Proof of Theorem itg2cnlem2
Step | Hyp | Ref
| Expression |
1 | | itg2cn.4 |
. . . 4
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
2 | 1 | rphalfcld 12772 |
. . 3
⊢ (𝜑 → (𝐶 / 2) ∈
ℝ+) |
3 | | itg2cn.5 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℕ) |
4 | 3 | nnrpd 12758 |
. . 3
⊢ (𝜑 → 𝑀 ∈
ℝ+) |
5 | 2, 4 | rpdivcld 12777 |
. 2
⊢ (𝜑 → ((𝐶 / 2) / 𝑀) ∈
ℝ+) |
6 | | simprl 768 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑢 ∈ dom vol) |
7 | | itg2cn.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ MblFn) |
8 | 7 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹 ∈ MblFn) |
9 | | itg2cn.1 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
10 | | rge0ssre 13176 |
. . . . . . . . . . 11
⊢
(0[,)+∞) ⊆ ℝ |
11 | | fss 6610 |
. . . . . . . . . . 11
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ) |
12 | 9, 10, 11 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
13 | 12 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹:ℝ⟶ℝ) |
14 | | mbfima 24782 |
. . . . . . . . 9
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) →
(◡𝐹 “ (𝑀(,)+∞)) ∈ dom
vol) |
15 | 8, 13, 14 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (◡𝐹 “ (𝑀(,)+∞)) ∈ dom
vol) |
16 | | inmbl 24694 |
. . . . . . . 8
⊢ ((𝑢 ∈ dom vol ∧ (◡𝐹 “ (𝑀(,)+∞)) ∈ dom vol) → (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))) ∈ dom
vol) |
17 | 6, 15, 16 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))) ∈ dom
vol) |
18 | | difmbl 24695 |
. . . . . . . 8
⊢ ((𝑢 ∈ dom vol ∧ (◡𝐹 “ (𝑀(,)+∞)) ∈ dom vol) → (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))) ∈ dom
vol) |
19 | 6, 15, 18 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))) ∈ dom
vol) |
20 | | inass 4154 |
. . . . . . . . . . 11
⊢ ((𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞)))) = (𝑢 ∩ ((◡𝐹 “ (𝑀(,)+∞)) ∩ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))))) |
21 | | disjdif 4406 |
. . . . . . . . . . . 12
⊢ ((◡𝐹 “ (𝑀(,)+∞)) ∩ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞)))) = ∅ |
22 | 21 | ineq2i 4144 |
. . . . . . . . . . 11
⊢ (𝑢 ∩ ((◡𝐹 “ (𝑀(,)+∞)) ∩ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))))) = (𝑢 ∩ ∅) |
23 | | in0 4326 |
. . . . . . . . . . 11
⊢ (𝑢 ∩ ∅) =
∅ |
24 | 20, 22, 23 | 3eqtri 2770 |
. . . . . . . . . 10
⊢ ((𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞)))) = ∅ |
25 | 24 | fveq2i 6770 |
. . . . . . . . 9
⊢
(vol*‘((𝑢
∩ (◡𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))))) =
(vol*‘∅) |
26 | | ovol0 24645 |
. . . . . . . . 9
⊢
(vol*‘∅) = 0 |
27 | 25, 26 | eqtri 2766 |
. . . . . . . 8
⊢
(vol*‘((𝑢
∩ (◡𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))))) = 0 |
28 | 27 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘((𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))))) = 0) |
29 | | inundif 4413 |
. . . . . . . . 9
⊢ ((𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))) ∪ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞)))) = 𝑢 |
30 | 29 | eqcomi 2747 |
. . . . . . . 8
⊢ 𝑢 = ((𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))) ∪ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞)))) |
31 | 30 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑢 = ((𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))) ∪ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))))) |
32 | | mblss 24683 |
. . . . . . . . . 10
⊢ (𝑢 ∈ dom vol → 𝑢 ⊆
ℝ) |
33 | 6, 32 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑢 ⊆ ℝ) |
34 | 33 | sselda 3921 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ 𝑢) → 𝑥 ∈ ℝ) |
35 | 9 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹:ℝ⟶(0[,)+∞)) |
36 | 35 | ffvelrnda 6954 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,)+∞)) |
37 | | elrege0 13174 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
38 | 36, 37 | sylib 217 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
39 | 38 | simpld 495 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
40 | 39 | rexrd 11013 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈
ℝ*) |
41 | 38 | simprd 496 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹‘𝑥)) |
42 | | elxrge0 13177 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥) ∈ (0[,]+∞) ↔ ((𝐹‘𝑥) ∈ ℝ* ∧ 0 ≤
(𝐹‘𝑥))) |
43 | 40, 41, 42 | sylanbrc 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,]+∞)) |
