MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cnlem2 Structured version   Visualization version   GIF version

Theorem itg2cnlem2 25670
Description: Lemma for itgcn 25753. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
itg2cn.1 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2cn.2 (𝜑𝐹 ∈ MblFn)
itg2cn.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2cn.4 (𝜑𝐶 ∈ ℝ+)
itg2cn.5 (𝜑𝑀 ∈ ℕ)
itg2cn.6 (𝜑 → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
Assertion
Ref Expression
itg2cnlem2 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Distinct variable groups:   𝑢,𝑑,𝑥,𝐶   𝐹,𝑑,𝑢,𝑥   𝜑,𝑢,𝑥   𝑀,𝑑,𝑢,𝑥
Allowed substitution hint:   𝜑(𝑑)

Proof of Theorem itg2cnlem2
StepHypRef Expression
1 itg2cn.4 . . . 4 (𝜑𝐶 ∈ ℝ+)
21rphalfcld 13014 . . 3 (𝜑 → (𝐶 / 2) ∈ ℝ+)
3 itg2cn.5 . . . 4 (𝜑𝑀 ∈ ℕ)
43nnrpd 13000 . . 3 (𝜑𝑀 ∈ ℝ+)
52, 4rpdivcld 13019 . 2 (𝜑 → ((𝐶 / 2) / 𝑀) ∈ ℝ+)
6 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑢 ∈ dom vol)
7 itg2cn.2 . . . . . . . . . 10 (𝜑𝐹 ∈ MblFn)
87adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹 ∈ MblFn)
9 itg2cn.1 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶(0[,)+∞))
10 rge0ssre 13424 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
11 fss 6707 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
129, 10, 11sylancl 586 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
1312adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹:ℝ⟶ℝ)
14 mbfima 25538 . . . . . . . . 9 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (𝑀(,)+∞)) ∈ dom vol)
158, 13, 14syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐹 “ (𝑀(,)+∞)) ∈ dom vol)
16 inmbl 25450 . . . . . . . 8 ((𝑢 ∈ dom vol ∧ (𝐹 “ (𝑀(,)+∞)) ∈ dom vol) → (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
176, 15, 16syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
18 difmbl 25451 . . . . . . . 8 ((𝑢 ∈ dom vol ∧ (𝐹 “ (𝑀(,)+∞)) ∈ dom vol) → (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
196, 15, 18syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
20 inass 4194 . . . . . . . . . . 11 ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) = (𝑢 ∩ ((𝐹 “ (𝑀(,)+∞)) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))))
21 disjdif 4438 . . . . . . . . . . . 12 ((𝐹 “ (𝑀(,)+∞)) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) = ∅
2221ineq2i 4183 . . . . . . . . . . 11 (𝑢 ∩ ((𝐹 “ (𝑀(,)+∞)) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))) = (𝑢 ∩ ∅)
23 in0 4361 . . . . . . . . . . 11 (𝑢 ∩ ∅) = ∅
2420, 22, 233eqtri 2757 . . . . . . . . . 10 ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) = ∅
2524fveq2i 6864 . . . . . . . . 9 (vol*‘((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))) = (vol*‘∅)
26 ovol0 25401 . . . . . . . . 9 (vol*‘∅) = 0
2725, 26eqtri 2753 . . . . . . . 8 (vol*‘((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))) = 0
2827a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))) = 0)
29 inundif 4445 . . . . . . . . 9 ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∪ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) = 𝑢
3029eqcomi 2739 . . . . . . . 8 𝑢 = ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∪ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))
3130a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑢 = ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∪ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))))
32 mblss 25439 . . . . . . . . . 10 (𝑢 ∈ dom vol → 𝑢 ⊆ ℝ)
336, 32syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑢 ⊆ ℝ)
3433sselda 3949 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥𝑢) → 𝑥 ∈ ℝ)
359adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹:ℝ⟶(0[,)+∞))
3635ffvelcdmda 7059 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
37 elrege0 13422 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
3836, 37sylib 218 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
3938simpld 494 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
4039rexrd 11231 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ*)
4138simprd 495 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
42 elxrge0 13425 . . . . . . . . 9 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
4340, 41, 42sylanbrc 583 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
4434, 43syldan 591 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥𝑢) → (𝐹𝑥) ∈ (0[,]+∞))
45 eqid 2730 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))
46 eqid 2730 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))
47 eqid 2730 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))
48 0e0iccpnf 13427 . . . . . . . . . 10 0 ∈ (0[,]+∞)
49 ifcl 4537 . . . . . . . . . 10 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
5043, 48, 49sylancl 586 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
5150fmpttd 7090 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
52 itg2cn.3 . . . . . . . . 9 (𝜑 → (∫2𝐹) ∈ ℝ)
5352adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2𝐹) ∈ ℝ)
54 icossicc 13404 . . . . . . . . . 10 (0[,)+∞) ⊆ (0[,]+∞)
55 fss 6707 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
