MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cnlem2 Structured version   Visualization version   GIF version

Theorem itg2cnlem2 24366
Description: Lemma for itgcn 24446. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
itg2cn.1 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2cn.2 (𝜑𝐹 ∈ MblFn)
itg2cn.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2cn.4 (𝜑𝐶 ∈ ℝ+)
itg2cn.5 (𝜑𝑀 ∈ ℕ)
itg2cn.6 (𝜑 → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
Assertion
Ref Expression
itg2cnlem2 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Distinct variable groups:   𝑢,𝑑,𝑥,𝐶   𝐹,𝑑,𝑢,𝑥   𝜑,𝑢,𝑥   𝑀,𝑑,𝑢,𝑥
Allowed substitution hint:   𝜑(𝑑)

Proof of Theorem itg2cnlem2
StepHypRef Expression
1 itg2cn.4 . . . 4 (𝜑𝐶 ∈ ℝ+)
21rphalfcld 12446 . . 3 (𝜑 → (𝐶 / 2) ∈ ℝ+)
3 itg2cn.5 . . . 4 (𝜑𝑀 ∈ ℕ)
43nnrpd 12432 . . 3 (𝜑𝑀 ∈ ℝ+)
52, 4rpdivcld 12451 . 2 (𝜑 → ((𝐶 / 2) / 𝑀) ∈ ℝ+)
6 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑢 ∈ dom vol)
7 itg2cn.2 . . . . . . . . . 10 (𝜑𝐹 ∈ MblFn)
87adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹 ∈ MblFn)
9 itg2cn.1 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶(0[,)+∞))
10 rge0ssre 12847 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
11 fss 6530 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
129, 10, 11sylancl 588 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
1312adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹:ℝ⟶ℝ)
14 mbfima 24234 . . . . . . . . 9 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (𝑀(,)+∞)) ∈ dom vol)
158, 13, 14syl2anc 586 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐹 “ (𝑀(,)+∞)) ∈ dom vol)
16 inmbl 24146 . . . . . . . 8 ((𝑢 ∈ dom vol ∧ (𝐹 “ (𝑀(,)+∞)) ∈ dom vol) → (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
176, 15, 16syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
18 difmbl 24147 . . . . . . . 8 ((𝑢 ∈ dom vol ∧ (𝐹 “ (𝑀(,)+∞)) ∈ dom vol) → (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
196, 15, 18syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
20 inass 4199 . . . . . . . . . . 11 ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) = (𝑢 ∩ ((𝐹 “ (𝑀(,)+∞)) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))))
21 disjdif 4424 . . . . . . . . . . . 12 ((𝐹 “ (𝑀(,)+∞)) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) = ∅
2221ineq2i 4189 . . . . . . . . . . 11 (𝑢 ∩ ((𝐹 “ (𝑀(,)+∞)) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))) = (𝑢 ∩ ∅)
23 in0 4348 . . . . . . . . . . 11 (𝑢 ∩ ∅) = ∅
2420, 22, 233eqtri 2851 . . . . . . . . . 10 ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) = ∅
2524fveq2i 6676 . . . . . . . . 9 (vol*‘((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))) = (vol*‘∅)
26 ovol0 24097 . . . . . . . . 9 (vol*‘∅) = 0
2725, 26eqtri 2847 . . . . . . . 8 (vol*‘((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))) = 0
2827a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))) = 0)
29 inundif 4430 . . . . . . . . 9 ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∪ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) = 𝑢
3029eqcomi 2833 . . . . . . . 8 𝑢 = ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∪ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))
3130a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑢 = ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∪ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))))
32 mblss 24135 . . . . . . . . . 10 (𝑢 ∈ dom vol → 𝑢 ⊆ ℝ)
336, 32syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑢 ⊆ ℝ)
3433sselda 3970 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥𝑢) → 𝑥 ∈ ℝ)
359adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹:ℝ⟶(0[,)+∞))
3635ffvelrnda 6854 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
37 elrege0 12845 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
3836, 37sylib 220 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
3938simpld 497 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
4039rexrd 10694 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ*)
4138simprd 498 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
42 elxrge0 12848 . . . . . . . . 9 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
4340, 41, 42sylanbrc 585 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
4434, 43syldan 593 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥𝑢) → (𝐹𝑥) ∈ (0[,]+∞))
45 eqid 2824 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))
46 eqid 2824 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))
47 eqid 2824 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))
48 0e0iccpnf 12850 . . . . . . . . . 10 0 ∈ (0[,]+∞)
49 ifcl 4514 . . . . . . . . . 10 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
5043, 48, 49sylancl 588 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
5150fmpttd 6882 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
52 itg2cn.3 . . . . . . . . 9 (𝜑 → (∫2𝐹) ∈ ℝ)
5352adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2𝐹) ∈ ℝ)
54 icossicc 12827 . . . . . . . . . 10 (0[,)+∞) ⊆ (0[,]+∞)
55 fss 6530 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
5635, 54, 55sylancl 588 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹:ℝ⟶(0[,]+∞))
5739leidd 11209 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ≤ (𝐹𝑥))
