MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cnlem2 Structured version   Visualization version   GIF version

Theorem itg2cnlem2 25720
Description: Lemma for itgcn 25803. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
itg2cn.1 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2cn.2 (𝜑𝐹 ∈ MblFn)
itg2cn.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2cn.4 (𝜑𝐶 ∈ ℝ+)
itg2cn.5 (𝜑𝑀 ∈ ℕ)
itg2cn.6 (𝜑 → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
Assertion
Ref Expression
itg2cnlem2 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Distinct variable groups:   𝑢,𝑑,𝑥,𝐶   𝐹,𝑑,𝑢,𝑥   𝜑,𝑢,𝑥   𝑀,𝑑,𝑢,𝑥
Allowed substitution hint:   𝜑(𝑑)

Proof of Theorem itg2cnlem2
StepHypRef Expression
1 itg2cn.4 . . . 4 (𝜑𝐶 ∈ ℝ+)
21rphalfcld 13068 . . 3 (𝜑 → (𝐶 / 2) ∈ ℝ+)
3 itg2cn.5 . . . 4 (𝜑𝑀 ∈ ℕ)
43nnrpd 13054 . . 3 (𝜑𝑀 ∈ ℝ+)
52, 4rpdivcld 13073 . 2 (𝜑 → ((𝐶 / 2) / 𝑀) ∈ ℝ+)
6 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑢 ∈ dom vol)
7 itg2cn.2 . . . . . . . . . 10 (𝜑𝐹 ∈ MblFn)
87adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹 ∈ MblFn)
9 itg2cn.1 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶(0[,)+∞))
10 rge0ssre 13478 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
11 fss 6727 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
129, 10, 11sylancl 586 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
1312adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹:ℝ⟶ℝ)
14 mbfima 25588 . . . . . . . . 9 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (𝑀(,)+∞)) ∈ dom vol)
158, 13, 14syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐹 “ (𝑀(,)+∞)) ∈ dom vol)
16 inmbl 25500 . . . . . . . 8 ((𝑢 ∈ dom vol ∧ (𝐹 “ (𝑀(,)+∞)) ∈ dom vol) → (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
176, 15, 16syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
18 difmbl 25501 . . . . . . . 8 ((𝑢 ∈ dom vol ∧ (𝐹 “ (𝑀(,)+∞)) ∈ dom vol) → (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
196, 15, 18syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
20 inass 4208 . . . . . . . . . . 11 ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) = (𝑢 ∩ ((𝐹 “ (𝑀(,)+∞)) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))))
21 disjdif 4452 . . . . . . . . . . . 12 ((𝐹 “ (𝑀(,)+∞)) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) = ∅
2221ineq2i 4197 . . . . . . . . . . 11 (𝑢 ∩ ((𝐹 “ (𝑀(,)+∞)) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))) = (𝑢 ∩ ∅)
23 in0 4375 . . . . . . . . . . 11 (𝑢 ∩ ∅) = ∅
2420, 22, 233eqtri 2763 . . . . . . . . . 10 ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) = ∅
2524fveq2i 6884 . . . . . . . . 9 (vol*‘((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))) = (vol*‘∅)
26 ovol0 25451 . . . . . . . . 9 (vol*‘∅) = 0
2725, 26eqtri 2759 . . . . . . . 8 (vol*‘((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))) = 0
2827a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))) = 0)
29 inundif 4459 . . . . . . . . 9 ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∪ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) = 𝑢
3029eqcomi 2745 . . . . . . . 8 𝑢 = ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∪ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))
3130a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑢 = ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∪ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))))
32 mblss 25489 . . . . . . . . . 10 (𝑢 ∈ dom vol → 𝑢 ⊆ ℝ)
336, 32syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑢 ⊆ ℝ)
3433sselda 3963 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥𝑢) → 𝑥 ∈ ℝ)
359adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹:ℝ⟶(0[,)+∞))
3635ffvelcdmda 7079 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
37 elrege0 13476 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
3836, 37sylib 218 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
3938simpld 494 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
4039rexrd 11290 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ*)
4138simprd 495 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
42 elxrge0 13479 . . . . . . . . 9 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
4340, 41, 42sylanbrc 583 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
4434, 43syldan 591 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥𝑢) → (𝐹𝑥) ∈ (0[,]+∞))
45 eqid 2736 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))
46 eqid 2736 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))
47 eqid 2736 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))
48 0e0iccpnf 13481 . . . . . . . . . 10 0 ∈ (0[,]+∞)
49 ifcl 4551 . . . . . . . . . 10 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
5043, 48, 49sylancl 586 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
5150fmpttd 7110 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
52 itg2cn.3 . . . . . . . . 9 (𝜑 → (∫2𝐹) ∈ ℝ)
5352adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2𝐹) ∈ ℝ)
54 icossicc 13458 . . . . . . . . . 10 (0[,)+∞) ⊆ (0[,]+∞)
55 fss 6727 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
5635, 54, 55sylancl 586 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹:ℝ⟶(0[,]+∞))
