MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2cnlem2 Structured version   Visualization version   GIF version

Theorem itg2cnlem2 25798
Description: Lemma for itgcn 25881. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
itg2cn.1 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2cn.2 (𝜑𝐹 ∈ MblFn)
itg2cn.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2cn.4 (𝜑𝐶 ∈ ℝ+)
itg2cn.5 (𝜑𝑀 ∈ ℕ)
itg2cn.6 (𝜑 → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
Assertion
Ref Expression
itg2cnlem2 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Distinct variable groups:   𝑢,𝑑,𝑥,𝐶   𝐹,𝑑,𝑢,𝑥   𝜑,𝑢,𝑥   𝑀,𝑑,𝑢,𝑥
Allowed substitution hint:   𝜑(𝑑)

Proof of Theorem itg2cnlem2
StepHypRef Expression
1 itg2cn.4 . . . 4 (𝜑𝐶 ∈ ℝ+)
21rphalfcld 13090 . . 3 (𝜑 → (𝐶 / 2) ∈ ℝ+)
3 itg2cn.5 . . . 4 (𝜑𝑀 ∈ ℕ)
43nnrpd 13076 . . 3 (𝜑𝑀 ∈ ℝ+)
52, 4rpdivcld 13095 . 2 (𝜑 → ((𝐶 / 2) / 𝑀) ∈ ℝ+)
6 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑢 ∈ dom vol)
7 itg2cn.2 . . . . . . . . . 10 (𝜑𝐹 ∈ MblFn)
87adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹 ∈ MblFn)
9 itg2cn.1 . . . . . . . . . . 11 (𝜑𝐹:ℝ⟶(0[,)+∞))
10 rge0ssre 13497 . . . . . . . . . . 11 (0[,)+∞) ⊆ ℝ
11 fss 6751 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
129, 10, 11sylancl 586 . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
1312adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹:ℝ⟶ℝ)
14 mbfima 25666 . . . . . . . . 9 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ (𝑀(,)+∞)) ∈ dom vol)
158, 13, 14syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐹 “ (𝑀(,)+∞)) ∈ dom vol)
16 inmbl 25578 . . . . . . . 8 ((𝑢 ∈ dom vol ∧ (𝐹 “ (𝑀(,)+∞)) ∈ dom vol) → (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
176, 15, 16syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
18 difmbl 25579 . . . . . . . 8 ((𝑢 ∈ dom vol ∧ (𝐹 “ (𝑀(,)+∞)) ∈ dom vol) → (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
196, 15, 18syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
20 inass 4227 . . . . . . . . . . 11 ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) = (𝑢 ∩ ((𝐹 “ (𝑀(,)+∞)) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))))
21 disjdif 4471 . . . . . . . . . . . 12 ((𝐹 “ (𝑀(,)+∞)) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) = ∅
2221ineq2i 4216 . . . . . . . . . . 11 (𝑢 ∩ ((𝐹 “ (𝑀(,)+∞)) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))) = (𝑢 ∩ ∅)
23 in0 4394 . . . . . . . . . . 11 (𝑢 ∩ ∅) = ∅
2420, 22, 233eqtri 2768 . . . . . . . . . 10 ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) = ∅
2524fveq2i 6908 . . . . . . . . 9 (vol*‘((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))) = (vol*‘∅)
26 ovol0 25529 . . . . . . . . 9 (vol*‘∅) = 0
2725, 26eqtri 2764 . . . . . . . 8 (vol*‘((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))) = 0
2827a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∩ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))) = 0)
29 inundif 4478 . . . . . . . . 9 ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∪ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) = 𝑢
3029eqcomi 2745 . . . . . . . 8 𝑢 = ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∪ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))))
3130a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑢 = ((𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) ∪ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))))
32 mblss 25567 . . . . . . . . . 10 (𝑢 ∈ dom vol → 𝑢 ⊆ ℝ)
336, 32syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑢 ⊆ ℝ)
3433sselda 3982 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥𝑢) → 𝑥 ∈ ℝ)
359adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹:ℝ⟶(0[,)+∞))
3635ffvelcdmda 7103 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
37 elrege0 13495 . . . . . . . . . . . 12 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
3836, 37sylib 218 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
3938simpld 494 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
4039rexrd 11312 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ*)
4138simprd 495 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
42 elxrge0 13498 . . . . . . . . 9 ((𝐹𝑥) ∈ (0[,]+∞) ↔ ((𝐹𝑥) ∈ ℝ* ∧ 0 ≤ (𝐹𝑥)))
4340, 41, 42sylanbrc 583 . . . . . . . 8 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,]+∞))
4434, 43syldan 591 . . . . . . 7 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥𝑢) → (𝐹𝑥) ∈ (0[,]+∞))
45 eqid 2736 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))
46 eqid 2736 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))
