MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cnlem2 Structured version   Visualization version   GIF version

Theorem itg2cnlem2 25679
Description: Lemma for itgcn 25761. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
itg2cn.1 (πœ‘ β†’ 𝐹:β„βŸΆ(0[,)+∞))
itg2cn.2 (πœ‘ β†’ 𝐹 ∈ MblFn)
itg2cn.3 (πœ‘ β†’ (∫2β€˜πΉ) ∈ ℝ)
itg2cn.4 (πœ‘ β†’ 𝐢 ∈ ℝ+)
itg2cn.5 (πœ‘ β†’ 𝑀 ∈ β„•)
itg2cn.6 (πœ‘ β†’ Β¬ (∫2β€˜(π‘₯ ∈ ℝ ↦ if((πΉβ€˜π‘₯) ≀ 𝑀, (πΉβ€˜π‘₯), 0))) ≀ ((∫2β€˜πΉ) βˆ’ (𝐢 / 2)))
Assertion
Ref Expression
itg2cnlem2 (πœ‘ β†’ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘’ ∈ dom vol((volβ€˜π‘’) < 𝑑 β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, (πΉβ€˜π‘₯), 0))) < 𝐢))
Distinct variable groups:   𝑒,𝑑,π‘₯,𝐢   𝐹,𝑑,𝑒,π‘₯   πœ‘,𝑒,π‘₯   𝑀,𝑑,𝑒,π‘₯
Allowed substitution hint:   πœ‘(𝑑)

Proof of Theorem itg2cnlem2
StepHypRef Expression
1 itg2cn.4 . . . 4 (πœ‘ β†’ 𝐢 ∈ ℝ+)
21rphalfcld 13052 . . 3 (πœ‘ β†’ (𝐢 / 2) ∈ ℝ+)
3 itg2cn.5 . . . 4 (πœ‘ β†’ 𝑀 ∈ β„•)
43nnrpd 13038 . . 3 (πœ‘ β†’ 𝑀 ∈ ℝ+)
52, 4rpdivcld 13057 . 2 (πœ‘ β†’ ((𝐢 / 2) / 𝑀) ∈ ℝ+)
6 simprl 770 . . . . . . . 8 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 𝑒 ∈ dom vol)
7 itg2cn.2 . . . . . . . . . 10 (πœ‘ β†’ 𝐹 ∈ MblFn)
87adantr 480 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 𝐹 ∈ MblFn)
9 itg2cn.1 . . . . . . . . . . 11 (πœ‘ β†’ 𝐹:β„βŸΆ(0[,)+∞))
10 rge0ssre 13457 . . . . . . . . . . 11 (0[,)+∞) βŠ† ℝ
11 fss 6733 . . . . . . . . . . 11 ((𝐹:β„βŸΆ(0[,)+∞) ∧ (0[,)+∞) βŠ† ℝ) β†’ 𝐹:β„βŸΆβ„)
129, 10, 11sylancl 585 . . . . . . . . . 10 (πœ‘ β†’ 𝐹:β„βŸΆβ„)
1312adantr 480 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 𝐹:β„βŸΆβ„)
14 mbfima 25546 . . . . . . . . 9 ((𝐹 ∈ MblFn ∧ 𝐹:β„βŸΆβ„) β†’ (◑𝐹 β€œ (𝑀(,)+∞)) ∈ dom vol)
158, 13, 14syl2anc 583 . . . . . . . 8 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (◑𝐹 β€œ (𝑀(,)+∞)) ∈ dom vol)
16 inmbl 25458 . . . . . . . 8 ((𝑒 ∈ dom vol ∧ (◑𝐹 β€œ (𝑀(,)+∞)) ∈ dom vol) β†’ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))) ∈ dom vol)
176, 15, 16syl2anc 583 . . . . . . 7 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))) ∈ dom vol)
18 difmbl 25459 . . . . . . . 8 ((𝑒 ∈ dom vol ∧ (◑𝐹 β€œ (𝑀(,)+∞)) ∈ dom vol) β†’ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))) ∈ dom vol)
196, 15, 18syl2anc 583 . . . . . . 7 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))) ∈ dom vol)
20 inass 4215 . . . . . . . . . . 11 ((𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))) ∩ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) = (𝑒 ∩ ((◑𝐹 β€œ (𝑀(,)+∞)) ∩ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))))
21 disjdif 4467 . . . . . . . . . . . 12 ((◑𝐹 β€œ (𝑀(,)+∞)) ∩ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) = βˆ…
2221ineq2i 4205 . . . . . . . . . . 11 (𝑒 ∩ ((◑𝐹 β€œ (𝑀(,)+∞)) ∩ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))))) = (𝑒 ∩ βˆ…)
23 in0 4387 . . . . . . . . . . 11 (𝑒 ∩ βˆ…) = βˆ…
2420, 22, 233eqtri 2759 . . . . . . . . . 10 ((𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))) ∩ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) = βˆ…
2524fveq2i 6894 . . . . . . . . 9 (vol*β€˜((𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))) ∩ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))))) = (vol*β€˜βˆ…)
26 ovol0 25409 . . . . . . . . 9 (vol*β€˜βˆ…) = 0
2725, 26eqtri 2755 . . . . . . . 8 (vol*β€˜((𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))) ∩ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))))) = 0
2827a1i 11 . . . . . . 7 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (vol*β€˜((𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))) ∩ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))))) = 0)
29 inundif 4474 . . . . . . . . 9 ((𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))) βˆͺ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) = 𝑒
3029eqcomi 2736 . . . . . . . 8 𝑒 = ((𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))) βˆͺ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))))
3130a1i 11 . . . . . . 7 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 𝑒 = ((𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))) βˆͺ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))))
32 mblss 25447 . . . . . . . . . 10 (𝑒 ∈ dom vol β†’ 𝑒 βŠ† ℝ)
336, 32syl 17 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 𝑒 βŠ† ℝ)
3433sselda 3978 . . . . . . . 8 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ 𝑒) β†’ π‘₯ ∈ ℝ)
359adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 𝐹:β„βŸΆ(0[,)+∞))
3635ffvelcdmda 7088 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜π‘₯) ∈ (0[,)+∞))
37 elrege0 13455 . . . . . . . . . . . 12 ((πΉβ€˜π‘₯) ∈ (0[,)+∞) ↔ ((πΉβ€˜π‘₯) ∈ ℝ ∧ 0 ≀ (πΉβ€˜π‘₯)))