5739leidd 11808 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ≤ (𝐹𝑥))
58 breq1 5127 . . . . . . . . . . . . 13 ((𝐹𝑥) = if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
59 breq1 5127 . . . . . . . . . . . . 13 (0 = if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
6058, 59ifboth 4545 . . . . . . . . . . . 12 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
6157, 41, 60syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
6261ralrimiva 3133 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
63 reex 11225 . . . . . . . . . . . 12 ℝ ∈ V
6463a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ℝ ∈ V)
65 eqidd 2737 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))
6635feqmptd 6952 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
6764, 50, 39, 65, 66ofrfval2 7697 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
6862, 67mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹)
69 itg2le 25697 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
7051, 56, 68, 69syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
71 itg2lecl 25696 . . . . . . . 8 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (∫2𝐹) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
7251, 53, 70, 71syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
73 ifcl 4551 . . . . . . . . . 10 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
7443, 48, 73sylancl 586 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
7574fmpttd 7110 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
76 breq1 5127 . . . . . . . . . . . . 13 ((𝐹𝑥) = if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
77 breq1 5127 . . . . . . . . . . . . 13 (0 = if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
7876, 77ifboth 4545 . . . . . . . . . . . 12 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
7957, 41, 78syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
8079ralrimiva 3133 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
81 eqidd 2737 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))
8264, 74, 39, 81, 66ofrfval2 7697 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
8380, 82mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹)
84 itg2le 25697 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
8575, 56, 83, 84syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
86 itg2lecl 25696 . . . . . . . 8 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (∫2𝐹) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
8775, 53, 85, 86syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
8817, 19, 28, 31, 44, 45, 46, 47, 72, 87itg2split 25707 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
891adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐶 ∈ ℝ+)
9089rphalfcld 13068 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐶 / 2) ∈ ℝ+)
9190rpred 13056 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐶 / 2) ∈ ℝ)
92 ifcl 4551 . . . . . . . . . . 11 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ∈ (0[,]+∞))
9343, 48, 92sylancl 586 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ∈ (0[,]+∞))
9493fmpttd 7110 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
95 breq1 5127 . . . . . . . . . . . . . 14 ((𝐹𝑥) = if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
96 breq1 5127 . . . . . . . . . . . . . 14 (0 = if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
9795, 96ifboth 4545 . . . . . . . . . . . . 13 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥))
9857, 41, 97syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥))
9998ralrimiva 3133 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥))
100 eqidd 2737 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)))
10164, 93, 43, 100, 66ofrfval2 7697 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
10299, 101mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) ∘r𝐹)
103 itg2le 25697 . . . . . . . . . 10 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ≤ (∫2𝐹))
10494, 56, 102, 103syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ≤ (∫2𝐹))
105 itg2lecl 25696 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (∫2𝐹) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ≤ (∫2𝐹)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ∈ ℝ)
10694, 53, 104, 105syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ∈ ℝ)
107 0red 11243 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℝ)
108 elinel2 4182 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) → 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)))
109108a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) → 𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
110 ifle 13218 . . . . . . . . . . . 12 ((((𝐹𝑥) ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)) ∧ (𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) → 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))
11139, 107, 41, 109, 110syl31anc 1375 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))
112111ralrimiva 3133 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))
11364, 50, 93, 65, 100ofrfval2 7697 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)))
