MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpart Structured version   Visualization version   GIF version

Theorem cnpart 14591
Description: The specification of restriction to the right half-plane partitions the complex plane without 0 into two disjoint pieces, which are related by a reflection about the origin (under the map 𝑥 ↦ -𝑥). (Contributed by Mario Carneiro, 8-Jul-2013.)
Assertion
Ref Expression
cnpart ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+)))

Proof of Theorem cnpart
StepHypRef Expression
1 df-nel 3092 . . . . . 6 (-(i · 𝐴) ∉ ℝ+ ↔ ¬ -(i · 𝐴) ∈ ℝ+)
2 simpr 488 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (ℜ‘𝐴) = 0)
3 0le0 11726 . . . . . . . 8 0 ≤ 0
42, 3eqbrtrdi 5069 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (ℜ‘𝐴) ≤ 0)
54biantrurd 536 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (-(i · 𝐴) ∉ ℝ+ ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
61, 5bitr3id 288 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (¬ -(i · 𝐴) ∈ ℝ+ ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
76con1bid 359 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+) ↔ -(i · 𝐴) ∈ ℝ+))
8 ax-icn 10585 . . . . . . . . . . . 12 i ∈ ℂ
9 mulcl 10610 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
108, 9mpan 689 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
11 reim0b 14470 . . . . . . . . . . 11 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℑ‘(i · 𝐴)) = 0))
1210, 11syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℑ‘(i · 𝐴)) = 0))
13 imre 14459 . . . . . . . . . . . . 13 ((i · 𝐴) ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
1410, 13syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
15 ine0 11064 . . . . . . . . . . . . . . . . 17 i ≠ 0
16 divrec2 11304 . . . . . . . . . . . . . . . . 17 (((i · 𝐴) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · 𝐴) / i) = ((1 / i) · (i · 𝐴)))
178, 15, 16mp3an23 1450 . . . . . . . . . . . . . . . 16 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) / i) = ((1 / i) · (i · 𝐴)))
1810, 17syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((i · 𝐴) / i) = ((1 / i) · (i · 𝐴)))
19 irec 13560 . . . . . . . . . . . . . . . 16 (1 / i) = -i
2019oveq1i 7145 . . . . . . . . . . . . . . 15 ((1 / i) · (i · 𝐴)) = (-i · (i · 𝐴))
2118, 20eqtrdi 2849 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((i · 𝐴) / i) = (-i · (i · 𝐴)))
22 divcan3 11313 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · 𝐴) / i) = 𝐴)
238, 15, 22mp3an23 1450 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((i · 𝐴) / i) = 𝐴)
2421, 23eqtr3d 2835 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-i · (i · 𝐴)) = 𝐴)
2524fveq2d 6649 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘(-i · (i · 𝐴))) = (ℜ‘𝐴))
2614, 25eqtrd 2833 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘𝐴))
2726eqeq1d 2800 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℑ‘(i · 𝐴)) = 0 ↔ (ℜ‘𝐴) = 0))
2812, 27bitrd 282 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘𝐴) = 0))
2928biimpar 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℝ)
3029adantlr 714 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℝ)
31 mulne0 11271 . . . . . . . . 9 (((i ∈ ℂ ∧ i ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (i · 𝐴) ≠ 0)
328, 15, 31mpanl12 701 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (i · 𝐴) ≠ 0)
3332adantr 484 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ≠ 0)
34 rpneg 12409 . . . . . . 7 (((i · 𝐴) ∈ ℝ ∧ (i · 𝐴) ≠ 0) → ((i · 𝐴) ∈ ℝ+ ↔ ¬ -(i · 𝐴) ∈ ℝ+))
3530, 33, 34syl2anc 587 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → ((i · 𝐴) ∈ ℝ+ ↔ ¬ -(i · 𝐴) ∈ ℝ+))
3635con2bid 358 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (-(i · 𝐴) ∈ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+))
37 df-nel 3092 . . . . 5 ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+)
3836, 37syl6bbr 292 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (-(i · 𝐴) ∈ ℝ+ ↔ (i · 𝐴) ∉ ℝ+))
393, 2breqtrrid 5068 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → 0 ≤ (ℜ‘𝐴))
4039biantrurd 536 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → ((i · 𝐴) ∉ ℝ+ ↔ (0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)))
417, 38, 403bitrrd 309 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
