MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpart Structured version   Visualization version   GIF version

Theorem cnpart 15289
Description: The specification of restriction to the right half-plane partitions the complex plane without 0 into two disjoint pieces, which are related by a reflection about the origin (under the map 𝑥 ↦ -𝑥). (Contributed by Mario Carneiro, 8-Jul-2013.)
Assertion
Ref Expression
cnpart ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+)))

Proof of Theorem cnpart
StepHypRef Expression
1 df-nel 3053 . . . . . 6 (-(i · 𝐴) ∉ ℝ+ ↔ ¬ -(i · 𝐴) ∈ ℝ+)
2 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (ℜ‘𝐴) = 0)
3 0le0 12394 . . . . . . . 8 0 ≤ 0
42, 3eqbrtrdi 5205 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (ℜ‘𝐴) ≤ 0)
54biantrurd 532 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (-(i · 𝐴) ∉ ℝ+ ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
61, 5bitr3id 285 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (¬ -(i · 𝐴) ∈ ℝ+ ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
76con1bid 355 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+) ↔ -(i · 𝐴) ∈ ℝ+))
8 ax-icn 11243 . . . . . . . . . . . 12 i ∈ ℂ
9 mulcl 11268 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
108, 9mpan 689 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
11 reim0b 15168 . . . . . . . . . . 11 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℑ‘(i · 𝐴)) = 0))
1210, 11syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℑ‘(i · 𝐴)) = 0))
13 imre 15157 . . . . . . . . . . . . 13 ((i · 𝐴) ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
1410, 13syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
15 ine0 11725 . . . . . . . . . . . . . . . . 17 i ≠ 0
16 divrec2 11966 . . . . . . . . . . . . . . . . 17 (((i · 𝐴) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · 𝐴) / i) = ((1 / i) · (i · 𝐴)))
178, 15, 16mp3an23 1453 . . . . . . . . . . . . . . . 16 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) / i) = ((1 / i) · (i · 𝐴)))
1810, 17syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((i · 𝐴) / i) = ((1 / i) · (i · 𝐴)))
19 irec 14250 . . . . . . . . . . . . . . . 16 (1 / i) = -i
2019oveq1i 7458 . . . . . . . . . . . . . . 15 ((1 / i) · (i · 𝐴)) = (-i · (i · 𝐴))
2118, 20eqtrdi 2796 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((i · 𝐴) / i) = (-i · (i · 𝐴)))
22 divcan3 11975 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · 𝐴) / i) = 𝐴)
238, 15, 22mp3an23 1453 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((i · 𝐴) / i) = 𝐴)
2421, 23eqtr3d 2782 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-i · (i · 𝐴)) = 𝐴)
2524fveq2d 6924 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘(-i · (i · 𝐴))) = (ℜ‘𝐴))
2614, 25eqtrd 2780 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘𝐴))
2726eqeq1d 2742 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℑ‘(i · 𝐴)) = 0 ↔ (ℜ‘𝐴) = 0))
2812, 27bitrd 279 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘𝐴) = 0))
2928biimpar 477 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℝ)
3029adantlr 714 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℝ)
31 mulne0 11932 . . . . . . . . 9 (((i ∈ ℂ ∧ i ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (i · 𝐴) ≠ 0)
328, 15, 31mpanl12 701 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (i · 𝐴) ≠ 0)
3332adantr 480 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ≠ 0)
34 rpneg 13089 . . . . . . 7 (((i · 𝐴) ∈ ℝ ∧ (i · 𝐴) ≠ 0) → ((i · 𝐴) ∈ ℝ+ ↔ ¬ -(i · 𝐴) ∈ ℝ+))
3530, 33, 34syl2anc 583 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → ((i · 𝐴) ∈ ℝ+ ↔ ¬ -(i · 𝐴) ∈ ℝ+))
3635con2bid 354 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (-(i · 𝐴) ∈ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+))
37 df-nel 3053 . . . . 5 ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+)
3836, 37bitr4di 289 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (-(i · 𝐴) ∈ ℝ+ ↔ (i · 𝐴) ∉ ℝ+))
393, 2breqtrrid 5204 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → 0 ≤ (ℜ‘𝐴))
4039biantrurd 532 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → ((i · 𝐴) ∉ ℝ+ ↔ (0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)))
417, 38, 403bitrrd 306 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