3836, 37sylib 217 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ ((πΉβ€˜π‘₯) ∈ ℝ ∧ 0 ≀ (πΉβ€˜π‘₯)))
3938simpld 494 . . . . . . . . . 10 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜π‘₯) ∈ ℝ)
4039rexrd 11286 . . . . . . . . 9 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜π‘₯) ∈ ℝ*)
4138simprd 495 . . . . . . . . 9 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ 0 ≀ (πΉβ€˜π‘₯))
42 elxrge0 13458 . . . . . . . . 9 ((πΉβ€˜π‘₯) ∈ (0[,]+∞) ↔ ((πΉβ€˜π‘₯) ∈ ℝ* ∧ 0 ≀ (πΉβ€˜π‘₯)))
4340, 41, 42sylanbrc 582 . . . . . . . 8 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜π‘₯) ∈ (0[,]+∞))
4434, 43syldan 590 . . . . . . 7 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ 𝑒) β†’ (πΉβ€˜π‘₯) ∈ (0[,]+∞))
45 eqid 2727 . . . . . . 7 (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) = (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))
46 eqid 2727 . . . . . . 7 (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) = (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))
47 eqid 2727 . . . . . . 7 (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, (πΉβ€˜π‘₯), 0)) = (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, (πΉβ€˜π‘₯), 0))
48 0e0iccpnf 13460 . . . . . . . . . 10 0 ∈ (0[,]+∞)
49 ifcl 4569 . . . . . . . . . 10 (((πΉβ€˜π‘₯) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) β†’ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ∈ (0[,]+∞))
5043, 48, 49sylancl 585 . . . . . . . . 9 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ∈ (0[,]+∞))
5150fmpttd 7119 . . . . . . . 8 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)):β„βŸΆ(0[,]+∞))
52 itg2cn.3 . . . . . . . . 9 (πœ‘ β†’ (∫2β€˜πΉ) ∈ ℝ)
5352adantr 480 . . . . . . . 8 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜πΉ) ∈ ℝ)
54 icossicc 13437 . . . . . . . . . 10 (0[,)+∞) βŠ† (0[,]+∞)
55 fss 6733 . . . . . . . . . 10 ((𝐹:β„βŸΆ(0[,)+∞) ∧ (0[,)+∞) βŠ† (0[,]+∞)) β†’ 𝐹:β„βŸΆ(0[,]+∞))
5635, 54, 55sylancl 585 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 𝐹:β„βŸΆ(0[,]+∞))
5739leidd 11802 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜π‘₯) ≀ (πΉβ€˜π‘₯))
58 breq1 5145 . . . . . . . . . . . . 13 ((πΉβ€˜π‘₯) = if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) β†’ ((πΉβ€˜π‘₯) ≀ (πΉβ€˜π‘₯) ↔ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯)))
59 breq1 5145 . . . . . . . . . . . . 13 (0 = if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) β†’ (0 ≀ (πΉβ€˜π‘₯) ↔ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯)))
6058, 59ifboth 4563 . . . . . . . . . . . 12 (((πΉβ€˜π‘₯) ≀ (πΉβ€˜π‘₯) ∧ 0 ≀ (πΉβ€˜π‘₯)) β†’ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯))
6157, 41, 60syl2anc 583 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯))
6261ralrimiva 3141 . . . . . . . . . 10 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ βˆ€π‘₯ ∈ ℝ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯))
63 reex 11221 . . . . . . . . . . . 12 ℝ ∈ V
6463a1i 11 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ℝ ∈ V)
65 eqidd 2728 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) = (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)))
6635feqmptd 6961 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 𝐹 = (π‘₯ ∈ ℝ ↦ (πΉβ€˜π‘₯)))
6764, 50, 39, 65, 66ofrfval2 7700 . . . . . . . . . 10 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ((π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) ∘r ≀ 𝐹 ↔ βˆ€π‘₯ ∈ ℝ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯)))
6862, 67mpbird 257 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) ∘r ≀ 𝐹)
69 itg2le 25656 . . . . . . . . 9 (((π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)):β„βŸΆ(0[,]+∞) ∧ 𝐹:β„βŸΆ(0[,]+∞) ∧ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) ∘r ≀ 𝐹) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ≀ (∫2β€˜πΉ))
7051, 56, 68, 69syl3anc 1369 . . . . . . . 8 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ≀ (∫2β€˜πΉ))
71 itg2lecl 25655 . . . . . . . 8 (((π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)):β„βŸΆ(0[,]+∞) ∧ (∫2β€˜πΉ) ∈ ℝ ∧ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ≀ (∫2β€˜πΉ)) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ∈ ℝ)
7251, 53, 70, 71syl3anc 1369 . . . . . . 7 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ∈ ℝ)
73 ifcl 4569 . . . . . . . . . 10 (((πΉβ€˜π‘₯) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) β†’ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ∈ (0[,]+∞))
7443, 48, 73sylancl 585 . . . . . . . . 9 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ∈ (0[,]+∞))
7574fmpttd 7119 . . . . . . . 8 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)):β„βŸΆ(0[,]+∞))
76 breq1 5145 . . . . . . . . . . . . 13 ((πΉβ€˜π‘₯) = if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) β†’ ((πΉβ€˜π‘₯) ≀ (πΉβ€˜π‘₯) ↔ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯)))
