MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpart Structured version   Visualization version   GIF version

Theorem cnpart 14279
Description: The specification of restriction to the right half-plane partitions the complex plane without 0 into two disjoint pieces, which are related by a reflection about the origin (under the map 𝑥 ↦ -𝑥). (Contributed by Mario Carneiro, 8-Jul-2013.)
Assertion
Ref Expression
cnpart ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+)))

Proof of Theorem cnpart
StepHypRef Expression
1 df-nel 3041 . . . . . 6 (-(i · 𝐴) ∉ ℝ+ ↔ ¬ -(i · 𝐴) ∈ ℝ+)
2 simpr 477 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (ℜ‘𝐴) = 0)
3 0le0 11384 . . . . . . . 8 0 ≤ 0
42, 3syl6eqbr 4850 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (ℜ‘𝐴) ≤ 0)
54biantrurd 528 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (-(i · 𝐴) ∉ ℝ+ ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
61, 5syl5bbr 276 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (¬ -(i · 𝐴) ∈ ℝ+ ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
76con1bid 346 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+) ↔ -(i · 𝐴) ∈ ℝ+))
8 ax-icn 10252 . . . . . . . . . . . 12 i ∈ ℂ
9 mulcl 10277 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
108, 9mpan 681 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ)
11 reim0b 14158 . . . . . . . . . . 11 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℑ‘(i · 𝐴)) = 0))
1210, 11syl 17 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℑ‘(i · 𝐴)) = 0))
13 imre 14147 . . . . . . . . . . . . 13 ((i · 𝐴) ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
1410, 13syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘(-i · (i · 𝐴))))
15 ine0 10723 . . . . . . . . . . . . . . . . 17 i ≠ 0
16 divrec2 10960 . . . . . . . . . . . . . . . . 17 (((i · 𝐴) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · 𝐴) / i) = ((1 / i) · (i · 𝐴)))
178, 15, 16mp3an23 1577 . . . . . . . . . . . . . . . 16 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) / i) = ((1 / i) · (i · 𝐴)))
1810, 17syl 17 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → ((i · 𝐴) / i) = ((1 / i) · (i · 𝐴)))
19 irec 13176 . . . . . . . . . . . . . . . 16 (1 / i) = -i
2019oveq1i 6856 . . . . . . . . . . . . . . 15 ((1 / i) · (i · 𝐴)) = (-i · (i · 𝐴))
2118, 20syl6eq 2815 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((i · 𝐴) / i) = (-i · (i · 𝐴)))
22 divcan3 10969 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · 𝐴) / i) = 𝐴)
238, 15, 22mp3an23 1577 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((i · 𝐴) / i) = 𝐴)
2421, 23eqtr3d 2801 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-i · (i · 𝐴)) = 𝐴)
2524fveq2d 6383 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘(-i · (i · 𝐴))) = (ℜ‘𝐴))
2614, 25eqtrd 2799 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘𝐴))
2726eqeq1d 2767 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((ℑ‘(i · 𝐴)) = 0 ↔ (ℜ‘𝐴) = 0))
2812, 27bitrd 270 . . . . . . . . 9 (𝐴 ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘𝐴) = 0))
2928biimpar 469 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℝ)
3029adantlr 706 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ∈ ℝ)
31 mulne0 10927 . . . . . . . . 9 (((i ∈ ℂ ∧ i ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (i · 𝐴) ≠ 0)
328, 15, 31mpanl12 693 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (i · 𝐴) ≠ 0)
3332adantr 472 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (i · 𝐴) ≠ 0)
34 rpneg 12066 . . . . . . 7 (((i · 𝐴) ∈ ℝ ∧ (i · 𝐴) ≠ 0) → ((i · 𝐴) ∈ ℝ+ ↔ ¬ -(i · 𝐴) ∈ ℝ+))
3530, 33, 34syl2anc 579 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → ((i · 𝐴) ∈ ℝ+ ↔ ¬ -(i · 𝐴) ∈ ℝ+))
3635con2bid 345 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (-(i · 𝐴) ∈ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+))
37 df-nel 3041 . . . . 5 ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+)
3836, 37syl6bbr 280 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → (-(i · 𝐴) ∈ ℝ+ ↔ (i · 𝐴) ∉ ℝ+))
393, 2syl5breqr 4849 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → 0 ≤ (ℜ‘𝐴))
4039biantrurd 528 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → ((i · 𝐴) ∉ ℝ+ ↔ (0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)))
417, 38, 403bitrrd 297 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) = 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
4228adantr 472 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘𝐴) = 0))
4342necon3bbid 2974 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (i · 𝐴) ∈ ℝ ↔ (ℜ‘𝐴) ≠ 0))