44 | 34, 43 | syldan 591 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ 𝑢) → (𝐹‘𝑥) ∈ (0[,]+∞)) |
45 | | eqid 2738 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) |
46 | | eqid 2738 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) |
47 | | eqid 2738 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0)) |
48 | | 0e0iccpnf 13179 |
. . . . . . . . . 10
⊢ 0 ∈
(0[,]+∞) |
49 | | ifcl 4505 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑥) ∈ (0[,]+∞) ∧ 0 ∈
(0[,]+∞)) → if(𝑥
∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ∈ (0[,]+∞)) |
50 | 43, 48, 49 | sylancl 586 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ∈ (0[,]+∞)) |
51 | 50 | fmpttd 6982 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥),
0)):ℝ⟶(0[,]+∞)) |
52 | | itg2cn.3 |
. . . . . . . . 9
⊢ (𝜑 →
(∫2‘𝐹)
∈ ℝ) |
53 | 52 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘𝐹) ∈
ℝ) |
54 | | icossicc 13156 |
. . . . . . . . . 10
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
55 | | fss 6610 |
. . . . . . . . . 10
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞)) |
56 | 35, 54, 55 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹:ℝ⟶(0[,]+∞)) |
57 | 39 | leidd 11529 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ≤ (𝐹‘𝑥)) |
58 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑥) = if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) → ((𝐹‘𝑥) ≤ (𝐹‘𝑥) ↔ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥))) |
59 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢ (0 =
if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) → (0 ≤ (𝐹‘𝑥) ↔ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥))) |
60 | 58, 59 | ifboth 4499 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) ≤ (𝐹‘𝑥) ∧ 0 ≤ (𝐹‘𝑥)) → if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
61 | 57, 41, 60 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
62 | 61 | ralrimiva 3113 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
63 | | reex 10950 |
. . . . . . . . . . . 12
⊢ ℝ
∈ V |
64 | 63 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ℝ ∈
V) |
65 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) |
66 | 35 | feqmptd 6830 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹‘𝑥))) |
67 | 64, 50, 39, 65, 66 | ofrfval2 7545 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥))) |
68 | 62, 67 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) ∘r ≤ 𝐹) |
69 | | itg2le 24892 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)):ℝ⟶(0[,]+∞) ∧
𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) ∘r ≤ 𝐹) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ≤ (∫2‘𝐹)) |
70 | 51, 56, 68, 69 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ≤ (∫2‘𝐹)) |
71 | | itg2lecl 24891 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)):ℝ⟶(0[,]+∞) ∧
(∫2‘𝐹)
∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ≤ (∫2‘𝐹)) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ∈ ℝ) |
72 | 51, 53, 70, 71 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ∈ ℝ) |
73 | | ifcl 4505 |
. . . . . . . . . 10
⊢ (((𝐹‘𝑥) ∈ (0[,]+∞) ∧ 0 ∈
(0[,]+∞)) → if(𝑥
∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ∈ (0[,]+∞)) |
74 | 43, 48, 73 | sylancl 586 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ∈ (0[,]+∞)) |
75 | 74 | fmpttd 6982 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥),
0)):ℝ⟶(0[,]+∞)) |
76 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑥) = if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) → ((𝐹‘𝑥) ≤ (𝐹‘𝑥) ↔ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥))) |
77 | | breq1 5077 |
. . . . . . . . . . . . 13
⊢ (0 =
if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) → (0 ≤ (𝐹‘𝑥) ↔ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥))) |
78 | 76, 77 | ifboth 4499 |
. . . . . . . . . . . 12
⊢ (((𝐹‘𝑥) ≤ (𝐹‘𝑥) ∧ 0 ≤ (𝐹‘𝑥)) → if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
79 | 57, 41, 78 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
80 | 79 | ralrimiva 3113 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
81 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) |
82 | 64, 74, 39, 81, 66 | ofrfval2 7545 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥))) |
83 | 80, 82 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) ∘r ≤ 𝐹) |