77 breq1 5145 . . . . . . . . . . . . 13 (0 = if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) β†’ (0 ≀ (πΉβ€˜π‘₯) ↔ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯)))
7876, 77ifboth 4563 . . . . . . . . . . . 12 (((πΉβ€˜π‘₯) ≀ (πΉβ€˜π‘₯) ∧ 0 ≀ (πΉβ€˜π‘₯)) β†’ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯))
7957, 41, 78syl2anc 583 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯))
8079ralrimiva 3141 . . . . . . . . . 10 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ βˆ€π‘₯ ∈ ℝ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯))
81 eqidd 2728 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) = (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)))
8264, 74, 39, 81, 66ofrfval2 7700 . . . . . . . . . 10 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ((π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) ∘r ≀ 𝐹 ↔ βˆ€π‘₯ ∈ ℝ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯)))
8380, 82mpbird 257 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) ∘r ≀ 𝐹)
84 itg2le 25656 . . . . . . . . 9 (((π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)):β„βŸΆ(0[,]+∞) ∧ 𝐹:β„βŸΆ(0[,]+∞) ∧ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) ∘r ≀ 𝐹) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ≀ (∫2β€˜πΉ))
8575, 56, 83, 84syl3anc 1369 . . . . . . . 8 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ≀ (∫2β€˜πΉ))
86 itg2lecl 25655 . . . . . . . 8 (((π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)):β„βŸΆ(0[,]+∞) ∧ (∫2β€˜πΉ) ∈ ℝ ∧ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ≀ (∫2β€˜πΉ)) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ∈ ℝ)
8775, 53, 85, 86syl3anc 1369 . . . . . . 7 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ∈ ℝ)
8817, 19, 28, 31, 44, 45, 46, 47, 72, 87itg2split 25666 . . . . . 6 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, (πΉβ€˜π‘₯), 0))) = ((∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) + (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)))))
891adantr 480 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 𝐢 ∈ ℝ+)
9089rphalfcld 13052 . . . . . . . 8 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (𝐢 / 2) ∈ ℝ+)
9190rpred 13040 . . . . . . 7 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (𝐢 / 2) ∈ ℝ)
92 ifcl 4569 . . . . . . . . . . 11 (((πΉβ€˜π‘₯) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) β†’ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0) ∈ (0[,]+∞))
9343, 48, 92sylancl 585 . . . . . . . . . 10 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0) ∈ (0[,]+∞))
9493fmpttd 7119 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0)):β„βŸΆ(0[,]+∞))
95 breq1 5145 . . . . . . . . . . . . . 14 ((πΉβ€˜π‘₯) = if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0) β†’ ((πΉβ€˜π‘₯) ≀ (πΉβ€˜π‘₯) ↔ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯)))
96 breq1 5145 . . . . . . . . . . . . . 14 (0 = if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0) β†’ (0 ≀ (πΉβ€˜π‘₯) ↔ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯)))
9795, 96ifboth 4563 . . . . . . . . . . . . 13 (((πΉβ€˜π‘₯) ≀ (πΉβ€˜π‘₯) ∧ 0 ≀ (πΉβ€˜π‘₯)) β†’ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯))
9857, 41, 97syl2anc 583 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯))
9998ralrimiva 3141 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ βˆ€π‘₯ ∈ ℝ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯))
100 eqidd 2728 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0)) = (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0)))
10164, 93, 43, 100, 66ofrfval2 7700 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ((π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0)) ∘r ≀ 𝐹 ↔ βˆ€π‘₯ ∈ ℝ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯)))
10299, 101mpbird 257 . . . . . . . . . 10 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0)) ∘r ≀ 𝐹)
103 itg2le 25656 . . . . . . . . . 10 (((π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0)):β„βŸΆ(0[,]+∞) ∧ 𝐹:β„βŸΆ(0[,]+∞) ∧ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0)) ∘r ≀ 𝐹) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))) ≀ (∫2β€˜πΉ))
10494, 56, 102, 103syl3anc 1369 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))) ≀ (∫2β€˜πΉ))
105 itg2lecl 25655 . . . . . . . . 9 (((π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0)):β„βŸΆ(0[,]+∞) ∧ (∫2β€˜πΉ) ∈ ℝ ∧ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))) ≀ (∫2β€˜πΉ)) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))) ∈ ℝ)
10694, 53, 104, 105syl3anc 1369 . . . . . . . 8 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))) ∈ ℝ)
107 0red 11239 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ 0 ∈ ℝ)
