Ref Expression
dalawlem13 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))

Proof of Theorem dalawlem13
StepHypRef Expression
1 simp11 1204 . 2 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ HL)
2 simp12 1205 . . 3 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂)
3 simp22 1208 . . . . . . 7 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄𝐴)
4 simp23 1209 . . . . . . 7 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅𝐴)
5 simp21 1207 . . . . . . 7 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃𝐴)
6 dalawlem.l . . . . . . . 8 = (le‘𝐾)
7 dalawlem.j . . . . . . . 8 = (join‘𝐾)
8 dalawlem.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
9 dalawlem2.o . . . . . . . 8 𝑂 = (LPlanes‘𝐾)
106, 7, 8, 9islpln2a 39646 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑃𝐴)) → (((𝑄 𝑅) 𝑃) ∈ 𝑂 ↔ (𝑄𝑅 ∧ ¬ 𝑃 (𝑄 𝑅))))
111, 3, 4, 5, 10syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑃) ∈ 𝑂 ↔ (𝑄𝑅 ∧ ¬ 𝑃 (𝑄 𝑅))))
12 df-ne 2929 . . . . . . . 8 (𝑄𝑅 ↔ ¬ 𝑄 = 𝑅)
1312anbi1i 624 . . . . . . 7 ((𝑄𝑅 ∧ ¬ 𝑃 (𝑄 𝑅)) ↔ (¬ 𝑄 = 𝑅 ∧ ¬ 𝑃 (𝑄 𝑅)))
14 pm4.56 990 . . . . . . 7 ((¬ 𝑄 = 𝑅 ∧ ¬ 𝑃 (𝑄 𝑅)) ↔ ¬ (𝑄 = 𝑅𝑃 (𝑄 𝑅)))
1513, 14bitri 275 . . . . . 6 ((𝑄𝑅 ∧ ¬ 𝑃 (𝑄 𝑅)) ↔ ¬ (𝑄 = 𝑅𝑃 (𝑄 𝑅)))
1611, 15bitr2di 288 . . . . 5 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (¬ (𝑄 = 𝑅𝑃 (𝑄 𝑅)) ↔ ((𝑄 𝑅) 𝑃) ∈ 𝑂))
177, 8hlatjrot 39471 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑃𝐴)) → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))
181, 3, 4, 5, 17syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) 𝑃) = ((𝑃 𝑄) 𝑅))
1918eleq1d 2816 . . . . 5 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) 𝑃) ∈ 𝑂 ↔ ((𝑃 𝑄) 𝑅) ∈ 𝑂))
2016, 19bitrd 279 . . . 4 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (¬ (𝑄 = 𝑅𝑃 (𝑄 𝑅)) ↔ ((𝑃 𝑄) 𝑅) ∈ 𝑂))
2120con1bid 355 . . 3 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ↔ (𝑄 = 𝑅𝑃 (𝑄 𝑅))))
222, 21mpbid 232 . 2 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 = 𝑅𝑃 (𝑄 𝑅)))
23 simp13 1206 . 2 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈))
24 simp2 1137 . 2 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃𝐴𝑄𝐴𝑅𝐴))
25 simp3 1138 . 2 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑆𝐴𝑇𝐴𝑈𝐴))
26 dalawlem.m . . . . . . . 8 = (meet‘𝐾)
276, 7, 26, 8dalawlem12 39980 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
28273expib 1122 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) → (((𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))
29283exp 1119 . . . . 5 (𝐾 ∈ HL → (𝑄 = 𝑅 → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → (((𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))))
306, 7, 26, 8dalawlem11 39979 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
31303expib 1122 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃 (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) → (((𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))
32313exp 1119 . . . . 5 (𝐾 ∈ HL → (𝑃 (𝑄 𝑅) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → (((𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))))
3329, 32jaod 859 . . . 4 (𝐾 ∈ HL → ((𝑄 = 𝑅𝑃 (𝑄 𝑅)) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈) → (((𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))))
34333imp 1110 . . 3 ((𝐾 ∈ HL ∧ (𝑄 = 𝑅𝑃 (𝑄 𝑅)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) → (((𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆)))))
35343impib 1116 . 2 (((𝐾 ∈ HL ∧ (𝑄 = 𝑅𝑃 (𝑄 𝑅)) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
361, 22, 23, 24, 25, 35syl311anc 1386 1 (((𝐾 ∈ HL ∧ ¬ ((𝑃 𝑄) 𝑅) ∈ 𝑂 ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) (𝑆 𝑇)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  lecple 17168  joincjn 18217  meetcmee 18218  Atomscatm 39361  HLchlt 39448  LPlanesclpl 39590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39274  df-ol 39276  df-oml 39277  df-covers 39364  df-ats 39365  df-atl 39396  df-cvlat 39420  df-hlat 39449  df-llines 39596  df-lplanes 39597  df-psubsp 39601  df-pmap 39602  df-padd 39894
This theorem is referenced by:  dalawlem14  39982
  Copyright terms: Public domain W3C validator