4443biimpar 469 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ (i · 𝐴) ∈ ℝ)
45 rpre 12041 . . . . . . . 8 ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ∈ ℝ)
4644, 45nsyl 137 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ (i · 𝐴) ∈ ℝ+)
4746, 37sylibr 225 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (i · 𝐴) ∉ ℝ+)
4847biantrud 527 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (0 ≤ (ℜ‘𝐴) ↔ (0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+)))
49 simpr 477 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ≠ 0)
5049biantrud 527 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (0 ≤ (ℜ‘𝐴) ↔ (0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0)))
51 0re 10299 . . . . . . . 8 0 ∈ ℝ
52 recl 14149 . . . . . . . 8 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
53 ltlen 10396 . . . . . . . . 9 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 < (ℜ‘𝐴) ↔ (0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0)))
54 ltnle 10375 . . . . . . . . 9 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → (0 < (ℜ‘𝐴) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5553, 54bitr3d 272 . . . . . . . 8 ((0 ∈ ℝ ∧ (ℜ‘𝐴) ∈ ℝ) → ((0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5651, 52, 55sylancr 581 . . . . . . 7 (𝐴 ∈ ℂ → ((0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5756ad2antrr 717 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (ℜ‘𝐴) ≠ 0) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5850, 57bitrd 270 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (0 ≤ (ℜ‘𝐴) ↔ ¬ (ℜ‘𝐴) ≤ 0))
5948, 58bitr3d 272 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (ℜ‘𝐴) ≤ 0))
60 renegcl 10602 . . . . . . . . . 10 (-(i · 𝐴) ∈ ℝ → --(i · 𝐴) ∈ ℝ)
6110negnegd 10641 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → --(i · 𝐴) = (i · 𝐴))
6261eleq1d 2829 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (--(i · 𝐴) ∈ ℝ ↔ (i · 𝐴) ∈ ℝ))
6362ad2antrr 717 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (--(i · 𝐴) ∈ ℝ ↔ (i · 𝐴) ∈ ℝ))
6460, 63syl5ib 235 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (-(i · 𝐴) ∈ ℝ → (i · 𝐴) ∈ ℝ))
6544, 64mtod 189 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ -(i · 𝐴) ∈ ℝ)
66 rpre 12041 . . . . . . . 8 (-(i · 𝐴) ∈ ℝ+ → -(i · 𝐴) ∈ ℝ)
6765, 66nsyl 137 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ¬ -(i · 𝐴) ∈ ℝ+)
6867, 1sylibr 225 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → -(i · 𝐴) ∉ ℝ+)
6968biantrud 527 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((ℜ‘𝐴) ≤ 0 ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
7069notbid 309 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → (¬ (ℜ‘𝐴) ≤ 0 ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
7159, 70bitrd 270 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (ℜ‘𝐴) ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
7241, 71pm2.61dane 3024 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
73 reneg 14164 . . . . . . 7 (𝐴 ∈ ℂ → (ℜ‘-𝐴) = -(ℜ‘𝐴))
7473breq2d 4823 . . . . . 6 (𝐴 ∈ ℂ → (0 ≤ (ℜ‘-𝐴) ↔ 0 ≤ -(ℜ‘𝐴)))
7552le0neg1d 10857 . . . . . 6 (𝐴 ∈ ℂ → ((ℜ‘𝐴) ≤ 0 ↔ 0 ≤ -(ℜ‘𝐴)))
7674, 75bitr4d 273 . . . . 5 (𝐴 ∈ ℂ → (0 ≤ (ℜ‘-𝐴) ↔ (ℜ‘𝐴) ≤ 0))
77 mulneg2 10725 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · -𝐴) = -(i · 𝐴))
788, 77mpan 681 . . . . . 6 (𝐴 ∈ ℂ → (i · -𝐴) = -(i · 𝐴))
79 neleq1 3045 . . . . . 6 ((i · -𝐴) = -(i · 𝐴) → ((i · -𝐴) ∉ ℝ+ ↔ -(i · 𝐴) ∉ ℝ+))
8078, 79syl 17 . . . . 5 (𝐴 ∈ ℂ → ((i · -𝐴) ∉ ℝ+ ↔ -(i · 𝐴) ∉ ℝ+))
8176, 80anbi12d 624 . . . 4 (𝐴 ∈ ℂ → ((0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+) ↔ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
8281notbid 309 . . 3 (𝐴 ∈ ℂ → (¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
8382adantr 472 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+) ↔ ¬ ((ℜ‘𝐴) ≤ 0 ∧ -(i · 𝐴) ∉ ℝ+)))
8472, 83bitr4d 273 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((0 ≤ (ℜ‘𝐴) ∧ (i · 𝐴) ∉ ℝ+) ↔ ¬ (0 ≤ (ℜ‘-𝐴) ∧ (i · -𝐴) ∉ ℝ+)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  wnel 3040   class class class wbr 4811  cfv 6070  (class class class)co 6846  cc 10191  cr 10192  0cc0 10193  1c1 10194  ici 10195   · cmul 10198   < clt 10332  cle 10333  -cneg 10525   / cdiv 10942  +crp 12033  cre 14136  cim 14137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-opab 4874  df-mpt 4891  df-id 5187  df-po 5200  df-so 5201  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-2 11339  df-rp 12034  df-cj 14138  df-re 14139  df-im 14140
This theorem is referenced by:  sqrmo  14291
  Copyright terms: Public domain W3C validator