108 elinel2 4192 . . . . . . . . . . . . 13 (π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))) β†’ π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)))
109108a1i 11 . . . . . . . . . . . 12 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ (π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))) β†’ π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞))))
110 ifle 13200 . . . . . . . . . . . 12 ((((πΉβ€˜π‘₯) ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ≀ (πΉβ€˜π‘₯)) ∧ (π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))) β†’ π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)))) β†’ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))
11139, 107, 41, 109, 110syl31anc 1371 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))
112111ralrimiva 3141 . . . . . . . . . 10 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ βˆ€π‘₯ ∈ ℝ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))
11364, 50, 93, 65, 100ofrfval2 7700 . . . . . . . . . 10 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ((π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0)) ↔ βˆ€π‘₯ ∈ ℝ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0)))
114112, 113mpbird 257 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0)))
115 itg2le 25656 . . . . . . . . 9 (((π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)):β„βŸΆ(0[,]+∞) ∧ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0)):β„βŸΆ(0[,]+∞) ∧ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ≀ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))))
11651, 94, 114, 115syl3anc 1369 . . . . . . . 8 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ≀ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))))
11766fveq2d 6895 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜πΉ) = (∫2β€˜(π‘₯ ∈ ℝ ↦ (πΉβ€˜π‘₯))))
118 cmmbl 25450 . . . . . . . . . . . . 13 ((◑𝐹 β€œ (𝑀(,)+∞)) ∈ dom vol β†’ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))) ∈ dom vol)
11915, 118syl 17 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))) ∈ dom vol)
120 disjdif 4467 . . . . . . . . . . . . . . 15 ((◑𝐹 β€œ (𝑀(,)+∞)) ∩ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) = βˆ…
121120fveq2i 6894 . . . . . . . . . . . . . 14 (vol*β€˜((◑𝐹 β€œ (𝑀(,)+∞)) ∩ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))))) = (vol*β€˜βˆ…)
122121, 26eqtri 2755 . . . . . . . . . . . . 13 (vol*β€˜((◑𝐹 β€œ (𝑀(,)+∞)) ∩ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))))) = 0
123122a1i 11 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (vol*β€˜((◑𝐹 β€œ (𝑀(,)+∞)) ∩ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))))) = 0)
124 undif2 4472 . . . . . . . . . . . . 13 ((◑𝐹 β€œ (𝑀(,)+∞)) βˆͺ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) = ((◑𝐹 β€œ (𝑀(,)+∞)) βˆͺ ℝ)
125 mblss 25447 . . . . . . . . . . . . . . 15 ((◑𝐹 β€œ (𝑀(,)+∞)) ∈ dom vol β†’ (◑𝐹 β€œ (𝑀(,)+∞)) βŠ† ℝ)
12615, 125syl 17 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (◑𝐹 β€œ (𝑀(,)+∞)) βŠ† ℝ)
127 ssequn1 4176 . . . . . . . . . . . . . 14 ((◑𝐹 β€œ (𝑀(,)+∞)) βŠ† ℝ ↔ ((◑𝐹 β€œ (𝑀(,)+∞)) βˆͺ ℝ) = ℝ)
128126, 127sylib 217 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ((◑𝐹 β€œ (𝑀(,)+∞)) βˆͺ ℝ) = ℝ)
129124, 128eqtr2id 2780 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ℝ = ((◑𝐹 β€œ (𝑀(,)+∞)) βˆͺ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))))
130 eqid 2727 . . . . . . . . . . . 12 (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0)) = (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))
131 eqid 2727 . . . . . . . . . . . 12 (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) = (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))
132 iftrue 4530 . . . . . . . . . . . . . 14 (π‘₯ ∈ ℝ β†’ if(π‘₯ ∈ ℝ, (πΉβ€˜π‘₯), 0) = (πΉβ€˜π‘₯))
133132mpteq2ia 5245 . . . . . . . . . . . . 13 (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ ℝ, (πΉβ€˜π‘₯), 0)) = (π‘₯ ∈ ℝ ↦ (πΉβ€˜π‘₯))
134133eqcomi 2736 . . . . . . . . . . . 12 (π‘₯ ∈ ℝ ↦ (πΉβ€˜π‘₯)) = (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ ℝ, (πΉβ€˜π‘₯), 0))
135 ifcl 4569 . . . . . . . . . . . . . . 15 (((πΉβ€˜π‘₯) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) β†’ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ∈ (0[,]+∞))
13643, 48, 135sylancl 585 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ∈ (0[,]+∞))
137136fmpttd 7119 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)):β„βŸΆ(0[,]+∞))
138 breq1 5145 . . . . . . . . . . . . . . . . . 18 ((πΉβ€˜π‘₯) = if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) β†’ ((πΉβ€˜π‘₯) ≀ (πΉβ€˜π‘₯) ↔ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯)))
139 breq1 5145 . . . . . . . . . . . . . . . . . 18 (0 = if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) β†’ (0 ≀ (πΉβ€˜π‘₯) ↔ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯)))
