Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onmindif | Structured version Visualization version GIF version |
Description: When its successor is subtracted from a class of ordinal numbers, an ordinal number is less than the minimum of the resulting subclass. (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
onmindif | ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → 𝐵 ∈ ∩ (𝐴 ∖ suc 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3897 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ suc 𝐵)) | |
2 | ssel2 3916 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
3 | ontri1 6300 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝑥)) | |
4 | onsssuc 6353 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) | |
5 | 3, 4 | bitr3d 280 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵 ∈ 𝑥 ↔ 𝑥 ∈ suc 𝐵)) |
6 | 5 | con1bid 356 | . . . . . . . . 9 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝑥 ∈ suc 𝐵 ↔ 𝐵 ∈ 𝑥)) |
7 | 2, 6 | sylan 580 | . . . . . . . 8 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ∈ On) → (¬ 𝑥 ∈ suc 𝐵 ↔ 𝐵 ∈ 𝑥)) |
8 | 7 | biimpd 228 | . . . . . . 7 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ∈ On) → (¬ 𝑥 ∈ suc 𝐵 → 𝐵 ∈ 𝑥)) |
9 | 8 | exp31 420 | . . . . . 6 ⊢ (𝐴 ⊆ On → (𝑥 ∈ 𝐴 → (𝐵 ∈ On → (¬ 𝑥 ∈ suc 𝐵 → 𝐵 ∈ 𝑥)))) |
10 | 9 | com23 86 | . . . . 5 ⊢ (𝐴 ⊆ On → (𝐵 ∈ On → (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ suc 𝐵 → 𝐵 ∈ 𝑥)))) |
11 | 10 | imp4b 422 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ suc 𝐵) → 𝐵 ∈ 𝑥)) |
12 | 1, 11 | syl5bi 241 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → (𝑥 ∈ (𝐴 ∖ suc 𝐵) → 𝐵 ∈ 𝑥)) |
13 | 12 | ralrimiv 3102 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → ∀𝑥 ∈ (𝐴 ∖ suc 𝐵)𝐵 ∈ 𝑥) |
14 | elintg 4887 | . . 3 ⊢ (𝐵 ∈ On → (𝐵 ∈ ∩ (𝐴 ∖ suc 𝐵) ↔ ∀𝑥 ∈ (𝐴 ∖ suc 𝐵)𝐵 ∈ 𝑥)) | |
15 | 14 | adantl 482 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → (𝐵 ∈ ∩ (𝐴 ∖ suc 𝐵) ↔ ∀𝑥 ∈ (𝐴 ∖ suc 𝐵)𝐵 ∈ 𝑥)) |
16 | 13, 15 | mpbird 256 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → 𝐵 ∈ ∩ (𝐴 ∖ suc 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∀wral 3064 ∖ cdif 3884 ⊆ wss 3887 ∩ cint 4879 Oncon0 6266 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 df-suc 6272 |
This theorem is referenced by: unblem3 9068 fin23lem26 10081 inaex 41915 |
Copyright terms: Public domain | W3C validator |