5635, 54, 55sylancl 586 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹:ℝ⟶(0[,]+∞))
5739leidd 11751 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ≤ (𝐹𝑥))
58 breq1 5113 . . . . . . . . . . . . 13 ((𝐹𝑥) = if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
59 breq1 5113 . . . . . . . . . . . . 13 (0 = if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
6058, 59ifboth 4531 . . . . . . . . . . . 12 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
6157, 41, 60syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
6261ralrimiva 3126 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
63 reex 11166 . . . . . . . . . . . 12 ℝ ∈ V
6463a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ℝ ∈ V)
65 eqidd 2731 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))
6635feqmptd 6932 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
6764, 50, 39, 65, 66ofrfval2 7677 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
6862, 67mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹)
69 itg2le 25647 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
7051, 56, 68, 69syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
71 itg2lecl 25646 . . . . . . . 8 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (∫2𝐹) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
7251, 53, 70, 71syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
73 ifcl 4537 . . . . . . . . . 10 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
7443, 48, 73sylancl 586 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
7574fmpttd 7090 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
76 breq1 5113 . . . . . . . . . . . . 13 ((𝐹𝑥) = if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
77 breq1 5113 . . . . . . . . . . . . 13 (0 = if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
7876, 77ifboth 4531 . . . . . . . . . . . 12 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
7957, 41, 78syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
8079ralrimiva 3126 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
81 eqidd 2731 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))
8264, 74, 39, 81, 66ofrfval2 7677 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
8380, 82mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹)
84 itg2le 25647 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
8575, 56, 83, 84syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
86 itg2lecl 25646 . . . . . . . 8 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (∫2𝐹) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
8775, 53, 85, 86syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
8817, 19, 28, 31, 44, 45, 46, 47, 72, 87itg2split 25657 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
891adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐶 ∈ ℝ+)
9089rphalfcld 13014 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐶 / 2) ∈ ℝ+)
9190rpred 13002 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐶 / 2) ∈ ℝ)
92 ifcl 4537 . . . . . . . . . . 11 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ∈ (0[,]+∞))
9343, 48, 92sylancl 586 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ∈ (0[,]+∞))
9493fmpttd 7090 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
95 breq1 5113 . . . . . . . . . . . . . 14 ((𝐹𝑥) = if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
96 breq1 5113 . . . . . . . . . . . . . 14 (0 = if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
9795, 96ifboth 4531 . . . . . . . . . . . . 13 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥))
9857, 41, 97syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥))
9998ralrimiva 3126 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥))
100 eqidd 2731 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)))
10164, 93, 43, 100, 66ofrfval2 7677 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
10299, 101mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) ∘r𝐹)
103 itg2le 25647 . . . . . . . . . 10 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ≤ (∫2𝐹))
10494, 56, 102, 103syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ≤ (∫2𝐹))
105 itg2lecl 25646 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (∫2𝐹) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ≤ (∫2𝐹)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ∈ ℝ)
10694, 53, 104, 105syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ∈ ℝ)
107 0red 11184 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℝ)
108 elinel2 4168 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) → 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)))
109108a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) → 𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
110 ifle 13164 . . . . . . . . . . . 12 ((((𝐹𝑥) ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)) ∧ (𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) → 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))
11139, 107, 41, 109, 110syl31anc 1375 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))
112111ralrimiva 3126 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))