140138, 139ifboth 4563 . . . . . . . . . . . . . . . . 17 (((πΉβ€˜π‘₯) ≀ (πΉβ€˜π‘₯) ∧ 0 ≀ (πΉβ€˜π‘₯)) β†’ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯))
14157, 41, 140syl2anc 583 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯))
142141ralrimiva 3141 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ βˆ€π‘₯ ∈ ℝ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯))
143 eqidd 2728 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) = (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)))
14464, 136, 43, 143, 66ofrfval2 7700 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ((π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) ∘r ≀ 𝐹 ↔ βˆ€π‘₯ ∈ ℝ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ (πΉβ€˜π‘₯)))
145142, 144mpbird 257 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) ∘r ≀ 𝐹)
146 itg2le 25656 . . . . . . . . . . . . . 14 (((π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)):β„βŸΆ(0[,]+∞) ∧ 𝐹:β„βŸΆ(0[,]+∞) ∧ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) ∘r ≀ 𝐹) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ≀ (∫2β€˜πΉ))
147137, 56, 145, 146syl3anc 1369 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ≀ (∫2β€˜πΉ))
148 itg2lecl 25655 . . . . . . . . . . . . 13 (((π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)):β„βŸΆ(0[,]+∞) ∧ (∫2β€˜πΉ) ∈ ℝ ∧ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ≀ (∫2β€˜πΉ)) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ∈ ℝ)
149137, 53, 147, 148syl3anc 1369 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ∈ ℝ)
15015, 119, 123, 129, 43, 130, 131, 134, 106, 149itg2split 25666 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ (πΉβ€˜π‘₯))) = ((∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))) + (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)))))
151117, 150eqtrd 2767 . . . . . . . . . 10 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜πΉ) = ((∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))) + (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)))))
152 eldif 3954 . . . . . . . . . . . . . . . . . . 19 (π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))) ↔ (π‘₯ ∈ ℝ ∧ Β¬ π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞))))
153152baib 535 . . . . . . . . . . . . . . . . . 18 (π‘₯ ∈ ℝ β†’ (π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))) ↔ Β¬ π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞))))
154153adantl 481 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ (π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))) ↔ Β¬ π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞))))
1559ffnd 6717 . . . . . . . . . . . . . . . . . . . . 21 (πœ‘ β†’ 𝐹 Fn ℝ)
156155ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ 𝐹 Fn ℝ)
157 elpreima 7061 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn ℝ β†’ (π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)) ↔ (π‘₯ ∈ ℝ ∧ (πΉβ€˜π‘₯) ∈ (𝑀(,)+∞))))
158156, 157syl 17 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ (π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)) ↔ (π‘₯ ∈ ℝ ∧ (πΉβ€˜π‘₯) ∈ (𝑀(,)+∞))))
15939biantrurd 532 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ (𝑀 < (πΉβ€˜π‘₯) ↔ ((πΉβ€˜π‘₯) ∈ ℝ ∧ 𝑀 < (πΉβ€˜π‘₯))))
1603nnred 12249 . . . . . . . . . . . . . . . . . . . . . . 23 (πœ‘ β†’ 𝑀 ∈ ℝ)
161160ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ 𝑀 ∈ ℝ)
162161rexrd 11286 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ 𝑀 ∈ ℝ*)
163 elioopnf 13444 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℝ* β†’ ((πΉβ€˜π‘₯) ∈ (𝑀(,)+∞) ↔ ((πΉβ€˜π‘₯) ∈ ℝ ∧ 𝑀 < (πΉβ€˜π‘₯))))
164162, 163syl 17 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ ((πΉβ€˜π‘₯) ∈ (𝑀(,)+∞) ↔ ((πΉβ€˜π‘₯) ∈ ℝ ∧ 𝑀 < (πΉβ€˜π‘₯))))
165 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ π‘₯ ∈ ℝ)
166165biantrurd 532 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ ((πΉβ€˜π‘₯) ∈ (𝑀(,)+∞) ↔ (π‘₯ ∈ ℝ ∧ (πΉβ€˜π‘₯) ∈ (𝑀(,)+∞))))
167159, 164, 1663bitr2d 307 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ (𝑀 < (πΉβ€˜π‘₯) ↔ (π‘₯ ∈ ℝ ∧ (πΉβ€˜π‘₯) ∈ (𝑀(,)+∞))))
168161, 39ltnled 11383 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ (𝑀 < (πΉβ€˜π‘₯) ↔ Β¬ (πΉβ€˜π‘₯) ≀ 𝑀))
169158, 167, 1683bitr2rd 308 . . . . . . . . . . . . . . . . . 18 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ (Β¬ (πΉβ€˜π‘₯) ≀ 𝑀 ↔ π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞))))
170169con1bid 355 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ (Β¬ π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)) ↔ (πΉβ€˜π‘₯) ≀ 𝑀))
171154, 170bitrd 279 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ (π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))) ↔ (πΉβ€˜π‘₯) ≀ 𝑀))