58 breq1 5072 . . . . . . . . . . . . 13 ((𝐹𝑥) = if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
59 breq1 5072 . . . . . . . . . . . . 13 (0 = if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
6058, 59ifboth 4508 . . . . . . . . . . . 12 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
6157, 41, 60syl2anc 586 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
6261ralrimiva 3185 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
63 reex 10631 . . . . . . . . . . . 12 ℝ ∈ V
6463a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ℝ ∈ V)
65 eqidd 2825 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))
6635feqmptd 6736 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
6764, 50, 39, 65, 66ofrfval2 7430 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
6862, 67mpbird 259 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹)
69 itg2le 24343 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
7051, 56, 68, 69syl3anc 1367 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
71 itg2lecl 24342 . . . . . . . 8 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (∫2𝐹) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
7251, 53, 70, 71syl3anc 1367 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
73 ifcl 4514 . . . . . . . . . 10 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
7443, 48, 73sylancl 588 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
7574fmpttd 6882 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
76 breq1 5072 . . . . . . . . . . . . 13 ((𝐹𝑥) = if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
77 breq1 5072 . . . . . . . . . . . . 13 (0 = if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
7876, 77ifboth 4508 . . . . . . . . . . . 12 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
7957, 41, 78syl2anc 586 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
8079ralrimiva 3185 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
81 eqidd 2825 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))
8264, 74, 39, 81, 66ofrfval2 7430 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
8380, 82mpbird 259 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹)
84 itg2le 24343 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
8575, 56, 83, 84syl3anc 1367 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
86 itg2lecl 24342 . . . . . . . 8 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (∫2𝐹) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
8775, 53, 85, 86syl3anc 1367 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
8817, 19, 28, 31, 44, 45, 46, 47, 72, 87itg2split 24353 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
891adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐶 ∈ ℝ+)
9089rphalfcld 12446 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐶 / 2) ∈ ℝ+)
9190rpred 12434 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐶 / 2) ∈ ℝ)
92 ifcl 4514 . . . . . . . . . . 11 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ∈ (0[,]+∞))
9343, 48, 92sylancl 588 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ∈ (0[,]+∞))
9493fmpttd 6882 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
95 breq1 5072 . . . . . . . . . . . . . 14 ((𝐹𝑥) = if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
96 breq1 5072 . . . . . . . . . . . . . 14 (0 = if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
9795, 96ifboth 4508 . . . . . . . . . . . . 13 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥))
9857, 41, 97syl2anc 586 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥))
9998ralrimiva 3185 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥))
100 eqidd 2825 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)))
10164, 93, 43, 100, 66ofrfval2 7430 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
10299, 101mpbird 259 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) ∘r𝐹)
103 itg2le 24343 . . . . . . . . . 10 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ≤ (∫2𝐹))
10494, 56, 102, 103syl3anc 1367 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ≤ (∫2𝐹))
105 itg2lecl 24342 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (∫2𝐹) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ≤ (∫2𝐹)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ∈ ℝ)
10694, 53, 104, 105syl3anc 1367 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ∈ ℝ)
107 0red 10647 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℝ)
108 elinel2 4176 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) → 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)))
109108a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) → 𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
110 ifle 12593 . . . . . . . . . . . 12 ((((𝐹𝑥) ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)) ∧ (𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) → 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))
11139, 107, 41, 109, 110syl31anc 1369 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))
112111ralrimiva 3185 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))
11364, 50, 93, 65, 100ofrfval2 7430 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)))
114112, 113mpbird 259 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)))