11364, 50, 93, 65, 100ofrfval2 7677 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)))
114112, 113mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)))
115 itg2le 25647 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))))
11651, 94, 114, 115syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))))
11766fveq2d 6865 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2𝐹) = (∫2‘(𝑥 ∈ ℝ ↦ (𝐹𝑥))))
118 cmmbl 25442 . . . . . . . . . . . . 13 ((𝐹 “ (𝑀(,)+∞)) ∈ dom vol → (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
11915, 118syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
120 disjdif 4438 . . . . . . . . . . . . . . 15 ((𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (𝐹 “ (𝑀(,)+∞)))) = ∅
121120fveq2i 6864 . . . . . . . . . . . . . 14 (vol*‘((𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))))) = (vol*‘∅)
122121, 26eqtri 2753 . . . . . . . . . . . . 13 (vol*‘((𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))))) = 0
123122a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘((𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))))) = 0)
124 undif2 4443 . . . . . . . . . . . . 13 ((𝐹 “ (𝑀(,)+∞)) ∪ (ℝ ∖ (𝐹 “ (𝑀(,)+∞)))) = ((𝐹 “ (𝑀(,)+∞)) ∪ ℝ)
125 mblss 25439 . . . . . . . . . . . . . . 15 ((𝐹 “ (𝑀(,)+∞)) ∈ dom vol → (𝐹 “ (𝑀(,)+∞)) ⊆ ℝ)
12615, 125syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐹 “ (𝑀(,)+∞)) ⊆ ℝ)
127 ssequn1 4152 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑀(,)+∞)) ⊆ ℝ ↔ ((𝐹 “ (𝑀(,)+∞)) ∪ ℝ) = ℝ)
128126, 127sylib 218 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐹 “ (𝑀(,)+∞)) ∪ ℝ) = ℝ)
129124, 128eqtr2id 2778 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ℝ = ((𝐹 “ (𝑀(,)+∞)) ∪ (ℝ ∖ (𝐹 “ (𝑀(,)+∞)))))
130 eqid 2730 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))
131 eqid 2730 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))
132 iftrue 4497 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → if(𝑥 ∈ ℝ, (𝐹𝑥), 0) = (𝐹𝑥))
133132mpteq2ia 5205 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ℝ, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ (𝐹𝑥))
134133eqcomi 2739 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ (𝐹𝑥)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ℝ, (𝐹𝑥), 0))
135 ifcl 4537 . . . . . . . . . . . . . . 15 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
13643, 48, 135sylancl 586 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
137136fmpttd 7090 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
138 breq1 5113 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) = if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
139 breq1 5113 . . . . . . . . . . . . . . . . . 18 (0 = if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
140138, 139ifboth 4531 . . . . . . . . . . . . . . . . 17 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
14157, 41, 140syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
142141ralrimiva 3126 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
143 eqidd 2731 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))
14464, 136, 43, 143, 66ofrfval2 7677 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
145142, 144mpbird 257 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹)
146 itg2le 25647 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
147137, 56, 145, 146syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
148 itg2lecl 25646 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (∫2𝐹) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
149137, 53, 147, 148syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
15015, 119, 123, 129, 43, 130, 131, 134, 106, 149itg2split 25657 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ (𝐹𝑥))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
151117, 150eqtrd 2765 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2𝐹) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
152 eldif 3927 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
153152baib 535 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ↔ ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
154153adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ↔ ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
1559ffnd 6692 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 Fn ℝ)
156155ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn ℝ)
157 elpreima 7033 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ (𝑀(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (𝑀(,)+∞))))
158156, 157syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (𝑀(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (𝑀(,)+∞))))
15939biantrurd 532 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑀 < (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑀 < (𝐹𝑥))))
1603nnred 12208 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℝ)
161160ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℝ)
162161rexrd 11231 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℝ*)
163 elioopnf 13411 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℝ* → ((𝐹𝑥) ∈ (𝑀(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑀 < (𝐹𝑥))))