47 eqid 2736 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))
48 0e0iccpnf 13500 . . . . . . . . . 10 0 ∈ (0[,]+∞)
49 ifcl 4570 . . . . . . . . . 10 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
5043, 48, 49sylancl 586 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
5150fmpttd 7134 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
52 itg2cn.3 . . . . . . . . 9 (𝜑 → (∫2𝐹) ∈ ℝ)
5352adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2𝐹) ∈ ℝ)
54 icossicc 13477 . . . . . . . . . 10 (0[,)+∞) ⊆ (0[,]+∞)
55 fss 6751 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
5635, 54, 55sylancl 586 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹:ℝ⟶(0[,]+∞))
5739leidd 11830 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ≤ (𝐹𝑥))
58 breq1 5145 . . . . . . . . . . . . 13 ((𝐹𝑥) = if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
59 breq1 5145 . . . . . . . . . . . . 13 (0 = if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
6058, 59ifboth 4564 . . . . . . . . . . . 12 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
6157, 41, 60syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
6261ralrimiva 3145 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
63 reex 11247 . . . . . . . . . . . 12 ℝ ∈ V
6463a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ℝ ∈ V)
65 eqidd 2737 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))
6635feqmptd 6976 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
6764, 50, 39, 65, 66ofrfval2 7719 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
6862, 67mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹)
69 itg2le 25775 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
7051, 56, 68, 69syl3anc 1372 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
71 itg2lecl 25774 . . . . . . . 8 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (∫2𝐹) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
7251, 53, 70, 71syl3anc 1372 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
73 ifcl 4570 . . . . . . . . . 10 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
7443, 48, 73sylancl 586 . . . . . . . . 9 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
7574fmpttd 7134 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
76 breq1 5145 . . . . . . . . . . . . 13 ((𝐹𝑥) = if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
77 breq1 5145 . . . . . . . . . . . . 13 (0 = if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
7876, 77ifboth 4564 . . . . . . . . . . . 12 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
7957, 41, 78syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
8079ralrimiva 3145 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
81 eqidd 2737 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))
8264, 74, 39, 81, 66ofrfval2 7719 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
8380, 82mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹)
84 itg2le 25775 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
8575, 56, 83, 84syl3anc 1372 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
86 itg2lecl 25774 . . . . . . . 8 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (∫2𝐹) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
8775, 53, 85, 86syl3anc 1372 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
8817, 19, 28, 31, 44, 45, 46, 47, 72, 87itg2split 25785 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
891adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐶 ∈ ℝ+)
9089rphalfcld 13090 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐶 / 2) ∈ ℝ+)
9190rpred 13078 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐶 / 2) ∈ ℝ)
92 ifcl 4570 . . . . . . . . . . 11 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ∈ (0[,]+∞))
9343, 48, 92sylancl 586 . . . . . . . . . 10 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ∈ (0[,]+∞))
9493fmpttd 7134 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
95 breq1 5145 . . . . . . . . . . . . . 14 ((𝐹𝑥) = if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
96 breq1 5145 . . . . . . . . . . . . . 14 (0 = if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
9795, 96ifboth 4564 . . . . . . . . . . . . 13 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥))
9857, 41, 97syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥))
9998ralrimiva 3145 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥))
100 eqidd 2737 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)))
10164, 93, 43, 100, 66ofrfval2 7719 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
