MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqcldsat Structured version   Visualization version   GIF version

Theorem kqcldsat 23641
Description: Any closed set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest 23625). (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqcldsat ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝐹𝑈)) = 𝑈)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem kqcldsat
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . 7 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqffn 23633 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
3 elpreima 6986 . . . . . 6 (𝐹 Fn 𝑋 → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
42, 3syl 17 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
54adantr 480 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
6 noel 4286 . . . . . . . 8 ¬ (𝐹𝑧) ∈ ∅
7 elin 3916 . . . . . . . . 9 ((𝐹𝑧) ∈ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) ↔ ((𝐹𝑧) ∈ (𝐹𝑈) ∧ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
8 incom 4157 . . . . . . . . . . 11 ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) = ((𝐹 “ (𝑋𝑈)) ∩ (𝐹𝑈))
9 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 𝐽 = 𝐽
109cldss 22937 . . . . . . . . . . . . . . . . . . 19 (𝑈 ∈ (Clsd‘𝐽) → 𝑈 𝐽)
1110adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 𝐽)
12 fndm 6580 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
132, 12syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ (TopOn‘𝑋) → dom 𝐹 = 𝑋)
14 toponuni 22822 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1513, 14eqtrd 2765 . . . . . . . . . . . . . . . . . . 19 (𝐽 ∈ (TopOn‘𝑋) → dom 𝐹 = 𝐽)
1615adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → dom 𝐹 = 𝐽)
1711, 16sseqtrrd 3970 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ dom 𝐹)
1813adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → dom 𝐹 = 𝑋)
1917, 18sseqtrd 3969 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈𝑋)
2019adantr 480 . . . . . . . . . . . . . . 15 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → 𝑈𝑋)
21 dfss4 4217 . . . . . . . . . . . . . . 15 (𝑈𝑋 ↔ (𝑋 ∖ (𝑋𝑈)) = 𝑈)
2220, 21sylib 218 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (𝑋 ∖ (𝑋𝑈)) = 𝑈)
2322imaeq2d 6006 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (𝐹 “ (𝑋 ∖ (𝑋𝑈))) = (𝐹𝑈))
2423ineq2d 4168 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹 “ (𝑋𝑈)) ∩ (𝐹 “ (𝑋 ∖ (𝑋𝑈)))) = ((𝐹 “ (𝑋𝑈)) ∩ (𝐹𝑈)))
25 simpll 766 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → 𝐽 ∈ (TopOn‘𝑋))
2614adantr 480 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑋 = 𝐽)
2726difeq1d 4073 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑋𝑈) = ( 𝐽𝑈))
289cldopn 22939 . . . . . . . . . . . . . . . 16 (𝑈 ∈ (Clsd‘𝐽) → ( 𝐽𝑈) ∈ 𝐽)
2928adantl 481 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → ( 𝐽𝑈) ∈ 𝐽)
3027, 29eqeltrd 2829 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑋𝑈) ∈ 𝐽)
3130adantr 480 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (𝑋𝑈) ∈ 𝐽)
321kqdisj 23640 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋𝑈) ∈ 𝐽) → ((𝐹 “ (𝑋𝑈)) ∩ (𝐹 “ (𝑋 ∖ (𝑋𝑈)))) = ∅)
3325, 31, 32syl2anc 584 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹 “ (𝑋𝑈)) ∩ (𝐹 “ (𝑋 ∖ (𝑋𝑈)))) = ∅)
3424, 33eqtr3d 2767 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹 “ (𝑋𝑈)) ∩ (𝐹𝑈)) = ∅)
358, 34eqtrid 2777 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) = ∅)
3635eleq2d 2815 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) ↔ (𝐹𝑧) ∈ ∅))
377, 36bitr3id 285 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (((𝐹𝑧) ∈ (𝐹𝑈) ∧ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))) ↔ (𝐹𝑧) ∈ ∅))
386, 37mtbiri 327 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ¬ ((𝐹𝑧) ∈ (𝐹𝑈) ∧ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
39 imnan 399 . . . . . . 7 (((𝐹𝑧) ∈ (𝐹𝑈) → ¬ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))) ↔ ¬ ((𝐹𝑧) ∈ (𝐹𝑈) ∧ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
4038, 39sylibr 234 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ (𝐹𝑈) → ¬ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
41 eldif 3910 . . . . . . . . . 10 (𝑧 ∈ (𝑋𝑈) ↔ (𝑧𝑋 ∧ ¬ 𝑧𝑈))
4241baibr 536 . . . . . . . . 9 (𝑧𝑋 → (¬ 𝑧𝑈𝑧 ∈ (𝑋𝑈)))
4342adantl 481 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (¬ 𝑧𝑈𝑧 ∈ (𝑋𝑈)))
44 simpr 484 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → 𝑧𝑋)
451kqfvima 23638 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋𝑈) ∈ 𝐽𝑧𝑋) → (𝑧 ∈ (𝑋𝑈) ↔ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
4625, 31, 44, 45syl3anc 1373 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (𝑧 ∈ (𝑋𝑈) ↔ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
4743, 46bitrd 279 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (¬ 𝑧𝑈 ↔ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
4847con1bid 355 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (¬ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈)) ↔ 𝑧𝑈))
4940, 48sylibd 239 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ (𝐹𝑈) → 𝑧𝑈))
5049expimpd 453 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → ((𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈)) → 𝑧𝑈))
515, 50sylbid 240 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) → 𝑧𝑈))
5251ssrdv 3938 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝐹𝑈)) ⊆ 𝑈)
53 sseqin2 4171 . . . 4 (𝑈 ⊆ dom 𝐹 ↔ (dom 𝐹𝑈) = 𝑈)
5417, 53sylib 218 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (dom 𝐹𝑈) = 𝑈)
55 dminss 6097 . . 3 (dom 𝐹𝑈) ⊆ (𝐹 “ (𝐹𝑈))
5654, 55eqsstrrdi 3978 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ (𝐹 “ (𝐹𝑈)))
5752, 56eqssd 3950 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝐹𝑈)) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  {crab 3393  cdif 3897  cin 3899  wss 3900  c0 4281   cuni 4857  cmpt 5170  ccnv 5613  dom cdm 5614  cima 5617   Fn wfn 6472  cfv 6477  TopOnctopon 22818  Clsdccld 22924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-top 22802  df-topon 22819  df-cld 22927
This theorem is referenced by:  kqcld  23643
  Copyright terms: Public domain W3C validator