84 | | itg2le 24892 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)):ℝ⟶(0[,]+∞) ∧
𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) ∘r ≤ 𝐹) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ≤ (∫2‘𝐹)) |
85 | 75, 56, 83, 84 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ≤ (∫2‘𝐹)) |
86 | | itg2lecl 24891 |
. . . . . . . 8
⊢ (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)):ℝ⟶(0[,]+∞) ∧
(∫2‘𝐹)
∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ≤ (∫2‘𝐹)) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ∈ ℝ) |
87 | 75, 53, 85, 86 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ∈ ℝ) |
88 | 17, 19, 28, 31, 44, 45, 46, 47, 72, 87 | itg2split 24902 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))))) |
89 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐶 ∈
ℝ+) |
90 | 89 | rphalfcld 12772 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐶 / 2) ∈
ℝ+) |
91 | 90 | rpred 12760 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐶 / 2) ∈ ℝ) |
92 | | ifcl 4505 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑥) ∈ (0[,]+∞) ∧ 0 ∈
(0[,]+∞)) → if(𝑥
∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0) ∈ (0[,]+∞)) |
93 | 43, 48, 92 | sylancl 586 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0) ∈ (0[,]+∞)) |
94 | 93 | fmpttd 6982 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥),
0)):ℝ⟶(0[,]+∞)) |
95 | | breq1 5077 |
. . . . . . . . . . . . . 14
⊢ ((𝐹‘𝑥) = if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0) → ((𝐹‘𝑥) ≤ (𝐹‘𝑥) ↔ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥))) |
96 | | breq1 5077 |
. . . . . . . . . . . . . 14
⊢ (0 =
if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0) → (0 ≤ (𝐹‘𝑥) ↔ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥))) |
97 | 95, 96 | ifboth 4499 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑥) ≤ (𝐹‘𝑥) ∧ 0 ≤ (𝐹‘𝑥)) → if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
98 | 57, 41, 97 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
99 | 98 | ralrimiva 3113 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
100 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0))) |
101 | 64, 93, 43, 100, 66 | ofrfval2 7545 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0)) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥))) |
102 | 99, 101 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0)) ∘r ≤ 𝐹) |
103 | | itg2le 24892 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0)):ℝ⟶(0[,]+∞) ∧
𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0)) ∘r ≤ 𝐹) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0))) ≤ (∫2‘𝐹)) |
104 | 94, 56, 102, 103 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0))) ≤ (∫2‘𝐹)) |
105 | | itg2lecl 24891 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0)):ℝ⟶(0[,]+∞) ∧
(∫2‘𝐹)
∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0))) ≤ (∫2‘𝐹)) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0))) ∈ ℝ) |
106 | 94, 53, 104, 105 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0))) ∈ ℝ) |
107 | | 0red 10966 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 0 ∈
ℝ) |
108 | | elinel2 4130 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))) → 𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞))) |
109 | 108 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))) → 𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)))) |
110 | | ifle 12919 |
. . . . . . . . . . . 12
⊢ ((((𝐹‘𝑥) ∈ ℝ ∧ 0 ∈ ℝ ∧
0 ≤ (𝐹‘𝑥)) ∧ (𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))) → 𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0)) |
111 | 39, 107, 41, 109, 110 | syl31anc 1372 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0)) |
112 | 111 | ralrimiva 3113 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0)) |
113 | 64, 50, 93, 65, 100 | ofrfval2 7545 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0))) |
114 | 112, 113 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0))) |
115 | | itg2le 24892 |
. . . . . . . . 9
⊢ (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0)))) |
116 | 51, 94, 114, 115 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0)))) |
117 | 66 | fveq2d 6771 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘𝐹) =
(∫2‘(𝑥
∈ ℝ ↦ (𝐹‘𝑥)))) |
118 | | cmmbl 24686 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 “ (𝑀(,)+∞)) ∈ dom vol → (ℝ