10299, 101mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) ∘r𝐹)
103 itg2le 25775 . . . . . . . . . 10 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ≤ (∫2𝐹))
10494, 56, 102, 103syl3anc 1372 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ≤ (∫2𝐹))
105 itg2lecl 25774 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (∫2𝐹) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ≤ (∫2𝐹)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ∈ ℝ)
10694, 53, 104, 105syl3anc 1372 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) ∈ ℝ)
107 0red 11265 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℝ)
108 elinel2 4201 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) → 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)))
109108a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) → 𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
110 ifle 13240 . . . . . . . . . . . 12 ((((𝐹𝑥) ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ≤ (𝐹𝑥)) ∧ (𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))) → 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))
11139, 107, 41, 109, 110syl31anc 1374 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))
112111ralrimiva 3145 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))
11364, 50, 93, 65, 100ofrfval2 7719 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)))
114112, 113mpbird 257 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)))
115 itg2le 25775 . . . . . . . . 9 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))))
11651, 94, 114, 115syl3anc 1372 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))))
11766fveq2d 6909 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2𝐹) = (∫2‘(𝑥 ∈ ℝ ↦ (𝐹𝑥))))
118 cmmbl 25570 . . . . . . . . . . . . 13 ((𝐹 “ (𝑀(,)+∞)) ∈ dom vol → (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
11915, 118syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ∈ dom vol)
120 disjdif 4471 . . . . . . . . . . . . . . 15 ((𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (𝐹 “ (𝑀(,)+∞)))) = ∅
121120fveq2i 6908 . . . . . . . . . . . . . 14 (vol*‘((𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))))) = (vol*‘∅)
122121, 26eqtri 2764 . . . . . . . . . . . . 13 (vol*‘((𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))))) = 0
123122a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘((𝐹 “ (𝑀(,)+∞)) ∩ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))))) = 0)
124 undif2 4476 . . . . . . . . . . . . 13 ((𝐹 “ (𝑀(,)+∞)) ∪ (ℝ ∖ (𝐹 “ (𝑀(,)+∞)))) = ((𝐹 “ (𝑀(,)+∞)) ∪ ℝ)
125 mblss 25567 . . . . . . . . . . . . . . 15 ((𝐹 “ (𝑀(,)+∞)) ∈ dom vol → (𝐹 “ (𝑀(,)+∞)) ⊆ ℝ)
12615, 125syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝐹 “ (𝑀(,)+∞)) ⊆ ℝ)
127 ssequn1 4185 . . . . . . . . . . . . . 14 ((𝐹 “ (𝑀(,)+∞)) ⊆ ℝ ↔ ((𝐹 “ (𝑀(,)+∞)) ∪ ℝ) = ℝ)
128126, 127sylib 218 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐹 “ (𝑀(,)+∞)) ∪ ℝ) = ℝ)
129124, 128eqtr2id 2789 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ℝ = ((𝐹 “ (𝑀(,)+∞)) ∪ (ℝ ∖ (𝐹 “ (𝑀(,)+∞)))))
130 eqid 2736 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))
131 eqid 2736 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))
132 iftrue 4530 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → if(𝑥 ∈ ℝ, (𝐹𝑥), 0) = (𝐹𝑥))
133132mpteq2ia 5244 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ℝ, (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ (𝐹𝑥))
134133eqcomi 2745 . . . . . . . . . . . 12 (𝑥 ∈ ℝ ↦ (𝐹𝑥)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ ℝ, (𝐹𝑥), 0))
135 ifcl 4570 . . . . . . . . . . . . . . 15 (((𝐹𝑥) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
13643, 48, 135sylancl 586 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ∈ (0[,]+∞))
137136fmpttd 7134 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞))
138 breq1 5145 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) = if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → ((𝐹𝑥) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
139 breq1 5145 . . . . . . . . . . . . . . . . . 18 (0 = if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
140138, 139ifboth 4564 . . . . . . . . . . . . . . . . 17 (((𝐹𝑥) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
14157, 41, 140syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
142141ralrimiva 3145 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥))
143 eqidd 2737 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))
14464, 136, 43, 143, 66ofrfval2 7719 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ (𝐹𝑥)))
145142, 144mpbird 257 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹)