115 itg2le 24343 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))))
11651, 94, 114, 115syl3anc 1367 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))))
11766fveq2d 6677 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2𝐹) = (∫2‘(𝑥 ∈ ℝ ↦ (𝐹𝑥))))
118 cmmbl 24138 . . . . . . . . . . . . 13 ((𝐹 “ (𝑀(,)+∞)) ∈ dom vol → (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
11915, 118syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
120 disjdif 4424 . . . . . . . . . . . . . . 15 ((𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (𝐹 “ (𝑀(,)+∞)))) = ∅
121120fveq2i 6676 . . . . . . . . . . . . . 14 (vol*‘((𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))))) = (vol*‘∅)
122121, 26eqtri 2847 . . . . . . . . . . . . 13 (vol*‘((𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))))) = 0
123122a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘((𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))))) = 0)
124 undif2 4428 . . . . . . . . . . . . 13 ((𝐹 “ (𝑀(,)+∞)) ∪ (ℝ ∖ (𝐹 “ (𝑀(,)+∞)))) = ((𝐹 “ (𝑀(,)+∞)) ∪ ℝ)
125 mblss 24135 . . . . . . . . . . . . . . 15 ((𝐹 “ (𝑀(,)+∞)) ∈ dom vol → (𝐹 “ (𝑀(,)+∞)) ⊆ ℝ)
12615, 125syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐹 “ (𝑀(,)+∞)) ⊆ ℝ)
127 ssequn1 4159 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑀(,)+∞)) ⊆ ℝ ↔ ((𝐹 “ (𝑀(,)+∞)) ∪ ℝ) = ℝ)
128126, 127sylib 220 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐹 “ (𝑀(,)+∞)) ∪ ℝ) = ℝ)
129124, 128syl5req 2872 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ℝ = ((𝐹 “ (𝑀(,)+∞)) ∪ (ℝ ∖ (𝐹 “ (𝑀(,)+∞)))))
130 eqid 2824 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))
131 eqid 2824 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))
132 iftrue 4476 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → if(𝑥 ∈ ℝ, (𝐹𝑥), 0) = (𝐹𝑥))
133132mpteq2ia 5160 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ℝ, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ (𝐹𝑥))
134133eqcomi 2833 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ (𝐹𝑥)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ℝ, (𝐹𝑥), 0))
135 ifcl 4514 . . . . . . . . . . . . . . 15 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
13643, 48, 135sylancl 588 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
137136fmpttd 6882 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
138 breq1 5072 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) = if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
139 breq1 5072 . . . . . . . . . . . . . . . . . 18 (0 = if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
140138, 139ifboth 4508 . . . . . . . . . . . . . . . . 17 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
14157, 41, 140syl2anc 586 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
142141ralrimiva 3185 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
143 eqidd 2825 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))
14464, 136, 43, 143, 66ofrfval2 7430 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
145142, 144mpbird 259 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹)
146 itg2le 24343 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
147137, 56, 145, 146syl3anc 1367 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
148 itg2lecl 24342 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (∫2𝐹) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
149137, 53, 147, 148syl3anc 1367 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
15015, 119, 123, 129, 43, 130, 131, 134, 106, 149itg2split 24353 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ (𝐹𝑥))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
151117, 150eqtrd 2859 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2𝐹) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
152 eldif 3949 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
153152baib 538 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ↔ ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
154153adantl 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ↔ ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
1559ffnd 6518 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 Fn ℝ)
156155ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn ℝ)
157 elpreima 6831 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ (𝑀(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (𝑀(,)+∞))))
158156, 157syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (𝑀(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (𝑀(,)+∞))))
15939biantrurd 535 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑀 < (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑀 < (𝐹𝑥))))
1603nnred 11656 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℝ)
161160ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℝ)
162161rexrd 10694 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℝ*)
163 elioopnf 12834 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℝ* → ((𝐹𝑥) ∈ (𝑀(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑀 < (𝐹𝑥))))
164162, 163syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (𝑀(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑀 < (𝐹𝑥))))
165 simpr 487 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
