MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqcldsat Structured version   Visualization version   GIF version

Theorem kqcldsat 23653
Description: Any closed set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest 23637). (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqcldsat ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝐹𝑈)) = 𝑈)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem kqcldsat
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . 7 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqffn 23645 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
3 elpreima 7012 . . . . . 6 (𝐹 Fn 𝑋 → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
42, 3syl 17 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
54adantr 480 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
6 noel 4297 . . . . . . . 8 ¬ (𝐹𝑧) ∈ ∅
7 elin 3927 . . . . . . . . 9 ((𝐹𝑧) ∈ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) ↔ ((𝐹𝑧) ∈ (𝐹𝑈) ∧ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
8 incom 4168 . . . . . . . . . . 11 ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) = ((𝐹 “ (𝑋𝑈)) ∩ (𝐹𝑈))
9 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 𝐽 = 𝐽
109cldss 22949 . . . . . . . . . . . . . . . . . . 19 (𝑈 ∈ (Clsd‘𝐽) → 𝑈 𝐽)
1110adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 𝐽)
12 fndm 6603 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
132, 12syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ (TopOn‘𝑋) → dom 𝐹 = 𝑋)
14 toponuni 22834 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1513, 14eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (𝐽 ∈ (TopOn‘𝑋) → dom 𝐹 = 𝐽)
1615adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → dom 𝐹 = 𝐽)
1711, 16sseqtrrd 3981 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ dom 𝐹)
1813adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → dom 𝐹 = 𝑋)
1917, 18sseqtrd 3980 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈𝑋)
2019adantr 480 . . . . . . . . . . . . . . 15 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → 𝑈𝑋)
21 dfss4 4228 . . . . . . . . . . . . . . 15 (𝑈𝑋 ↔ (𝑋 ∖ (𝑋𝑈)) = 𝑈)
2220, 21sylib 218 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (𝑋 ∖ (𝑋𝑈)) = 𝑈)
2322imaeq2d 6020 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (𝐹 “ (𝑋 ∖ (𝑋𝑈))) = (𝐹𝑈))
2423ineq2d 4179 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹 “ (𝑋𝑈)) ∩ (𝐹 “ (𝑋 ∖ (𝑋𝑈)))) = ((𝐹 “ (𝑋𝑈)) ∩ (𝐹𝑈)))
25 simpll 766 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → 𝐽 ∈ (TopOn‘𝑋))
2614adantr 480 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑋 = 𝐽)
2726difeq1d 4084 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑋𝑈) = ( 𝐽𝑈))
289cldopn 22951 . . . . . . . . . . . . . . . 16 (𝑈 ∈ (Clsd‘𝐽) → ( 𝐽𝑈) ∈ 𝐽)
2928adantl 481 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → ( 𝐽𝑈) ∈ 𝐽)
3027, 29eqeltrd 2828 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑋𝑈) ∈ 𝐽)
3130adantr 480 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (𝑋𝑈) ∈ 𝐽)
321kqdisj 23652 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋𝑈) ∈ 𝐽) → ((𝐹 “ (𝑋𝑈)) ∩ (𝐹 “ (𝑋 ∖ (𝑋𝑈)))) = ∅)
3325, 31, 32syl2anc 584 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹 “ (𝑋𝑈)) ∩ (𝐹 “ (𝑋 ∖ (𝑋𝑈)))) = ∅)
3424, 33eqtr3d 2766 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹 “ (𝑋𝑈)) ∩ (𝐹𝑈)) = ∅)
358, 34eqtrid 2776 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) = ∅)
3635eleq2d 2814 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) ↔ (𝐹𝑧) ∈ ∅))
377, 36bitr3id 285 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (((𝐹𝑧) ∈ (𝐹𝑈) ∧ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))) ↔ (𝐹𝑧) ∈ ∅))
386, 37mtbiri 327 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ¬ ((𝐹𝑧) ∈ (𝐹𝑈) ∧ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
39 imnan 399 . . . . . . 7 (((𝐹𝑧) ∈ (𝐹𝑈) → ¬ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))) ↔ ¬ ((𝐹𝑧) ∈ (𝐹𝑈) ∧ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
4038, 39sylibr 234 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ (𝐹𝑈) → ¬ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
41 eldif 3921 . . . . . . . . . 10 (𝑧 ∈ (𝑋𝑈) ↔ (𝑧𝑋 ∧ ¬ 𝑧𝑈))
4241baibr 536 . . . . . . . . 9 (𝑧𝑋 → (¬ 𝑧𝑈𝑧 ∈ (𝑋𝑈)))
4342adantl 481 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (¬ 𝑧𝑈𝑧 ∈ (𝑋𝑈)))
44 simpr 484 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → 𝑧𝑋)
451kqfvima 23650 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋𝑈) ∈ 𝐽𝑧𝑋) → (𝑧 ∈ (𝑋𝑈) ↔ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
4625, 31, 44, 45syl3anc 1373 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (𝑧 ∈ (𝑋𝑈) ↔ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
4743, 46bitrd 279 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (¬ 𝑧𝑈 ↔ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
4847con1bid 355 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (¬ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈)) ↔ 𝑧𝑈))
4940, 48sylibd 239 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ (𝐹𝑈) → 𝑧𝑈))
5049expimpd 453 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → ((𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈)) → 𝑧𝑈))
515, 50sylbid 240 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) → 𝑧𝑈))
5251ssrdv 3949 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝐹𝑈)) ⊆ 𝑈)
53 sseqin2 4182 . . . 4 (𝑈 ⊆ dom 𝐹 ↔ (dom 𝐹𝑈) = 𝑈)
5417, 53sylib 218 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (dom 𝐹𝑈) = 𝑈)
55 dminss 6114 . . 3 (dom 𝐹𝑈) ⊆ (𝐹 “ (𝐹𝑈))
5654, 55eqsstrrdi 3989 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ (𝐹 “ (𝐹𝑈)))
5752, 56eqssd 3961 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝐹𝑈)) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3402  cdif 3908  cin 3910  wss 3911  c0 4292   cuni 4867  cmpt 5183  ccnv 5630  dom cdm 5631  cima 5634   Fn wfn 6494  cfv 6499  TopOnctopon 22830  Clsdccld 22936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-top 22814  df-topon 22831  df-cld 22939
This theorem is referenced by:  kqcld  23655
  Copyright terms: Public domain W3C validator