146 itg2le 25775 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
147137, 56, 145, 146syl3anc 1372 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹))
148 itg2lecl 25774 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (∫2𝐹) ∈ ℝ ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2𝐹)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
149137, 53, 147, 148syl3anc 1372 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ∈ ℝ)
15015, 119, 123, 129, 43, 130, 131, 134, 106, 149itg2split 25785 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ (𝐹𝑥))) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
151117, 150eqtrd 2776 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2𝐹) = ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
152 eldif 3960 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
153152baib 535 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ↔ ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
154153adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ↔ ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
1559ffnd 6736 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 Fn ℝ)
156155ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝐹 Fn ℝ)
157 elpreima 7077 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ (𝑀(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (𝑀(,)+∞))))
158156, 157syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (𝐹 “ (𝑀(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (𝑀(,)+∞))))
15939biantrurd 532 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑀 < (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑀 < (𝐹𝑥))))
1603nnred 12282 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℝ)
161160ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℝ)
162161rexrd 11312 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝑀 ∈ ℝ*)
163 elioopnf 13484 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℝ* → ((𝐹𝑥) ∈ (𝑀(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑀 < (𝐹𝑥))))
164162, 163syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (𝑀(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝑀 < (𝐹𝑥))))
165 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
166165biantrurd 532 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ (𝑀(,)+∞) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (𝑀(,)+∞))))
167159, 164, 1663bitr2d 307 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑀 < (𝐹𝑥) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ (𝑀(,)+∞))))
168161, 39ltnled 11409 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑀 < (𝐹𝑥) ↔ ¬ (𝐹𝑥) ≤ 𝑀))
169158, 167, 1683bitr2rd 308 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (¬ (𝐹𝑥) ≤ 𝑀𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
170169con1bid 355 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)) ↔ (𝐹𝑥) ≤ 𝑀))
171154, 170bitrd 279 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → (𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))) ↔ (𝐹𝑥) ≤ 𝑀))
172171ifbid 4548 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))
173172mpteq2dva 5241 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) = (𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0)))
174173fveq2d 6909 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) = (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))))
175 itg2cn.6 . . . . . . . . . . . . . 14 (𝜑 → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
176175adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if((𝐹𝑥) ≤ 𝑀, (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
177174, 176eqnbrtrd 5160 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ¬ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2)))
17853, 91resubcld 11692 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2𝐹) − (𝐶 / 2)) ∈ ℝ)
179178, 149ltnled 11409 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (((∫2𝐹) − (𝐶 / 2)) < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ↔ ¬ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ ((∫2𝐹) − (𝐶 / 2))))
180177, 179mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2𝐹) − (𝐶 / 2)) < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))))
18153, 91, 149ltsubadd2d 11862 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (((∫2𝐹) − (𝐶 / 2)) < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ↔ (∫2𝐹) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))))))
182180, 181mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2𝐹) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
183151, 182eqbrtrrd 5166 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))))