172171ifbid 4547 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) = if((πΉβ€˜π‘₯) ≀ 𝑀, (πΉβ€˜π‘₯), 0))
173172mpteq2dva 5242 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) = (π‘₯ ∈ ℝ ↦ if((πΉβ€˜π‘₯) ≀ 𝑀, (πΉβ€˜π‘₯), 0)))
174173fveq2d 6895 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) = (∫2β€˜(π‘₯ ∈ ℝ ↦ if((πΉβ€˜π‘₯) ≀ 𝑀, (πΉβ€˜π‘₯), 0))))
175 itg2cn.6 . . . . . . . . . . . . . 14 (πœ‘ β†’ Β¬ (∫2β€˜(π‘₯ ∈ ℝ ↦ if((πΉβ€˜π‘₯) ≀ 𝑀, (πΉβ€˜π‘₯), 0))) ≀ ((∫2β€˜πΉ) βˆ’ (𝐢 / 2)))
176175adantr 480 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ Β¬ (∫2β€˜(π‘₯ ∈ ℝ ↦ if((πΉβ€˜π‘₯) ≀ 𝑀, (πΉβ€˜π‘₯), 0))) ≀ ((∫2β€˜πΉ) βˆ’ (𝐢 / 2)))
177174, 176eqnbrtrd 5160 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ Β¬ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ≀ ((∫2β€˜πΉ) βˆ’ (𝐢 / 2)))
17853, 91resubcld 11664 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ((∫2β€˜πΉ) βˆ’ (𝐢 / 2)) ∈ ℝ)
179178, 149ltnled 11383 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (((∫2β€˜πΉ) βˆ’ (𝐢 / 2)) < (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ↔ Β¬ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ≀ ((∫2β€˜πΉ) βˆ’ (𝐢 / 2))))
180177, 179mpbird 257 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ((∫2β€˜πΉ) βˆ’ (𝐢 / 2)) < (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))))
18153, 91, 149ltsubadd2d 11834 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (((∫2β€˜πΉ) βˆ’ (𝐢 / 2)) < (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ↔ (∫2β€˜πΉ) < ((𝐢 / 2) + (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))))))
182180, 181mpbid 231 . . . . . . . . . 10 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜πΉ) < ((𝐢 / 2) + (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)))))
183151, 182eqbrtrrd 5166 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ((∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))) + (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)))) < ((𝐢 / 2) + (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)))))
184106, 91, 149ltadd1d 11829 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ((∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))) < (𝐢 / 2) ↔ ((∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))) + (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)))) < ((𝐢 / 2) + (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (ℝ βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))))))
185183, 184mpbird 257 . . . . . . . 8 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)), (πΉβ€˜π‘₯), 0))) < (𝐢 / 2))
18672, 106, 91, 116, 185lelttrd 11394 . . . . . . 7 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) < (𝐢 / 2))
187160adantr 480 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 𝑀 ∈ ℝ)
188 mblvol 25446 . . . . . . . . . . 11 (𝑒 ∈ dom vol β†’ (volβ€˜π‘’) = (vol*β€˜π‘’))
1896, 188syl 17 . . . . . . . . . 10 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (volβ€˜π‘’) = (vol*β€˜π‘’))
1905rpred 13040 . . . . . . . . . . . 12 (πœ‘ β†’ ((𝐢 / 2) / 𝑀) ∈ ℝ)
191190adantr 480 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ((𝐢 / 2) / 𝑀) ∈ ℝ)
192 ovolcl 25394 . . . . . . . . . . . . 13 (𝑒 βŠ† ℝ β†’ (vol*β€˜π‘’) ∈ ℝ*)
19333, 192syl 17 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (vol*β€˜π‘’) ∈ ℝ*)
194191rexrd 11286 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ((𝐢 / 2) / 𝑀) ∈ ℝ*)
195 simprr 772 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))
196189, 195eqbrtrrd 5166 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (vol*β€˜π‘’) < ((𝐢 / 2) / 𝑀))
197193, 194, 196xrltled 13153 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (vol*β€˜π‘’) ≀ ((𝐢 / 2) / 𝑀))
198 ovollecl 25399 . . . . . . . . . . 11 ((𝑒 βŠ† ℝ ∧ ((𝐢 / 2) / 𝑀) ∈ ℝ ∧ (vol*β€˜π‘’) ≀ ((𝐢 / 2) / 𝑀)) β†’ (vol*β€˜π‘’) ∈ ℝ)
19933, 191, 197, 198syl3anc 1369 . . . . . . . . . 10 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (vol*β€˜π‘’) ∈ ℝ)
200189, 199eqeltrd 2828 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (volβ€˜π‘’) ∈ ℝ)
201187, 200remulcld 11266 . . . . . . . 8 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (𝑀 Β· (volβ€˜π‘’)) ∈ ℝ)
202187rexrd 11286 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 𝑀 ∈ ℝ*)
2033adantr 480 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 𝑀 ∈ β„•)
204203nnnn0d 12554 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 𝑀 ∈ β„•0)
205204nn0ge0d 12557 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 0 ≀ 𝑀)
206 elxrge0 13458 . . . . . . . . . . . . . 14 (𝑀 ∈ (0[,]+∞) ↔ (𝑀 ∈ ℝ* ∧ 0 ≀ 𝑀))
207202, 205, 206sylanbrc 582 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 𝑀 ∈ (0[,]+∞))
208 ifcl 4569 . . . . . . . . . . . . 13 ((𝑀 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) β†’ if(π‘₯ ∈ 𝑒, 𝑀, 0) ∈ (0[,]+∞))