164162, 163syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (𝑀(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑀 < (𝐹𝑥))))
165 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
166165biantrurd 532 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (𝑀(,)+∞) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (𝑀(,)+∞))))
167159, 164, 1663bitr2d 307 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑀 < (𝐹𝑥) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (𝑀(,)+∞))))
168161, 39ltnled 11328 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑀 < (𝐹𝑥) ↔ ¬ (𝐹𝑥) ≤ 𝑀))
169158, 167, 1683bitr2rd 308 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (¬ (𝐹𝑥) ≤ 𝑀𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
170169con1bid 355 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)) ↔ (𝐹𝑥) ≤ 𝑀))
171154, 170bitrd 279 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ↔ (𝐹𝑥) ≤ 𝑀))
172171ifbid 4515 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))
173172mpteq2dva 5203 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0)))
174173fveq2d 6865 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))))
175 itg2cn.6 . . . . . . . . . . . . . 14 (𝜑 → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
176175adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
177174, 176eqnbrtrd 5128 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
17853, 91resubcld 11613 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ)
179178, 149ltnled 11328 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (((∫2𝐹) − (𝐶 / 2)) < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ↔ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
180177, 179mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2𝐹) − (𝐶 / 2)) < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))))
18153, 91, 149ltsubadd2d 11783 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (((∫2𝐹) − (𝐶 / 2)) < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ↔ (∫2𝐹) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))))))
182180, 181mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2𝐹) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
183151, 182eqbrtrrd 5134 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
184106, 91, 149ltadd1d 11778 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) < (𝐶 / 2) ↔ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))))))
185183, 184mpbird 257 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) < (𝐶 / 2))
18672, 106, 91, 116, 185lelttrd 11339 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) < (𝐶 / 2))
187160adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℝ)
188 mblvol 25438 . . . . . . . . . . 11 (𝑢 ∈ dom vol → (vol‘𝑢) = (vol*‘𝑢))
1896, 188syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol‘𝑢) = (vol*‘𝑢))
1905rpred 13002 . . . . . . . . . . . 12 (𝜑 → ((𝐶 / 2) / 𝑀) ∈ ℝ)
191190adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐶 / 2) / 𝑀) ∈ ℝ)
192 ovolcl 25386 . . . . . . . . . . . . 13 (𝑢 ⊆ ℝ → (vol*‘𝑢) ∈ ℝ*)
19333, 192syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) ∈ ℝ*)
194191rexrd 11231 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐶 / 2) / 𝑀) ∈ ℝ*)
195 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol‘𝑢) < ((𝐶 / 2) / 𝑀))
196189, 195eqbrtrrd 5134 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) < ((𝐶 / 2) / 𝑀))
197193, 194, 196xrltled 13117 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) ≤ ((𝐶 / 2) / 𝑀))
198 ovollecl 25391 . . . . . . . . . . 11 ((𝑢 ⊆ ℝ ∧ ((𝐶 / 2) / 𝑀) ∈ ℝ ∧ (vol*‘𝑢) ≤ ((𝐶 / 2) / 𝑀)) → (vol*‘𝑢) ∈ ℝ)
19933, 191, 197, 198syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) ∈ ℝ)
200189, 199eqeltrd 2829 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol‘𝑢) ∈ ℝ)
201187, 200remulcld 11211 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑀 · (vol‘𝑢)) ∈ ℝ)
202187rexrd 11231 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℝ*)
2033adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℕ)
204203nnnn0d 12510 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℕ0)
205204nn0ge0d 12513 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 0 ≤ 𝑀)
206 elxrge0 13425 . . . . . . . . . . . . . 14 (𝑀 ∈ (0[,]+∞) ↔ (𝑀 ∈ ℝ* ∧ 0 ≤ 𝑀))
207202, 205, 206sylanbrc 583 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ (0[,]+∞))
208 ifcl 4537 . . . . . . . . . . . . 13 ((𝑀 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥𝑢, 𝑀, 0) ∈ (0[,]+∞))
209207, 48, 208sylancl 586 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → if(𝑥𝑢, 𝑀, 0) ∈ (0[,]+∞))
210209adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑢, 𝑀, 0) ∈ (0[,]+∞))
211210fmpttd 7090 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)):ℝ⟶(0[,]+∞))
212 eldifn 4098 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) → ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)))
213212adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)))
214 difssd 4103 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) ⊆ 𝑢)
215214sselda 3949 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → 𝑥𝑢)