166165biantrurd 535 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (𝑀(,)+∞) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (𝑀(,)+∞))))
167159, 164, 1663bitr2d 309 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑀 < (𝐹𝑥) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (𝑀(,)+∞))))
168161, 39ltnled 10790 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑀 < (𝐹𝑥) ↔ ¬ (𝐹𝑥) ≤ 𝑀))
169158, 167, 1683bitr2rd 310 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (¬ (𝐹𝑥) ≤ 𝑀𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
170169con1bid 358 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)) ↔ (𝐹𝑥) ≤ 𝑀))
171154, 170bitrd 281 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ↔ (𝐹𝑥) ≤ 𝑀))
172171ifbid 4492 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))
173172mpteq2dva 5164 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0)))
174173fveq2d 6677 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))))
175 itg2cn.6 . . . . . . . . . . . . . 14 (𝜑 → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
176175adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
177174, 176eqnbrtrd 5087 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
17853, 91resubcld 11071 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ)
179178, 149ltnled 10790 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (((∫2𝐹) − (𝐶 / 2)) < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ↔ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
180177, 179mpbird 259 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2𝐹) − (𝐶 / 2)) < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))))
18153, 91, 149ltsubadd2d 11241 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (((∫2𝐹) − (𝐶 / 2)) < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ↔ (∫2𝐹) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))))))
182180, 181mpbid 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2𝐹) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
183151, 182eqbrtrrd 5093 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
184106, 91, 149ltadd1d 11236 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) < (𝐶 / 2) ↔ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))))))
185183, 184mpbird 259 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) < (𝐶 / 2))
18672, 106, 91, 116, 185lelttrd 10801 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) < (𝐶 / 2))
187160adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℝ)
188 mblvol 24134 . . . . . . . . . . 11 (𝑢 ∈ dom vol → (vol‘𝑢) = (vol*‘𝑢))
1896, 188syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol‘𝑢) = (vol*‘𝑢))
1905rpred 12434 . . . . . . . . . . . 12 (𝜑 → ((𝐶 / 2) / 𝑀) ∈ ℝ)
191190adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐶 / 2) / 𝑀) ∈ ℝ)
192 ovolcl 24082 . . . . . . . . . . . . 13 (𝑢 ⊆ ℝ → (vol*‘𝑢) ∈ ℝ*)
19333, 192syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) ∈ ℝ*)
194191rexrd 10694 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐶 / 2) / 𝑀) ∈ ℝ*)
195 simprr 771 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol‘𝑢) < ((𝐶 / 2) / 𝑀))
196189, 195eqbrtrrd 5093 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) < ((𝐶 / 2) / 𝑀))
197193, 194, 196xrltled 12546 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) ≤ ((𝐶 / 2) / 𝑀))
198 ovollecl 24087 . . . . . . . . . . 11 ((𝑢 ⊆ ℝ ∧ ((𝐶 / 2) / 𝑀) ∈ ℝ ∧ (vol*‘𝑢) ≤ ((𝐶 / 2) / 𝑀)) → (vol*‘𝑢) ∈ ℝ)
19933, 191, 197, 198syl3anc 1367 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) ∈ ℝ)
200189, 199eqeltrd 2916 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol‘𝑢) ∈ ℝ)
201187, 200remulcld 10674 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑀 · (vol‘𝑢)) ∈ ℝ)
202187rexrd 10694 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℝ*)
2033adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℕ)
204203nnnn0d 11958 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℕ0)
205204nn0ge0d 11961 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 0 ≤ 𝑀)
206 elxrge0 12848 . . . . . . . . . . . . . 14 (𝑀 ∈ (0[,]+∞) ↔ (𝑀 ∈ ℝ* ∧ 0 ≤ 𝑀))
207202, 205, 206sylanbrc 585 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ (0[,]+∞))
208 ifcl 4514 . . . . . . . . . . . . 13 ((𝑀 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥𝑢, 𝑀, 0) ∈ (0[,]+∞))
209207, 48, 208sylancl 588 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → if(𝑥𝑢, 𝑀, 0) ∈ (0[,]+∞))
210209adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑢, 𝑀, 0) ∈ (0[,]+∞))
211210fmpttd 6882 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)):ℝ⟶(0[,]+∞))
212 eldifn 4107 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) → ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)))
213212adantl 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)))
214 difssd 4112 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) ⊆ 𝑢)
215214sselda 3970 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → 𝑥𝑢)
21634, 169syldan 593 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥𝑢) → (¬ (𝐹𝑥) ≤ 𝑀𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
217215, 216syldan 593 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → (¬ (𝐹𝑥) ≤ 𝑀𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
218217con1bid 358 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → (¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)) ↔ (𝐹𝑥) ≤ 𝑀))