209207, 48, 208sylancl 585 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ if(π‘₯ ∈ 𝑒, 𝑀, 0) ∈ (0[,]+∞))
210209adantr 480 . . . . . . . . . . 11 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ ℝ) β†’ if(π‘₯ ∈ 𝑒, 𝑀, 0) ∈ (0[,]+∞))
211210fmpttd 7119 . . . . . . . . . 10 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, 𝑀, 0)):β„βŸΆ(0[,]+∞))
212 eldifn 4123 . . . . . . . . . . . . . . . 16 (π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))) β†’ Β¬ π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)))
213212adantl 481 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) β†’ Β¬ π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)))
214 difssd 4128 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))) βŠ† 𝑒)
215214sselda 3978 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) β†’ π‘₯ ∈ 𝑒)
21634, 169syldan 590 . . . . . . . . . . . . . . . . 17 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ 𝑒) β†’ (Β¬ (πΉβ€˜π‘₯) ≀ 𝑀 ↔ π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞))))
217215, 216syldan 590 . . . . . . . . . . . . . . . 16 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) β†’ (Β¬ (πΉβ€˜π‘₯) ≀ 𝑀 ↔ π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞))))
218217con1bid 355 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) β†’ (Β¬ π‘₯ ∈ (◑𝐹 β€œ (𝑀(,)+∞)) ↔ (πΉβ€˜π‘₯) ≀ 𝑀))
219213, 218mpbid 231 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) β†’ (πΉβ€˜π‘₯) ≀ 𝑀)
220 iftrue 4530 . . . . . . . . . . . . . . 15 (π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))) β†’ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) = (πΉβ€˜π‘₯))
221220adantl 481 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) β†’ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) = (πΉβ€˜π‘₯))
222215iftrued 4532 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) β†’ if(π‘₯ ∈ 𝑒, 𝑀, 0) = 𝑀)
223219, 221, 2223brtr4d 5174 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) β†’ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ if(π‘₯ ∈ 𝑒, 𝑀, 0))
224 iffalse 4533 . . . . . . . . . . . . . . 15 (Β¬ π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))) β†’ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) = 0)
225224adantl 481 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ Β¬ π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) β†’ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) = 0)
226 0le0 12335 . . . . . . . . . . . . . . . 16 0 ≀ 0
227 breq2 5146 . . . . . . . . . . . . . . . . 17 (𝑀 = if(π‘₯ ∈ 𝑒, 𝑀, 0) β†’ (0 ≀ 𝑀 ↔ 0 ≀ if(π‘₯ ∈ 𝑒, 𝑀, 0)))
228 breq2 5146 . . . . . . . . . . . . . . . . 17 (0 = if(π‘₯ ∈ 𝑒, 𝑀, 0) β†’ (0 ≀ 0 ↔ 0 ≀ if(π‘₯ ∈ 𝑒, 𝑀, 0)))
229227, 228ifboth 4563 . . . . . . . . . . . . . . . 16 ((0 ≀ 𝑀 ∧ 0 ≀ 0) β†’ 0 ≀ if(π‘₯ ∈ 𝑒, 𝑀, 0))
230205, 226, 229sylancl 585 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 0 ≀ if(π‘₯ ∈ 𝑒, 𝑀, 0))
231230adantr 480 . . . . . . . . . . . . . 14 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ Β¬ π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) β†’ 0 ≀ if(π‘₯ ∈ 𝑒, 𝑀, 0))
232225, 231eqbrtrd 5164 . . . . . . . . . . . . 13 (((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) ∧ Β¬ π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞)))) β†’ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ if(π‘₯ ∈ 𝑒, 𝑀, 0))
233223, 232pm2.61dan 812 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ if(π‘₯ ∈ 𝑒, 𝑀, 0))
234233ralrimivw 3145 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ βˆ€π‘₯ ∈ ℝ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ if(π‘₯ ∈ 𝑒, 𝑀, 0))
235 eqidd 2728 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, 𝑀, 0)) = (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, 𝑀, 0)))
23664, 74, 210, 81, 235ofrfval2 7700 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ((π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, 𝑀, 0)) ↔ βˆ€π‘₯ ∈ ℝ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0) ≀ if(π‘₯ ∈ 𝑒, 𝑀, 0)))
237234, 236mpbird 257 . . . . . . . . . 10 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, 𝑀, 0)))
238 itg2le 25656 . . . . . . . . . 10 (((π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)):β„βŸΆ(0[,]+∞) ∧ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, 𝑀, 0)):β„βŸΆ(0[,]+∞) ∧ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)) ∘r ≀ (π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, 𝑀, 0))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ≀ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, 𝑀, 0))))
23975, 211, 237, 238syl3anc 1369 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ≀ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, 𝑀, 0))))
240 elrege0 13455 . . . . . . . . . . 11 (𝑀 ∈ (0[,)+∞) ↔ (𝑀 ∈ ℝ ∧ 0 ≀ 𝑀))
