MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onmindif Structured version   Visualization version   GIF version

Theorem onmindif 6446
Description: When its successor is subtracted from a class of ordinal numbers, an ordinal number is less than the minimum of the resulting subclass. (Contributed by NM, 1-Dec-2003.)
Assertion
Ref Expression
onmindif ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → 𝐵 (𝐴 ∖ suc 𝐵))

Proof of Theorem onmindif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldif 3936 . . . 4 (𝑥 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ suc 𝐵))
2 ssel2 3953 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ On)
3 ontri1 6386 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵 ↔ ¬ 𝐵𝑥))
4 onsssuc 6444 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵𝑥 ∈ suc 𝐵))
53, 4bitr3d 281 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵𝑥𝑥 ∈ suc 𝐵))
65con1bid 355 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝑥 ∈ suc 𝐵𝐵𝑥))
72, 6sylan 580 . . . . . . . 8 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝐵 ∈ On) → (¬ 𝑥 ∈ suc 𝐵𝐵𝑥))
87biimpd 229 . . . . . . 7 (((𝐴 ⊆ On ∧ 𝑥𝐴) ∧ 𝐵 ∈ On) → (¬ 𝑥 ∈ suc 𝐵𝐵𝑥))
98exp31 419 . . . . . 6 (𝐴 ⊆ On → (𝑥𝐴 → (𝐵 ∈ On → (¬ 𝑥 ∈ suc 𝐵𝐵𝑥))))
109com23 86 . . . . 5 (𝐴 ⊆ On → (𝐵 ∈ On → (𝑥𝐴 → (¬ 𝑥 ∈ suc 𝐵𝐵𝑥))))
1110imp4b 421 . . . 4 ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → ((𝑥𝐴 ∧ ¬ 𝑥 ∈ suc 𝐵) → 𝐵𝑥))
121, 11biimtrid 242 . . 3 ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → (𝑥 ∈ (𝐴 ∖ suc 𝐵) → 𝐵𝑥))
1312ralrimiv 3131 . 2 ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → ∀𝑥 ∈ (𝐴 ∖ suc 𝐵)𝐵𝑥)
14 elintg 4930 . . 3 (𝐵 ∈ On → (𝐵 (𝐴 ∖ suc 𝐵) ↔ ∀𝑥 ∈ (𝐴 ∖ suc 𝐵)𝐵𝑥))
1514adantl 481 . 2 ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → (𝐵 (𝐴 ∖ suc 𝐵) ↔ ∀𝑥 ∈ (𝐴 ∖ suc 𝐵)𝐵𝑥))
1613, 15mpbird 257 1 ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → 𝐵 (𝐴 ∖ suc 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2108  wral 3051  cdif 3923  wss 3926   cint 4922  Oncon0 6352  suc csuc 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-suc 6358
This theorem is referenced by:  unblem3  9302  fin23lem26  10339  inaex  44321
  Copyright terms: Public domain W3C validator