184106, 91, 149ltadd1d 11857 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) < (𝐶 / 2) ↔ ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))) < ((𝐶 / 2) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (ℝ ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))))))
185183, 184mpbird 257 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ (𝑀(,)+∞)), (𝐹𝑥), 0))) < (𝐶 / 2))
18672, 106, 91, 116, 185lelttrd 11420 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) < (𝐶 / 2))
187160adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℝ)
188 mblvol 25566 . . . . . . . . . . 11 (𝑢 ∈ dom vol → (vol‘𝑢) = (vol*‘𝑢))
1896, 188syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol‘𝑢) = (vol*‘𝑢))
1905rpred 13078 . . . . . . . . . . . 12 (𝜑 → ((𝐶 / 2) / 𝑀) ∈ ℝ)
191190adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐶 / 2) / 𝑀) ∈ ℝ)
192 ovolcl 25514 . . . . . . . . . . . . 13 (𝑢 ⊆ ℝ → (vol*‘𝑢) ∈ ℝ*)
19333, 192syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) ∈ ℝ*)
194191rexrd 11312 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐶 / 2) / 𝑀) ∈ ℝ*)
195 simprr 772 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol‘𝑢) < ((𝐶 / 2) / 𝑀))
196189, 195eqbrtrrd 5166 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) < ((𝐶 / 2) / 𝑀))
197193, 194, 196xrltled 13193 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) ≤ ((𝐶 / 2) / 𝑀))
198 ovollecl 25519 . . . . . . . . . . 11 ((𝑢 ⊆ ℝ ∧ ((𝐶 / 2) / 𝑀) ∈ ℝ ∧ (vol*‘𝑢) ≤ ((𝐶 / 2) / 𝑀)) → (vol*‘𝑢) ∈ ℝ)
19933, 191, 197, 198syl3anc 1372 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol*‘𝑢) ∈ ℝ)
200189, 199eqeltrd 2840 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (vol‘𝑢) ∈ ℝ)
201187, 200remulcld 11292 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑀 · (vol‘𝑢)) ∈ ℝ)
202187rexrd 11312 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℝ*)
2033adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℕ)
204203nnnn0d 12589 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ ℕ0)
205204nn0ge0d 12592 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 0 ≤ 𝑀)
206 elxrge0 13498 . . . . . . . . . . . . . 14 (𝑀 ∈ (0[,]+∞) ↔ (𝑀 ∈ ℝ* ∧ 0 ≤ 𝑀))
207202, 205, 206sylanbrc 583 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ (0[,]+∞))
208 ifcl 4570 . . . . . . . . . . . . 13 ((𝑀 ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥𝑢, 𝑀, 0) ∈ (0[,]+∞))
209207, 48, 208sylancl 586 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → if(𝑥𝑢, 𝑀, 0) ∈ (0[,]+∞))
210209adantr 480 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑢, 𝑀, 0) ∈ (0[,]+∞))
211210fmpttd 7134 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)):ℝ⟶(0[,]+∞))
212 eldifn 4131 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) → ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)))
213212adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → ¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)))
214 difssd 4136 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) ⊆ 𝑢)
215214sselda 3982 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → 𝑥𝑢)
21634, 169syldan 591 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥𝑢) → (¬ (𝐹𝑥) ≤ 𝑀𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
217215, 216syldan 591 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → (¬ (𝐹𝑥) ≤ 𝑀𝑥 ∈ (𝐹 “ (𝑀(,)+∞))))
218217con1bid 355 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → (¬ 𝑥 ∈ (𝐹 “ (𝑀(,)+∞)) ↔ (𝐹𝑥) ≤ 𝑀))
219213, 218mpbid 232 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → (𝐹𝑥) ≤ 𝑀)
220 iftrue 4530 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = (𝐹𝑥))
221220adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = (𝐹𝑥))
222215iftrued 4532 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥𝑢, 𝑀, 0) = 𝑀)
223219, 221, 2223brtr4d 5174 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0))
224 iffalse 4533 . . . . . . . . . . . . . . 15 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = 0)
225224adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ ¬ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) = 0)
226 0le0 12368 . . . . . . . . . . . . . . . 16 0 ≤ 0
227 breq2 5146 . . . . . . . . . . . . . . . . 17 (𝑀 = if(𝑥𝑢, 𝑀, 0) → (0 ≤ 𝑀 ↔ 0 ≤ if(𝑥𝑢, 𝑀, 0)))
228 breq2 5146 . . . . . . . . . . . . . . . . 17 (0 = if(𝑥𝑢, 𝑀, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥𝑢, 𝑀, 0)))
229227, 228ifboth 4564 . . . . . . . . . . . . . . . 16 ((0 ≤ 𝑀 ∧ 0 ≤ 0) → 0 ≤ if(𝑥𝑢, 𝑀, 0))
230205, 226, 229sylancl 586 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 0 ≤ if(𝑥𝑢, 𝑀, 0))