241187, 205, 240sylanbrc 582 . . . . . . . . . 10 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 𝑀 ∈ (0[,)+∞))
242 itg2const 25657 . . . . . . . . . 10 ((𝑒 ∈ dom vol ∧ (volβ€˜π‘’) ∈ ℝ ∧ 𝑀 ∈ (0[,)+∞)) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, 𝑀, 0))) = (𝑀 Β· (volβ€˜π‘’)))
2436, 200, 241, 242syl3anc 1369 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, 𝑀, 0))) = (𝑀 Β· (volβ€˜π‘’)))
244239, 243breqtrd 5168 . . . . . . . 8 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) ≀ (𝑀 Β· (volβ€˜π‘’)))
245203nngt0d 12283 . . . . . . . . . 10 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 0 < 𝑀)
246 ltmuldiv2 12110 . . . . . . . . . 10 (((volβ€˜π‘’) ∈ ℝ ∧ (𝐢 / 2) ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) β†’ ((𝑀 Β· (volβ€˜π‘’)) < (𝐢 / 2) ↔ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀)))
247200, 91, 187, 245, 246syl112anc 1372 . . . . . . . . 9 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ((𝑀 Β· (volβ€˜π‘’)) < (𝐢 / 2) ↔ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀)))
248195, 247mpbird 257 . . . . . . . 8 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (𝑀 Β· (volβ€˜π‘’)) < (𝐢 / 2))
24987, 201, 91, 244, 248lelttrd 11394 . . . . . . 7 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) < (𝐢 / 2))
25072, 87, 91, 91, 186, 249lt2addd 11859 . . . . . 6 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ((∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 ∩ (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0))) + (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ (𝑒 βˆ– (◑𝐹 β€œ (𝑀(,)+∞))), (πΉβ€˜π‘₯), 0)))) < ((𝐢 / 2) + (𝐢 / 2)))
25188, 250eqbrtrd 5164 . . . . 5 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, (πΉβ€˜π‘₯), 0))) < ((𝐢 / 2) + (𝐢 / 2)))
25289rpcnd 13042 . . . . . 6 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ 𝐢 ∈ β„‚)
2532522halvesd 12480 . . . . 5 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ ((𝐢 / 2) + (𝐢 / 2)) = 𝐢)
254251, 253breqtrd 5168 . . . 4 ((πœ‘ ∧ (𝑒 ∈ dom vol ∧ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀))) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, (πΉβ€˜π‘₯), 0))) < 𝐢)
255254expr 456 . . 3 ((πœ‘ ∧ 𝑒 ∈ dom vol) β†’ ((volβ€˜π‘’) < ((𝐢 / 2) / 𝑀) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, (πΉβ€˜π‘₯), 0))) < 𝐢))
256255ralrimiva 3141 . 2 (πœ‘ β†’ βˆ€π‘’ ∈ dom vol((volβ€˜π‘’) < ((𝐢 / 2) / 𝑀) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, (πΉβ€˜π‘₯), 0))) < 𝐢))
257 breq2 5146 . . 3 (𝑑 = ((𝐢 / 2) / 𝑀) β†’ ((volβ€˜π‘’) < 𝑑 ↔ (volβ€˜π‘’) < ((𝐢 / 2) / 𝑀)))
258257rspceaimv 3613 . 2 ((((𝐢 / 2) / 𝑀) ∈ ℝ+ ∧ βˆ€π‘’ ∈ dom vol((volβ€˜π‘’) < ((𝐢 / 2) / 𝑀) β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, (πΉβ€˜π‘₯), 0))) < 𝐢)) β†’ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘’ ∈ dom vol((volβ€˜π‘’) < 𝑑 β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, (πΉβ€˜π‘₯), 0))) < 𝐢))
2595, 256, 258syl2anc 583 1 (πœ‘ β†’ βˆƒπ‘‘ ∈ ℝ+ βˆ€π‘’ ∈ dom vol((volβ€˜π‘’) < 𝑑 β†’ (∫2β€˜(π‘₯ ∈ ℝ ↦ if(π‘₯ ∈ 𝑒, (πΉβ€˜π‘₯), 0))) < 𝐢))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1534   ∈ wcel 2099  βˆ€wral 3056  βˆƒwrex 3065  Vcvv 3469   βˆ– cdif 3941   βˆͺ cun 3942   ∩ cin 3943   βŠ† wss 3944  βˆ…c0 4318  ifcif 4524   class class class wbr 5142   ↦ cmpt 5225  β—‘ccnv 5671  dom cdm 5672   β€œ cima 5675   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7414   ∘r cofr 7678  β„cr 11129  0cc0 11130   + caddc 11133   Β· cmul 11135  +∞cpnf 11267  β„*cxr 11269   < clt 11270   ≀ cle 11271   βˆ’ cmin 11466   / cdiv 11893  β„•cn 12234  2c2 12289  β„+crp 12998  (,)cioo 13348  [,)cico 13350  [,]cicc 13351  vol*covol 25378  volcvol 25379  MblFncmbf 25530  βˆ«2citg2 25532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9656  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208  ax-addf 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-disj 5108  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8838  df-pm 8839  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fi 9426  df-sup 9457  df-inf 9458  df-oi 9525  df-dju 9916  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-q 12955  df-rp 12999  df-xneg 13116  df-xadd 13117  df-xmul 13118  df-ioo 13352  df-ico 13354  df-icc 13355  df-fz 13509  df-fzo 13652  df-fl 13781  df-seq 13991  df-exp 14051  df-hash 14314  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-clim 15456  df-sum 15657  df-rest 17395  df-topgen 17416  df-psmet 21258  df-xmet 21259  df-met 21260  df-bl 21261  df-mopn 21262  df-top 22783  df-topon 22800  df-bases 22836  df-cmp 23278  df-ovol 25380  df-vol 25381  df-mbf 25535  df-itg1 25536  df-itg2 25537  df-0p 25586
This theorem is referenced by:  itg2cn  25680
  Copyright terms: Public domain W3C validator