∖ (◡𝐹 “ (𝑀(,)+∞))) ∈ dom
vol) |
119 | 15, 118 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))) ∈ dom
vol) |
120 | | disjdif 4406 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞)))) = ∅ |
121 | 120 | fveq2i 6770 |
. . . . . . . . . . . . . 14
⊢
(vol*‘((◡𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))))) =
(vol*‘∅) |
122 | 121, 26 | eqtri 2766 |
. . . . . . . . . . . . 13
⊢
(vol*‘((◡𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))))) = 0 |
123 | 122 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘((◡𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))))) = 0) |
124 | | undif2 4411 |
. . . . . . . . . . . . 13
⊢ ((◡𝐹 “ (𝑀(,)+∞)) ∪ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞)))) = ((◡𝐹 “ (𝑀(,)+∞)) ∪
ℝ) |
125 | | mblss 24683 |
. . . . . . . . . . . . . . 15
⊢ ((◡𝐹 “ (𝑀(,)+∞)) ∈ dom vol → (◡𝐹 “ (𝑀(,)+∞)) ⊆
ℝ) |
126 | 15, 125 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (◡𝐹 “ (𝑀(,)+∞)) ⊆
ℝ) |
127 | | ssequn1 4114 |
. . . . . . . . . . . . . 14
⊢ ((◡𝐹 “ (𝑀(,)+∞)) ⊆ ℝ ↔ ((◡𝐹 “ (𝑀(,)+∞)) ∪ ℝ) =
ℝ) |
128 | 126, 127 | sylib 217 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((◡𝐹 “ (𝑀(,)+∞)) ∪ ℝ) =
ℝ) |
129 | 124, 128 | eqtr2id 2791 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ℝ = ((◡𝐹 “ (𝑀(,)+∞)) ∪ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))))) |
130 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0)) |
131 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) |
132 | | iftrue 4466 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → if(𝑥 ∈ ℝ, (𝐹‘𝑥), 0) = (𝐹‘𝑥)) |
133 | 132 | mpteq2ia 5177 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ℝ, (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) |
134 | 133 | eqcomi 2747 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ℝ, (𝐹‘𝑥), 0)) |
135 | | ifcl 4505 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑥) ∈ (0[,]+∞) ∧ 0 ∈
(0[,]+∞)) → if(𝑥
∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ∈ (0[,]+∞)) |
136 | 43, 48, 135 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ∈ (0[,]+∞)) |
137 | 136 | fmpttd 6982 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥),
0)):ℝ⟶(0[,]+∞)) |
138 | | breq1 5077 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑥) = if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) → ((𝐹‘𝑥) ≤ (𝐹‘𝑥) ↔ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥))) |
139 | | breq1 5077 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 =
if(𝑥 ∈ (ℝ
∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) → (0 ≤ (𝐹‘𝑥) ↔ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥))) |
140 | 138, 139 | ifboth 4499 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑥) ≤ (𝐹‘𝑥) ∧ 0 ≤ (𝐹‘𝑥)) → if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
141 | 57, 41, 140 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
142 | 141 | ralrimiva 3113 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥)) |
143 | | eqidd 2739 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) |
144 | 64, 136, 43, 143, 66 | ofrfval2 7545 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ (𝐹‘𝑥))) |
145 | 142, 144 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) ∘r ≤ 𝐹) |
146 | | itg2le 24892 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)):ℝ⟶(0[,]+∞) ∧
𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) ∘r ≤ 𝐹) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ≤ (∫2‘𝐹)) |
147 | 137, 56, 145, 146 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ≤ (∫2‘𝐹)) |
148 | | itg2lecl 24891 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)):ℝ⟶(0[,]+∞) ∧
(∫2‘𝐹)
∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ≤ (∫2‘𝐹)) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ∈ ℝ) |
149 | 137, 53, 147, 148 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ∈ ℝ) |
150 | 15, 119, 123, 129, 43, 130, 131, 134, 106, 149 | itg2split 24902 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ (𝐹‘𝑥))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))))) |
151 | 117, 150 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘𝐹) =
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))))) |
152 | | eldif 3897 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)))) |