114112, 113mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)))
115 itg2le 25697 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))))
11651, 94, 114, 115syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))))
11766fveq2d 6885 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2𝐹) = (∫2‘(𝑥 ∈ ℝ ↦ (𝐹𝑥))))
118 cmmbl 25492 . . . . . . . . . . . . 13 ((𝐹 “ (𝑀(,)+∞)) ∈ dom vol → (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
11915, 118syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
120 disjdif 4452 . . . . . . . . . . . . . . 15 ((𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (𝐹 “ (𝑀(,)+∞)))) = ∅
121120fveq2i 6884 . . . . . . . . . . . . . 14 (vol*‘((𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))))) = (vol*‘∅)
122121, 26eqtri 2759 . . . . . . . . . . . . 13 (vol*‘((𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))))) = 0
123122a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘((𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))))) = 0)
124 undif2 4457 . . . . . . . . . . . . 13 ((𝐹 “ (𝑀(,)+∞)) ∪ (ℝ ∖ (𝐹 “ (𝑀(,)+∞)))) = ((𝐹 “ (𝑀(,)+∞)) ∪ ℝ)
125 mblss 25489 . . . . . . . . . . . . . . 15 ((𝐹 “ (𝑀(,)+∞)) ∈ dom vol → (𝐹 “ (𝑀(,)+∞)) ⊆ ℝ)
12615, 125syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐹 “ (𝑀(,)+∞)) ⊆ ℝ)
127 ssequn1 4166 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑀(,)+∞)) ⊆ ℝ ↔ ((𝐹 “ (𝑀(,)+∞)) ∪ ℝ) = ℝ)
128126, 127sylib 218 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐹 “ (𝑀(,)+∞)) ∪ ℝ) = ℝ)
129124, 128eqtr2id 2784 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ℝ = ((𝐹 “ (𝑀(,)+∞)) ∪ (ℝ ∖ (𝐹 “ (𝑀(,)+∞)))))
130 eqid 2736 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))
131 eqid 2736 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))
132 iftrue 4511 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → if(𝑥 ∈ ℝ, (𝐹𝑥), 0) = (𝐹𝑥))
133132mpteq2ia 5221 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ℝ, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ (𝐹𝑥))
134133eqcomi 2745 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ (𝐹𝑥)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ℝ, (𝐹𝑥), 0))
135 ifcl 4551 . . . . . . . . . . . . . . 15 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
13643, 48, 135sylancl 586 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
137136fmpttd 7110 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
138 breq1 5127 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) = if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
139 breq1 5127 . . . . . . . . . . . . . . . . . 18 (0 = if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
140138, 139ifboth 4545 . . . . . . . . . . . . . . . . 17 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
14157, 41, 140syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
142141ralrimiva 3133 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
143 eqidd 2737 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))
14464, 136, 43, 143, 66ofrfval2 7697 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
145142, 144mpbird 257 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹)
146 itg2le 25697 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
147137, 56, 145, 146syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
148 itg2lecl 25696 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (∫2𝐹) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
149137, 53, 147, 148syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
15015, 119, 123, 129, 43, 130, 131, 134, 106, 149itg2split 25707 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ (𝐹𝑥))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
151117, 150eqtrd 2771 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2𝐹) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
152 eldif 3941 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
153152baib 535 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ↔ ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
154153adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ↔ ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
1559ffnd 6712 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 Fn ℝ)
156155ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn ℝ)
157 elpreima 7053 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ (𝑀(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (𝑀(,)+∞))))
158156, 157syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (𝑀(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (𝑀(,)+∞))))
15939biantrurd 532 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑀 < (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑀 < (𝐹𝑥))))
1603nnred 12260 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℝ)
161160ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℝ)
162161rexrd 11290 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℝ*)
163 elioopnf 13465 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℝ* → ((𝐹𝑥) ∈ (𝑀(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑀 < (𝐹𝑥))))
164162, 163syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (𝑀(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑀 < (𝐹𝑥))))