4228adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘𝐴) = 0))
4342necon3bbid 2984 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (i · 𝐴) ∈ ℝ ↔ (ℜ‘𝐴) ≠ 0))
4443biimpar 477 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ (i · 𝐴) ∈ ℝ)
45 rpre 13065 . . . . . . . 8 ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ∈ ℝ)
4644, 45nsyl 140 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ (i · 𝐴) ∈ ℝ+)
4746, 37sylibr 234 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (i · 𝐴) ∉ ℝ+)
4847biantrud 531 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (0 ≤ (ℜ‘𝐴) ↔ (0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)))
49 simpr 484 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ≠ 0)
5049biantrud 531 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (0 ≤ (ℜ‘𝐴) ↔ (0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0)))
51 0re 11292 . . . . . . . 8 0 ∈ ℝ
52 recl 15159 . . . . . . . 8 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
53 ltlen 11391 . . . . . . . . 9 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 < (ℜ‘𝐴) ↔ (0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0)))
54 ltnle 11369 . . . . . . . . 9 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 < (ℜ‘𝐴) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5553, 54bitr3d 281 . . . . . . . 8 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5651, 52, 55sylancr 586 . . . . . . 7 (𝐴 ∈ ℂ → ((0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5756ad2antrr 725 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5850, 57bitrd 279 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (0 ≤ (ℜ‘𝐴) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5948, 58bitr3d 281 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (ℜ‘𝐴) ≤ 0))
60 renegcl 11599 . . . . . . . . . 10 (-(i · 𝐴) ∈ ℝ → --(i · 𝐴) ∈ ℝ)
6110negnegd 11638 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → --(i · 𝐴) = (i · 𝐴))
6261eleq1d 2829 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (--(i · 𝐴) ∈ ℝ ↔ (i · 𝐴) ∈ ℝ))
6362ad2antrr 725 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (--(i · 𝐴) ∈ ℝ ↔ (i · 𝐴) ∈ ℝ))
6460, 63imbitrid 244 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (-(i · 𝐴) ∈ ℝ → (i · 𝐴) ∈ ℝ))
6544, 64mtod 198 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ -(i · 𝐴) ∈ ℝ)
66 rpre 13065 . . . . . . . 8 (-(i · 𝐴) ∈ ℝ+ → -(i · 𝐴) ∈ ℝ)
6765, 66nsyl 140 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ -(i · 𝐴) ∈ ℝ+)
6867, 1sylibr 234 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → -(i · 𝐴) ∉ ℝ+)
6968biantrud 531 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) ≤ 0 ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
7069notbid 318 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (¬ (ℜ‘𝐴) ≤ 0 ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
7159, 70bitrd 279 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
7241, 71pm2.61dane 3035 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
73 reneg 15174 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))
7473breq2d 5178 . . . . . 6 (𝐴 ∈ ℂ → (0 ≤ (ℜ‘-𝐴) ↔ 0 ≤ -(ℜ‘𝐴)))
7552le0neg1d 11861 . . . . . 6 (𝐴 ∈ ℂ → ((ℜ‘𝐴) ≤ 0 ↔ 0 ≤ -(ℜ‘𝐴)))
7674, 75bitr4d 282 . . . . 5 (𝐴 ∈ ℂ → (0 ≤ (ℜ‘-𝐴) ↔ (ℜ‘𝐴) ≤ 0))
77 mulneg2 11727 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
788, 77mpan 689 . . . . . 6 (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴))
79 neleq1 3058 . . . . . 6 ((i · -𝐴) = -(i · 𝐴) → ((i · -𝐴) ∉ ℝ+ ↔ -(i · 𝐴) ∉ ℝ+))
8078, 79syl 17 . . . . 5 (𝐴 ∈ ℂ → ((i · -𝐴) ∉ ℝ+ ↔ -(i · 𝐴) ∉ ℝ+))
8176, 80anbi12d 631 . . . 4 (𝐴 ∈ ℂ → ((0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+) ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
8281notbid 318 . . 3 (𝐴 ∈ ℂ → (¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
8382adantr 480 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
8472, 83bitr4d 282 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wnel 3052   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185  ici 11186   · cmul 11189   < clt 11324  cle 11325  -cneg 11521   / cdiv 11947  +crp 13057  cre 15146  cim 15147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-rp 13058  df-cj 15148  df-re 15149  df-im 15150
This theorem is referenced by:  sqrmo  15300
  Copyright terms: Public domain W3C validator