153 | 152 | baib 536 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℝ → (𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))) ↔ ¬ 𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)))) |
154 | 153 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))) ↔ ¬ 𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)))) |
155 | 9 | ffnd 6594 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐹 Fn ℝ) |
156 | 155 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn ℝ) |
157 | | elpreima 6928 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 Fn ℝ → (𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (𝑀(,)+∞)))) |
158 | 156, 157 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (𝑀(,)+∞)))) |
159 | 39 | biantrurd 533 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑀 < (𝐹‘𝑥) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 𝑀 < (𝐹‘𝑥)))) |
160 | 3 | nnred 11976 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → 𝑀 ∈ ℝ) |
161 | 160 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℝ) |
162 | 161 | rexrd 11013 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈
ℝ*) |
163 | | elioopnf 13163 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 ∈ ℝ*
→ ((𝐹‘𝑥) ∈ (𝑀(,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 𝑀 < (𝐹‘𝑥)))) |
164 | 162, 163 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (𝑀(,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 𝑀 < (𝐹‘𝑥)))) |
165 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) |
166 | 165 | biantrurd 533 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (𝑀(,)+∞) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (𝑀(,)+∞)))) |
167 | 159, 164,
166 | 3bitr2d 307 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑀 < (𝐹‘𝑥) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ (𝑀(,)+∞)))) |
168 | 161, 39 | ltnled 11110 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑀 < (𝐹‘𝑥) ↔ ¬ (𝐹‘𝑥) ≤ 𝑀)) |
169 | 158, 167,
168 | 3bitr2rd 308 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (¬ (𝐹‘𝑥) ≤ 𝑀 ↔ 𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)))) |
170 | 169 | con1bid 356 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)) ↔ (𝐹‘𝑥) ≤ 𝑀)) |
171 | 154, 170 | bitrd 278 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))) ↔ (𝐹‘𝑥) ≤ 𝑀)) |
172 | 171 | ifbid 4483 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) = if((𝐹‘𝑥) ≤ 𝑀, (𝐹‘𝑥), 0)) |
173 | 172 | mpteq2dva 5174 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑀, (𝐹‘𝑥), 0))) |
174 | 173 | fveq2d 6771 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦
if((𝐹‘𝑥) ≤ 𝑀, (𝐹‘𝑥), 0)))) |
175 | | itg2cn.6 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ¬
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑀, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2))) |
176 | 175 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ¬
(∫2‘(𝑥
∈ ℝ ↦ if((𝐹‘𝑥) ≤ 𝑀, (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2))) |
177 | 174, 176 | eqnbrtrd 5092 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ¬
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2))) |
178 | 53, 91 | resubcld 11391 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘𝐹) − (𝐶 / 2)) ∈ ℝ) |
179 | 178, 149 | ltnled 11110 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (((∫2‘𝐹) − (𝐶 / 2)) < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ↔ ¬
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ≤ ((∫2‘𝐹) − (𝐶 / 2)))) |
180 | 177, 179 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘𝐹) − (𝐶 / 2)) < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)))) |
181 | 53, 91, 149 | ltsubadd2d 11561 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (((∫2‘𝐹) − (𝐶 / 2)) < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ↔ (∫2‘𝐹) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)))))) |
182 | 180, 181 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘𝐹) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))))) |
183 | 151, 182 | eqbrtrrd 5098 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)))) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))))) |
184 | 106, 91, 149 | ltadd1d 11556 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0))) < (𝐶 / 2) ↔
((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)))) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)))))) |