231230adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ ¬ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → 0 ≤ if(𝑥𝑢, 𝑀, 0))
232225, 231eqbrtrd 5164 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) ∧ ¬ 𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞)))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0))
233223, 232pm2.61dan 812 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0))
234233ralrimivw 3149 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0))
235 eqidd 2737 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)))
23664, 74, 210, 81, 235ofrfval2 7719 . . . . . . . . . . 11 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)) ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0) ≤ if(𝑥𝑢, 𝑀, 0)))
237234, 236mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)))
238 itg2le 25775 . . . . . . . . . 10 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0)):ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))))
23975, 211, 237, 238syl3anc 1372 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))))
240 elrege0 13495 . . . . . . . . . . 11 (𝑀 ∈ (0[,)+∞) ↔ (𝑀 ∈ ℝ ∧ 0 ≤ 𝑀))
241187, 205, 240sylanbrc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝑀 ∈ (0[,)+∞))
242 itg2const 25776 . . . . . . . . . 10 ((𝑢 ∈ dom vol ∧ (vol‘𝑢) ∈ ℝ ∧ 𝑀 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))) = (𝑀 · (vol‘𝑢)))
2436, 200, 241, 242syl3anc 1372 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, 𝑀, 0))) = (𝑀 · (vol‘𝑢)))
244239, 243breqtrd 5168 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) ≤ (𝑀 · (vol‘𝑢)))
245203nngt0d 12316 . . . . . . . . . 10 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 0 < 𝑀)
246 ltmuldiv2 12143 . . . . . . . . . 10 (((vol‘𝑢) ∈ ℝ ∧ (𝐶 / 2) ∈ ℝ ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → ((𝑀 · (vol‘𝑢)) < (𝐶 / 2) ↔ (vol‘𝑢) < ((𝐶 / 2) / 𝑀)))
247200, 91, 187, 245, 246syl112anc 1375 . . . . . . . . 9 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝑀 · (vol‘𝑢)) < (𝐶 / 2) ↔ (vol‘𝑢) < ((𝐶 / 2) / 𝑀)))
248195, 247mpbird 257 . . . . . . . 8 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (𝑀 · (vol‘𝑢)) < (𝐶 / 2))
24987, 201, 91, 244, 248lelttrd 11420 . . . . . . 7 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) < (𝐶 / 2))
25072, 87, 91, 91, 186, 249lt2addd 11887 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∩ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0))) + (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝑢 ∖ (𝐹 “ (𝑀(,)+∞))), (𝐹𝑥), 0)))) < ((𝐶 / 2) + (𝐶 / 2)))
25188, 250eqbrtrd 5164 . . . . 5 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < ((𝐶 / 2) + (𝐶 / 2)))
25289rpcnd 13080 . . . . . 6 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → 𝐶 ∈ ℂ)
2532522halvesd 12514 . . . . 5 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → ((𝐶 / 2) + (𝐶 / 2)) = 𝐶)
254251, 253breqtrd 5168 . . . 4 ((𝜑 ∧ (𝑢 ∈ dom vol ∧ (vol‘𝑢) < ((𝐶 / 2) / 𝑀))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶)
255254expr 456 . . 3 ((𝜑𝑢 ∈ dom vol) → ((vol‘𝑢) < ((𝐶 / 2) / 𝑀) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
256255ralrimiva 3145 . 2 (𝜑 → ∀𝑢 ∈ dom vol((vol‘𝑢) < ((𝐶 / 2) / 𝑀) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
257 breq2 5146 . . 3 (𝑑 = ((𝐶 / 2) / 𝑀) → ((vol‘𝑢) < 𝑑 ↔ (vol‘𝑢) < ((𝐶 / 2) / 𝑀)))
258257rspceaimv 3627 . 2 ((((𝐶 / 2) / 𝑀) ∈ ℝ+ ∧ ∀𝑢 ∈ dom vol((vol‘𝑢) < ((𝐶 / 2) / 𝑀) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶)) → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
2595, 256, 258syl2anc 584 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑢 ∈ dom vol((vol‘𝑢) < 𝑑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝑢, (𝐹𝑥), 0))) < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  wrex 3069  Vcvv 3479  cdif 3947  cun 3948  cin 3949  wss 3950  c0 4332  ifcif 4524   class class class wbr 5142  cmpt 5224  ccnv 5683  dom cdm 5684  cima 5687   Fn wfn 6555  wf 6556  cfv 6560  (class class class)co 7432  r cofr 7697  cr 11155  0cc0 11156   + caddc 11159   · cmul 11161  +∞cpnf 11293  *cxr 11295   < clt 11296  cle 11297  cmin 11493   / cdiv 11921  cn 12267  2c2 12322  +crp 13035  (,)cioo 13388  [,)cico 13390  [,]cicc 13391  vol*covol 25498  volcvol 25499  MblFncmbf 25650  2citg2 25652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-rest 17468  df-topgen 17489  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-top 22901  df-topon 22918  df-bases 22954  df-cmp 23396  df-ovol 25500  df-vol 25501  df-mbf 25655  df-itg1 25656  df-itg2 25657  df-0p 25706
This theorem is referenced by:  itg2cn  25799
  Copyright terms: Public domain W3C validator