165 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
166165biantrurd 532 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (𝑀(,)+∞) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (𝑀(,)+∞))))
167159, 164, 1663bitr2d 307 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑀 < (𝐹𝑥) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (𝑀(,)+∞))))
168161, 39ltnled 11387 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑀 < (𝐹𝑥) ↔ ¬ (𝐹𝑥) ≤ 𝑀))
169158, 167, 1683bitr2rd 308 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (¬ (𝐹𝑥) ≤ 𝑀𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
170169con1bid 355 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)) ↔ (𝐹𝑥) ≤ 𝑀))
171154, 170bitrd 279 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ↔ (𝐹𝑥) ≤ 𝑀))
172171ifbid 4529 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))
173172mpteq2dva 5219 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0)))
174173fveq2d 6885 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))))
175 itg2cn.6 . . . . . . . . . . . . . 14 (𝜑 → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
176175adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
177174, 176eqnbrtrd 5142 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
17853, 91resubcld 11670 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ)
179178, 149ltnled 11387 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (((∫2𝐹) − (𝐶 / 2)) < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ↔ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
180177, 179mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2𝐹) − (𝐶 / 2)) < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))))
18153, 91, 149ltsubadd2d 11840 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (((∫2𝐹) − (𝐶 / 2)) < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ↔ (∫2𝐹) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))))))
182180, 181mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2𝐹) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
183151, 182eqbrtrrd 5148 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
184106, 91, 149ltadd1d 11835 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) < (𝐶 / 2) ↔ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))))))
185183, 184mpbird 257 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) < (𝐶 / 2))
18672, 106, 91, 116, 185lelttrd 11398 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) < (𝐶 / 2))
187160adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℝ)
188 mblvol 25488 . . . . . . . . . . 11 (𝑢 ∈ dom vol → (vol‘𝑢) = (vol*‘𝑢))
1896, 188syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol‘𝑢) = (vol*‘𝑢))
1905rpred 13056 . . . . . . . . . . . 12 (𝜑 → ((𝐶 / 2) / 𝑀) ∈ ℝ)
191190adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐶 / 2) / 𝑀) ∈ ℝ)
192 ovolcl 25436 . . . . . . . . . . . . 13 (𝑢 ⊆ ℝ → (vol*‘𝑢) ∈ ℝ*)
19333, 192syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) ∈ ℝ*)
194191rexrd 11290 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐶 / 2) / 𝑀) ∈ ℝ*)
195 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol‘𝑢) < ((𝐶 / 2) / 𝑀))
196189, 195eqbrtrrd 5148 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) < ((𝐶 / 2) / 𝑀))
197193, 194, 196xrltled 13171 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) ≤ ((𝐶 / 2) / 𝑀))
198 ovollecl 25441 . . . . . . . . . . 11 ((𝑢 ⊆ ℝ ∧ ((𝐶 / 2) / 𝑀) ∈ ℝ ∧ (vol*‘𝑢) ≤ ((𝐶 / 2) / 𝑀)) → (vol*‘𝑢) ∈ ℝ)
19933, 191, 197, 198syl3anc 1373 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) ∈ ℝ)
200189, 199eqeltrd 2835 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol‘𝑢) ∈ ℝ)
201187, 200remulcld 11270 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑀 · (vol‘𝑢)) ∈ ℝ)
202187rexrd 11290 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℝ*)
2033adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℕ)
204203nnnn0d 12567 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℕ0)
205204nn0ge0d 12570 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 0 ≤ 𝑀)
206 elxrge0 13479 . . . . . . . . . . . . . 14 (𝑀 ∈ (0[,]+∞) ↔ (𝑀 ∈ ℝ* ∧ 0 ≤ 𝑀))
207202, 205, 206sylanbrc 583 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ (0[,]+∞))
208 ifcl 4551 . . . . . . . . . . . . 13 ((𝑀 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥𝑢, 𝑀, 0) ∈ (0[,]+∞))
209207, 48, 208sylancl 586 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → if(𝑥𝑢, 𝑀, 0) ∈ (0[,]+∞))
210209adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑢, 𝑀, 0) ∈ (0[,]+∞))
211210fmpttd 7110 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)):ℝ⟶(0[,]+∞))
212 eldifn 4112 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) → ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)))
213212adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)))
214 difssd 4117 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) ⊆ 𝑢)
215214sselda 3963 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → 𝑥𝑢)
21634, 169syldan 591 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥𝑢) → (¬ (𝐹𝑥) ≤ 𝑀𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
217215, 216syldan 591 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → (¬ (𝐹𝑥) ≤ 𝑀𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