185 | 183, 184 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)), (𝐹‘𝑥), 0))) < (𝐶 / 2)) |
186 | 72, 106, 91, 116, 185 | lelttrd 11121 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) < (𝐶 / 2)) |
187 | 160 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℝ) |
188 | | mblvol 24682 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ dom vol →
(vol‘𝑢) =
(vol*‘𝑢)) |
189 | 6, 188 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol‘𝑢) = (vol*‘𝑢)) |
190 | 5 | rpred 12760 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐶 / 2) / 𝑀) ∈ ℝ) |
191 | 190 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐶 / 2) / 𝑀) ∈ ℝ) |
192 | | ovolcl 24630 |
. . . . . . . . . . . . 13
⊢ (𝑢 ⊆ ℝ →
(vol*‘𝑢) ∈
ℝ*) |
193 | 33, 192 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) ∈
ℝ*) |
194 | 191 | rexrd 11013 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐶 / 2) / 𝑀) ∈
ℝ*) |
195 | | simprr 770 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol‘𝑢) < ((𝐶 / 2) / 𝑀)) |
196 | 189, 195 | eqbrtrrd 5098 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) < ((𝐶 / 2) / 𝑀)) |
197 | 193, 194,
196 | xrltled 12872 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) ≤ ((𝐶 / 2) / 𝑀)) |
198 | | ovollecl 24635 |
. . . . . . . . . . 11
⊢ ((𝑢 ⊆ ℝ ∧ ((𝐶 / 2) / 𝑀) ∈ ℝ ∧ (vol*‘𝑢) ≤ ((𝐶 / 2) / 𝑀)) → (vol*‘𝑢) ∈ ℝ) |
199 | 33, 191, 197, 198 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) ∈ ℝ) |
200 | 189, 199 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol‘𝑢) ∈ ℝ) |
201 | 187, 200 | remulcld 10993 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑀 · (vol‘𝑢)) ∈ ℝ) |
202 | 187 | rexrd 11013 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈
ℝ*) |
203 | 3 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℕ) |
204 | 203 | nnnn0d 12281 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈
ℕ0) |
205 | 204 | nn0ge0d 12284 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 0 ≤ 𝑀) |
206 | | elxrge0 13177 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (0[,]+∞) ↔
(𝑀 ∈
ℝ* ∧ 0 ≤ 𝑀)) |
207 | 202, 205,
206 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ (0[,]+∞)) |
208 | | ifcl 4505 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ (0[,]+∞) ∧ 0
∈ (0[,]+∞)) → if(𝑥 ∈ 𝑢, 𝑀, 0) ∈ (0[,]+∞)) |
209 | 207, 48, 208 | sylancl 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → if(𝑥 ∈ 𝑢, 𝑀, 0) ∈ (0[,]+∞)) |
210 | 209 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝑢, 𝑀, 0) ∈ (0[,]+∞)) |
211 | 210 | fmpttd 6982 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, 𝑀,
0)):ℝ⟶(0[,]+∞)) |
212 | | eldifn 4062 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))) → ¬ 𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞))) |
213 | 212 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞)))) → ¬ 𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞))) |
214 | | difssd 4067 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))) ⊆ 𝑢) |
215 | 214 | sselda 3921 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞)))) → 𝑥 ∈ 𝑢) |
216 | 34, 169 | syldan 591 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ 𝑢) → (¬ (𝐹‘𝑥) ≤ 𝑀 ↔ 𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)))) |
217 | 215, 216 | syldan 591 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞)))) → (¬ (𝐹‘𝑥) ≤ 𝑀 ↔ 𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)))) |
218 | 217 | con1bid 356 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞)))) → (¬ 𝑥 ∈ (◡𝐹 “ (𝑀(,)+∞)) ↔ (𝐹‘𝑥) ≤ 𝑀)) |
219 | 213, 218 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞)))) → (𝐹‘𝑥) ≤ 𝑀) |
220 | | iftrue 4466 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))) → if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) = (𝐹‘𝑥)) |
221 | 220 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) = (𝐹‘𝑥)) |
222 | 215 | iftrued 4468 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ 𝑢, 𝑀, 0) = 𝑀) |
223 | 219, 221,
222 | 3brtr4d 5106 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ if(𝑥 ∈ 𝑢, 𝑀, 0)) |
224 | | iffalse 4469 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))) → if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) = 0) |
225 | 224 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ ¬ 𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) = 0) |
226 | | 0le0 12062 |
. . . . . . . . . . . . . . . 16