219213, 218mpbid 234 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → (𝐹𝑥) ≤ 𝑀)
220 iftrue 4476 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = (𝐹𝑥))
221220adantl 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = (𝐹𝑥))
222215iftrued 4478 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥𝑢, 𝑀, 0) = 𝑀)
223219, 221, 2223brtr4d 5101 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0))
224 iffalse 4479 . . . . . . . . . . . . . . 15 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = 0)
225224adantl 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ ¬ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = 0)
226 0le0 11741 . . . . . . . . . . . . . . . 16 0 ≤ 0
227 breq2 5073 . . . . . . . . . . . . . . . . 17 (𝑀 = if(𝑥𝑢, 𝑀, 0) → (0 ≤ 𝑀 ↔ 0 ≤ if(𝑥𝑢, 𝑀, 0)))
228 breq2 5073 . . . . . . . . . . . . . . . . 17 (0 = if(𝑥𝑢, 𝑀, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥𝑢, 𝑀, 0)))
229227, 228ifboth 4508 . . . . . . . . . . . . . . . 16 ((0 ≤ 𝑀 ∧ 0 ≤ 0) → 0 ≤ if(𝑥𝑢, 𝑀, 0))
230205, 226, 229sylancl 588 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 0 ≤ if(𝑥𝑢, 𝑀, 0))
231230adantr 483 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ ¬ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → 0 ≤ if(𝑥𝑢, 𝑀, 0))
232225, 231eqbrtrd 5091 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ ¬ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0))
233223, 232pm2.61dan 811 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0))
234233ralrimivw 3186 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0))
235 eqidd 2825 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)))
23664, 74, 210, 81, 235ofrfval2 7430 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0)))
237234, 236mpbird 259 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)))
238 itg2le 24343 . . . . . . . . . 10 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))))
23975, 211, 237, 238syl3anc 1367 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))))
240 elrege0 12845 . . . . . . . . . . 11 (𝑀 ∈ (0[,)+∞) ↔ (𝑀 ∈ ℝ ∧ 0 ≤ 𝑀))
241187, 205, 240sylanbrc 585 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ (0[,)+∞))
242 itg2const 24344 . . . . . . . . . 10 ((𝑢 ∈ dom vol ∧ (vol‘𝑢) ∈ ℝ ∧ 𝑀 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))) = (𝑀 · (vol‘𝑢)))
2436, 200, 241, 242syl3anc 1367 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))) = (𝑀 · (vol‘𝑢)))
244239, 243breqtrd 5095 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (𝑀 · (vol‘𝑢)))
245203nngt0d 11689 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 0 < 𝑀)
246 ltmuldiv2 11517 . . . . . . . . . 10 (((vol‘𝑢) ∈ ℝ ∧ (𝐶 / 2) ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → ((𝑀 · (vol‘𝑢)) < (𝐶 / 2) ↔ (vol‘𝑢) < ((𝐶 / 2) / 𝑀)))
247200, 91, 187, 245, 246syl112anc 1370 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑀 · (vol‘𝑢)) < (𝐶 / 2) ↔ (vol‘𝑢) < ((𝐶 / 2) / 𝑀)))
248195, 247mpbird 259 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑀 · (vol‘𝑢)) < (𝐶 / 2))
24987, 201, 91, 244, 248lelttrd 10801 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) < (𝐶 / 2))
25072, 87, 91, 91, 186, 249lt2addd 11266 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))) < ((𝐶 / 2) + (𝐶 / 2)))
25188, 250eqbrtrd 5091 . . . . 5 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < ((𝐶 / 2) + (𝐶 / 2)))
25289rpcnd 12436 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐶 ∈ ℂ)
2532522halvesd 11886 . . . . 5 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐶 / 2) + (𝐶 / 2)) = 𝐶)
254251, 253breqtrd 5095 . . . 4 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶)
255254expr 459 . . 3 ((𝜑𝑢 ∈ dom vol) → ((vol‘𝑢) < ((𝐶 / 2) / 𝑀) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
256255ralrimiva 3185 . 2 (𝜑 → ∀𝑢 ∈ dom vol((vol‘𝑢) < ((𝐶 / 2) / 𝑀) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
257 breq2 5073 . . 3 (𝑑 = ((𝐶 / 2) / 𝑀) → ((vol‘𝑢) < 𝑑 ↔ (vol‘𝑢) < ((𝐶 / 2) / 𝑀)))
258257rspceaimv 3631 . 2 ((((𝐶 / 2) / 𝑀) ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((vol‘𝑢) < ((𝐶 / 2) / 𝑀) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶)) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
2595, 256, 258syl2anc 586 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3141  wrex 3142  Vcvv 3497  cdif 3936  cun 3937  cin 3938  wss 3939  c0 4294  ifcif 4470   class class class wbr 5069  cmpt 5149  ccnv 5557  dom cdm 5558  cima 5561   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7159  r cofr 7411  cr 10539  0cc0 10540   + caddc 10543   · cmul 10545  +∞cpnf 10675  *cxr 10677   < clt 10678  cle 10679  cmin 10873   / cdiv 11300  cn 11641  2c2 11695  +crp 12392  (,)cioo 12741  [,)cico 12743  [,]cicc 12744  vol*covol 24066  volcvol 24067  MblFncmbf 24218  2citg2 24220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-disj 5035  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-ofr 7413  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-rest 16699  df-topgen 16720  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-top 21505  df-topon 21522  df-bases 21557  df-cmp 21998  df-ovol 24068  df-vol 24069  df-mbf 24223  df-itg1 24224  df-itg2 24225  df-0p 24274
This theorem is referenced by:  itg2cn  24367
  Copyright terms: Public domain W3C validator