218217con1bid 355 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → (¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)) ↔ (𝐹𝑥) ≤ 𝑀))
219213, 218mpbid 232 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → (𝐹𝑥) ≤ 𝑀)
220 iftrue 4511 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = (𝐹𝑥))
221220adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = (𝐹𝑥))
222215iftrued 4513 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥𝑢, 𝑀, 0) = 𝑀)
223219, 221, 2223brtr4d 5156 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0))
224 iffalse 4514 . . . . . . . . . . . . . . 15 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = 0)
225224adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ ¬ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = 0)
226 0le0 12346 . . . . . . . . . . . . . . . 16 0 ≤ 0
227 breq2 5128 . . . . . . . . . . . . . . . . 17 (𝑀 = if(𝑥𝑢, 𝑀, 0) → (0 ≤ 𝑀 ↔ 0 ≤ if(𝑥𝑢, 𝑀, 0)))
228 breq2 5128 . . . . . . . . . . . . . . . . 17 (0 = if(𝑥𝑢, 𝑀, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥𝑢, 𝑀, 0)))
229227, 228ifboth 4545 . . . . . . . . . . . . . . . 16 ((0 ≤ 𝑀 ∧ 0 ≤ 0) → 0 ≤ if(𝑥𝑢, 𝑀, 0))
230205, 226, 229sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 0 ≤ if(𝑥𝑢, 𝑀, 0))
231230adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ ¬ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → 0 ≤ if(𝑥𝑢, 𝑀, 0))
232225, 231eqbrtrd 5146 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ ¬ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0))
233223, 232pm2.61dan 812 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0))
234233ralrimivw 3137 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0))
235 eqidd 2737 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)))
23664, 74, 210, 81, 235ofrfval2 7697 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0)))
237234, 236mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)))
238 itg2le 25697 . . . . . . . . . 10 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))))
23975, 211, 237, 238syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))))
240 elrege0 13476 . . . . . . . . . . 11 (𝑀 ∈ (0[,)+∞) ↔ (𝑀 ∈ ℝ ∧ 0 ≤ 𝑀))
241187, 205, 240sylanbrc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ (0[,)+∞))
242 itg2const 25698 . . . . . . . . . 10 ((𝑢 ∈ dom vol ∧ (vol‘𝑢) ∈ ℝ ∧ 𝑀 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))) = (𝑀 · (vol‘𝑢)))
2436, 200, 241, 242syl3anc 1373 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))) = (𝑀 · (vol‘𝑢)))
244239, 243breqtrd 5150 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (𝑀 · (vol‘𝑢)))
245203nngt0d 12294 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 0 < 𝑀)
246 ltmuldiv2 12121 . . . . . . . . . 10 (((vol‘𝑢) ∈ ℝ ∧ (𝐶 / 2) ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → ((𝑀 · (vol‘𝑢)) < (𝐶 / 2) ↔ (vol‘𝑢) < ((𝐶 / 2) / 𝑀)))
247200, 91, 187, 245, 246syl112anc 1376 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑀 · (vol‘𝑢)) < (𝐶 / 2) ↔ (vol‘𝑢) < ((𝐶 / 2) / 𝑀)))
248195, 247mpbird 257 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑀 · (vol‘𝑢)) < (𝐶 / 2))
24987, 201, 91, 244, 248lelttrd 11398 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) < (𝐶 / 2))
25072, 87, 91, 91, 186, 249lt2addd 11865 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))) < ((𝐶 / 2) + (𝐶 / 2)))
25188, 250eqbrtrd 5146 . . . . 5 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < ((𝐶 / 2) + (𝐶 / 2)))
25289rpcnd 13058 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐶 ∈ ℂ)
2532522halvesd 12492 . . . . 5 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐶 / 2) + (𝐶 / 2)) = 𝐶)
254251, 253breqtrd 5150 . . . 4 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶)
255254expr 456 . . 3 ((𝜑𝑢 ∈ dom vol) → ((vol‘𝑢) < ((𝐶 / 2) / 𝑀) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
256255ralrimiva 3133 . 2 (𝜑 → ∀𝑢 ∈ dom vol((vol‘𝑢) < ((𝐶 / 2) / 𝑀) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
257 breq2 5128 . . 3 (𝑑 = ((𝐶 / 2) / 𝑀) → ((vol‘𝑢) < 𝑑 ↔ (vol‘𝑢) < ((𝐶 / 2) / 𝑀)))
258257rspceaimv 3612 . 2 ((((𝐶 / 2) / 𝑀) ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((vol‘𝑢) < ((𝐶 / 2) / 𝑀) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶)) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
2595, 256, 258syl2anc 584 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wrex 3061  Vcvv 3464  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  ifcif 4505   class class class wbr 5124  cmpt 5206  ccnv 5658  dom cdm 5659  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  r cofr 7675  cr 11133  0cc0 11134   + caddc 11137   · cmul 11139  +∞cpnf 11271  *cxr 11273   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  +crp 13013  (,)cioo 13367  [,)cico 13369  [,]cicc 13370  vol*covol 25420  volcvol 25421  MblFncmbf 25572  2citg2 25574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-rest 17441  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-bases 22889  df-cmp 23330  df-ovol 25422  df-vol 25423  df-mbf 25577  df-itg1 25578  df-itg2 25579  df-0p 25628
This theorem is referenced by:  itg2cn  25721
  Copyright terms: Public domain W3C validator