4228adantr 484 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘𝐴) = 0))
4342necon3bbid 3024 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (i · 𝐴) ∈ ℝ ↔ (ℜ‘𝐴) ≠ 0))
4443biimpar 481 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ (i · 𝐴) ∈ ℝ)
45 rpre 12385 . . . . . . . 8 ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ∈ ℝ)
4644, 45nsyl 142 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ (i · 𝐴) ∈ ℝ+)
4746, 37sylibr 237 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (i · 𝐴) ∉ ℝ+)
4847biantrud 535 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (0 ≤ (ℜ‘𝐴) ↔ (0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)))
49 simpr 488 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ≠ 0)
5049biantrud 535 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (0 ≤ (ℜ‘𝐴) ↔ (0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0)))
51 0re 10632 . . . . . . . 8 0 ∈ ℝ
52 recl 14461 . . . . . . . 8 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
53 ltlen 10730 . . . . . . . . 9 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 < (ℜ‘𝐴) ↔ (0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0)))
54 ltnle 10709 . . . . . . . . 9 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 < (ℜ‘𝐴) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5553, 54bitr3d 284 . . . . . . . 8 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5651, 52, 55sylancr 590 . . . . . . 7 (𝐴 ∈ ℂ → ((0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5756ad2antrr 725 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5850, 57bitrd 282 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (0 ≤ (ℜ‘𝐴) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5948, 58bitr3d 284 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (ℜ‘𝐴) ≤ 0))
60 renegcl 10938 . . . . . . . . . 10 (-(i · 𝐴) ∈ ℝ → --(i · 𝐴) ∈ ℝ)
6110negnegd 10977 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → --(i · 𝐴) = (i · 𝐴))
6261eleq1d 2874 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (--(i · 𝐴) ∈ ℝ ↔ (i · 𝐴) ∈ ℝ))
6362ad2antrr 725 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (--(i · 𝐴) ∈ ℝ ↔ (i · 𝐴) ∈ ℝ))
6460, 63syl5ib 247 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (-(i · 𝐴) ∈ ℝ → (i · 𝐴) ∈ ℝ))
6544, 64mtod 201 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ -(i · 𝐴) ∈ ℝ)
66 rpre 12385 . . . . . . . 8 (-(i · 𝐴) ∈ ℝ+ → -(i · 𝐴) ∈ ℝ)
6765, 66nsyl 142 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ -(i · 𝐴) ∈ ℝ+)
6867, 1sylibr 237 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → -(i · 𝐴) ∉ ℝ+)
6968biantrud 535 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) ≤ 0 ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
7069notbid 321 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (¬ (ℜ‘𝐴) ≤ 0 ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
7159, 70bitrd 282 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
7241, 71pm2.61dane 3074 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
73 reneg 14476 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))
7473breq2d 5042 . . . . . 6 (𝐴 ∈ ℂ → (0 ≤ (ℜ‘-𝐴) ↔ 0 ≤ -(ℜ‘𝐴)))
7552le0neg1d 11200 . . . . . 6 (𝐴 ∈ ℂ → ((ℜ‘𝐴) ≤ 0 ↔ 0 ≤ -(ℜ‘𝐴)))
7674, 75bitr4d 285 . . . . 5 (𝐴 ∈ ℂ → (0 ≤ (ℜ‘-𝐴) ↔ (ℜ‘𝐴) ≤ 0))
77 mulneg2 11066 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
788, 77mpan 689 . . . . . 6 (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴))
79 neleq1 3096 . . . . . 6 ((i · -𝐴) = -(i · 𝐴) → ((i · -𝐴) ∉ ℝ+ ↔ -(i · 𝐴) ∉ ℝ+))
8078, 79syl 17 . . . . 5 (𝐴 ∈ ℂ → ((i · -𝐴) ∉ ℝ+ ↔ -(i · 𝐴) ∉ ℝ+))
8176, 80anbi12d 633 . . . 4 (𝐴 ∈ ℂ → ((0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+) ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
8281notbid 321 . . 3 (𝐴 ∈ ℂ → (¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
8382adantr 484 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
8472, 83bitr4d 285 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wnel 3091   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527  ici 10528   · cmul 10531   < clt 10664  cle 10665  -cneg 10860   / cdiv 11286  +crp 12377  cre 14448  cim 14449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-2 11688  df-rp 12378  df-cj 14450  df-re 14451  df-im 14452
This theorem is referenced by:  sqrmo  14603
  Copyright terms: Public domain W3C validator