⊢ 0 ≤
0 |
227 | | breq2 5078 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 = if(𝑥 ∈ 𝑢, 𝑀, 0) → (0 ≤ 𝑀 ↔ 0 ≤ if(𝑥 ∈ 𝑢, 𝑀, 0))) |
228 | | breq2 5078 |
. . . . . . . . . . . . . . . . 17
⊢ (0 =
if(𝑥 ∈ 𝑢, 𝑀, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥 ∈ 𝑢, 𝑀, 0))) |
229 | 227, 228 | ifboth 4499 |
. . . . . . . . . . . . . . . 16
⊢ ((0 ≤
𝑀 ∧ 0 ≤ 0) → 0
≤ if(𝑥 ∈ 𝑢, 𝑀, 0)) |
230 | 205, 226,
229 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 0 ≤ if(𝑥 ∈ 𝑢, 𝑀, 0)) |
231 | 230 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ ¬ 𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞)))) → 0 ≤ if(𝑥 ∈ 𝑢, 𝑀, 0)) |
232 | 225, 231 | eqbrtrd 5096 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ ¬ 𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ if(𝑥 ∈ 𝑢, 𝑀, 0)) |
233 | 223, 232 | pm2.61dan 810 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ if(𝑥 ∈ 𝑢, 𝑀, 0)) |
234 | 233 | ralrimivw 3114 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ if(𝑥 ∈ 𝑢, 𝑀, 0)) |
235 | | eqidd 2739 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, 𝑀, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, 𝑀, 0))) |
236 | 64, 74, 210, 81, 235 | ofrfval2 7545 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, 𝑀, 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0) ≤ if(𝑥 ∈ 𝑢, 𝑀, 0))) |
237 | 234, 236 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, 𝑀, 0))) |
238 | | itg2le 24892 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ 𝑢, 𝑀, 0)):ℝ⟶(0[,]+∞) ∧
(𝑥 ∈ ℝ ↦
if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, 𝑀, 0))) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, 𝑀, 0)))) |
239 | 75, 211, 237, 238 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, 𝑀, 0)))) |
240 | | elrege0 13174 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (0[,)+∞) ↔
(𝑀 ∈ ℝ ∧ 0
≤ 𝑀)) |
241 | 187, 205,
240 | sylanbrc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ (0[,)+∞)) |
242 | | itg2const 24893 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ dom vol ∧
(vol‘𝑢) ∈
ℝ ∧ 𝑀 ∈
(0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, 𝑀, 0))) = (𝑀 · (vol‘𝑢))) |
243 | 6, 200, 241, 242 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, 𝑀, 0))) = (𝑀 · (vol‘𝑢))) |
244 | 239, 243 | breqtrd 5100 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) ≤ (𝑀 · (vol‘𝑢))) |
245 | 203 | nngt0d 12010 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 0 < 𝑀) |
246 | | ltmuldiv2 11837 |
. . . . . . . . . 10
⊢
(((vol‘𝑢)
∈ ℝ ∧ (𝐶 /
2) ∈ ℝ ∧ (𝑀
∈ ℝ ∧ 0 < 𝑀)) → ((𝑀 · (vol‘𝑢)) < (𝐶 / 2) ↔ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) |
247 | 200, 91, 187, 245, 246 | syl112anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑀 · (vol‘𝑢)) < (𝐶 / 2) ↔ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) |
248 | 195, 247 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑀 · (vol‘𝑢)) < (𝐶 / 2)) |
249 | 87, 201, 91, 244, 248 | lelttrd 11121 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) < (𝐶 / 2)) |
250 | 72, 87, 91, 91, 186, 249 | lt2addd 11586 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (◡𝐹 “ (𝑀(,)+∞))), (𝐹‘𝑥), 0)))) < ((𝐶 / 2) + (𝐶 / 2))) |
251 | 88, 250 | eqbrtrd 5096 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) < ((𝐶 / 2) + (𝐶 / 2))) |
252 | 89 | rpcnd 12762 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐶 ∈ ℂ) |
253 | 252 | 2halvesd 12207 |
. . . . 5
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐶 / 2) + (𝐶 / 2)) = 𝐶) |
254 | 251, 253 | breqtrd 5100 |
. . . 4
⊢ ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶) |
255 | 254 | expr 457 |
. . 3
⊢ ((𝜑 ∧ 𝑢 ∈ dom vol) → ((vol‘𝑢) < ((𝐶 / 2) / 𝑀) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶)) |
256 | 255 | ralrimiva 3113 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ dom vol((vol‘𝑢) < ((𝐶 / 2) / 𝑀) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶)) |
257 | | breq2 5078 |
. . 3
⊢ (𝑑 = ((𝐶 / 2) / 𝑀) → ((vol‘𝑢) < 𝑑 ↔ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) |
258 | 257 | rspceaimv 3565 |
. 2
⊢ ((((𝐶 / 2) / 𝑀) ∈ ℝ+ ∧
∀𝑢 ∈ dom
vol((vol‘𝑢) <
((𝐶 / 2) / 𝑀) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶)) → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶)) |
259 | 5, 256, 258 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝑢, (𝐹‘𝑥), 0))) < 𝐶)) |