MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqcldsat Structured version   Visualization version   GIF version

Theorem kqcldsat 22029
Description: Any closed set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest 22013). (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqcldsat ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝐹𝑈)) = 𝑈)
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem kqcldsat
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . . . 7 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqffn 22021 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
3 elpreima 6700 . . . . . 6 (𝐹 Fn 𝑋 → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
42, 3syl 17 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
54adantr 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) ↔ (𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈))))
6 noel 4222 . . . . . . . 8 ¬ (𝐹𝑧) ∈ ∅
7 elin 4096 . . . . . . . . 9 ((𝐹𝑧) ∈ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) ↔ ((𝐹𝑧) ∈ (𝐹𝑈) ∧ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
8 incom 4105 . . . . . . . . . . 11 ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) = ((𝐹 “ (𝑋𝑈)) ∩ (𝐹𝑈))
9 eqid 2797 . . . . . . . . . . . . . . . . . . . 20 𝐽 = 𝐽
109cldss 21325 . . . . . . . . . . . . . . . . . . 19 (𝑈 ∈ (Clsd‘𝐽) → 𝑈 𝐽)
1110adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 𝐽)
12 fndm 6332 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn 𝑋 → dom 𝐹 = 𝑋)
132, 12syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ (TopOn‘𝑋) → dom 𝐹 = 𝑋)
14 toponuni 21210 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
1513, 14eqtrd 2833 . . . . . . . . . . . . . . . . . . 19 (𝐽 ∈ (TopOn‘𝑋) → dom 𝐹 = 𝐽)
1615adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → dom 𝐹 = 𝐽)
1711, 16sseqtr4d 3935 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ dom 𝐹)
1813adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → dom 𝐹 = 𝑋)
1917, 18sseqtrd 3934 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈𝑋)
2019adantr 481 . . . . . . . . . . . . . . 15 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → 𝑈𝑋)
21 dfss4 4161 . . . . . . . . . . . . . . 15 (𝑈𝑋 ↔ (𝑋 ∖ (𝑋𝑈)) = 𝑈)
2220, 21sylib 219 . . . . . . . . . . . . . 14 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (𝑋 ∖ (𝑋𝑈)) = 𝑈)
2322imaeq2d 5813 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (𝐹 “ (𝑋 ∖ (𝑋𝑈))) = (𝐹𝑈))
2423ineq2d 4115 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹 “ (𝑋𝑈)) ∩ (𝐹 “ (𝑋 ∖ (𝑋𝑈)))) = ((𝐹 “ (𝑋𝑈)) ∩ (𝐹𝑈)))
25 simpll 763 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → 𝐽 ∈ (TopOn‘𝑋))
2614adantr 481 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑋 = 𝐽)
2726difeq1d 4025 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑋𝑈) = ( 𝐽𝑈))
289cldopn 21327 . . . . . . . . . . . . . . . 16 (𝑈 ∈ (Clsd‘𝐽) → ( 𝐽𝑈) ∈ 𝐽)
2928adantl 482 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → ( 𝐽𝑈) ∈ 𝐽)
3027, 29eqeltrd 2885 . . . . . . . . . . . . . 14 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑋𝑈) ∈ 𝐽)
3130adantr 481 . . . . . . . . . . . . 13 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (𝑋𝑈) ∈ 𝐽)
321kqdisj 22028 . . . . . . . . . . . . 13 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋𝑈) ∈ 𝐽) → ((𝐹 “ (𝑋𝑈)) ∩ (𝐹 “ (𝑋 ∖ (𝑋𝑈)))) = ∅)
3325, 31, 32syl2anc 584 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹 “ (𝑋𝑈)) ∩ (𝐹 “ (𝑋 ∖ (𝑋𝑈)))) = ∅)
3424, 33eqtr3d 2835 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹 “ (𝑋𝑈)) ∩ (𝐹𝑈)) = ∅)
358, 34syl5eq 2845 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) = ∅)
3635eleq2d 2870 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ ((𝐹𝑈) ∩ (𝐹 “ (𝑋𝑈))) ↔ (𝐹𝑧) ∈ ∅))
377, 36syl5bbr 286 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (((𝐹𝑧) ∈ (𝐹𝑈) ∧ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))) ↔ (𝐹𝑧) ∈ ∅))
386, 37mtbiri 328 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ¬ ((𝐹𝑧) ∈ (𝐹𝑈) ∧ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
39 imnan 400 . . . . . . 7 (((𝐹𝑧) ∈ (𝐹𝑈) → ¬ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))) ↔ ¬ ((𝐹𝑧) ∈ (𝐹𝑈) ∧ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
4038, 39sylibr 235 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ (𝐹𝑈) → ¬ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
41 eldif 3875 . . . . . . . . . 10 (𝑧 ∈ (𝑋𝑈) ↔ (𝑧𝑋 ∧ ¬ 𝑧𝑈))
4241baibr 537 . . . . . . . . 9 (𝑧𝑋 → (¬ 𝑧𝑈𝑧 ∈ (𝑋𝑈)))
4342adantl 482 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (¬ 𝑧𝑈𝑧 ∈ (𝑋𝑈)))
44 simpr 485 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → 𝑧𝑋)
451kqfvima 22026 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑋𝑈) ∈ 𝐽𝑧𝑋) → (𝑧 ∈ (𝑋𝑈) ↔ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
4625, 31, 44, 45syl3anc 1364 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (𝑧 ∈ (𝑋𝑈) ↔ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
4743, 46bitrd 280 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (¬ 𝑧𝑈 ↔ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈))))
4847con1bid 357 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → (¬ (𝐹𝑧) ∈ (𝐹 “ (𝑋𝑈)) ↔ 𝑧𝑈))
4940, 48sylibd 240 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) ∧ 𝑧𝑋) → ((𝐹𝑧) ∈ (𝐹𝑈) → 𝑧𝑈))
5049expimpd 454 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → ((𝑧𝑋 ∧ (𝐹𝑧) ∈ (𝐹𝑈)) → 𝑧𝑈))
515, 50sylbid 241 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝑧 ∈ (𝐹 “ (𝐹𝑈)) → 𝑧𝑈))
5251ssrdv 3901 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝐹𝑈)) ⊆ 𝑈)
53 sseqin2 4118 . . . 4 (𝑈 ⊆ dom 𝐹 ↔ (dom 𝐹𝑈) = 𝑈)
5417, 53sylib 219 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (dom 𝐹𝑈) = 𝑈)
55 dminss 5893 . . 3 (dom 𝐹𝑈) ⊆ (𝐹 “ (𝐹𝑈))
5654, 55syl6eqssr 3949 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → 𝑈 ⊆ (𝐹 “ (𝐹𝑈)))
5752, 56eqssd 3912 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈 ∈ (Clsd‘𝐽)) → (𝐹 “ (𝐹𝑈)) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  {crab 3111  cdif 3862  cin 3864  wss 3865  c0 4217   cuni 4751  cmpt 5047  ccnv 5449  dom cdm 5450  cima 5453   Fn wfn 6227  cfv 6232  TopOnctopon 21206  Clsdccld 21312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3442  df-sbc 3712  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-fv 6240  df-top 21190  df-topon 21207  df-cld 21315
This theorem is referenced by:  kqcld  22031
  Copyright terms: Public domain W3C validator