21634, 169syldan 591 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥𝑢) → (¬ (𝐹𝑥) ≤ 𝑀𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
217215, 216syldan 591 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → (¬ (𝐹𝑥) ≤ 𝑀𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
218217con1bid 355 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → (¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)) ↔ (𝐹𝑥) ≤ 𝑀))
219213, 218mpbid 232 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → (𝐹𝑥) ≤ 𝑀)
220 iftrue 4497 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = (𝐹𝑥))
221220adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = (𝐹𝑥))
222215iftrued 4499 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥𝑢, 𝑀, 0) = 𝑀)
223219, 221, 2223brtr4d 5142 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0))
224 iffalse 4500 . . . . . . . . . . . . . . 15 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = 0)
225224adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ ¬ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = 0)
226 0le0 12294 . . . . . . . . . . . . . . . 16 0 ≤ 0
227 breq2 5114 . . . . . . . . . . . . . . . . 17 (𝑀 = if(𝑥𝑢, 𝑀, 0) → (0 ≤ 𝑀 ↔ 0 ≤ if(𝑥𝑢, 𝑀, 0)))
228 breq2 5114 . . . . . . . . . . . . . . . . 17 (0 = if(𝑥𝑢, 𝑀, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥𝑢, 𝑀, 0)))
229227, 228ifboth 4531 . . . . . . . . . . . . . . . 16 ((0 ≤ 𝑀 ∧ 0 ≤ 0) → 0 ≤ if(𝑥𝑢, 𝑀, 0))
230205, 226, 229sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 0 ≤ if(𝑥𝑢, 𝑀, 0))
231230adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ ¬ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → 0 ≤ if(𝑥𝑢, 𝑀, 0))
232225, 231eqbrtrd 5132 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ ¬ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0))
233223, 232pm2.61dan 812 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0))
234233ralrimivw 3130 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0))
235 eqidd 2731 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)))
23664, 74, 210, 81, 235ofrfval2 7677 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0)))
237234, 236mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)))
238 itg2le 25647 . . . . . . . . . 10 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))))
23975, 211, 237, 238syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))))
240 elrege0 13422 . . . . . . . . . . 11 (𝑀 ∈ (0[,)+∞) ↔ (𝑀 ∈ ℝ ∧ 0 ≤ 𝑀))
241187, 205, 240sylanbrc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ (0[,)+∞))
242 itg2const 25648 . . . . . . . . . 10 ((𝑢 ∈ dom vol ∧ (vol‘𝑢) ∈ ℝ ∧ 𝑀 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))) = (𝑀 · (vol‘𝑢)))
2436, 200, 241, 242syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))) = (𝑀 · (vol‘𝑢)))
244239, 243breqtrd 5136 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (𝑀 · (vol‘𝑢)))
245203nngt0d 12242 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 0 < 𝑀)
246 ltmuldiv2 12064 . . . . . . . . . 10 (((vol‘𝑢) ∈ ℝ ∧ (𝐶 / 2) ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → ((𝑀 · (vol‘𝑢)) < (𝐶 / 2) ↔ (vol‘𝑢) < ((𝐶 / 2) / 𝑀)))
247200, 91, 187, 245, 246syl112anc 1376 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑀 · (vol‘𝑢)) < (𝐶 / 2) ↔ (vol‘𝑢) < ((𝐶 / 2) / 𝑀)))
248195, 247mpbird 257 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑀 · (vol‘𝑢)) < (𝐶 / 2))
24987, 201, 91, 244, 248lelttrd 11339 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) < (𝐶 / 2))
25072, 87, 91, 91, 186, 249lt2addd 11808 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))) < ((𝐶 / 2) + (𝐶 / 2)))
25188, 250eqbrtrd 5132 . . . . 5 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < ((𝐶 / 2) + (𝐶 / 2)))
25289rpcnd 13004 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐶 ∈ ℂ)
2532522halvesd 12435 . . . . 5 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐶 / 2) + (𝐶 / 2)) = 𝐶)
254251, 253breqtrd 5136 . . . 4 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶)
255254expr 456 . . 3 ((𝜑𝑢 ∈ dom vol) → ((vol‘𝑢) < ((𝐶 / 2) / 𝑀) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
256255ralrimiva 3126 . 2 (𝜑 → ∀𝑢 ∈ dom vol((vol‘𝑢) < ((𝐶 / 2) / 𝑀) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
257 breq2 5114 . . 3 (𝑑 = ((𝐶 / 2) / 𝑀) → ((vol‘𝑢) < 𝑑 ↔ (vol‘𝑢) < ((𝐶 / 2) / 𝑀)))
258257rspceaimv 3597 . 2 ((((𝐶 / 2) / 𝑀) ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((vol‘𝑢) < ((𝐶 / 2) / 𝑀) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶)) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
2595, 256, 258syl2anc 584 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  ifcif 4491   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  r cofr 7655  cr 11074  0cc0 11075   + caddc 11078   · cmul 11080  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  +crp 12958  (,)cioo 13313  [,)cico 13315  [,]cicc 13316  vol*covol 25370  volcvol 25371  MblFncmbf 25522  2citg2 25524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cmp 23281  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-0p 25578
This theorem is referenced by:  itg2cn  25671
  Copyright terms: Public domain W3C validator