![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onmindif | Structured version Visualization version GIF version |
Description: When its successor is subtracted from a class of ordinal numbers, an ordinal number is less than the minimum of the resulting subclass. (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
onmindif | ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → 𝐵 ∈ ∩ (𝐴 ∖ suc 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3986 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ suc 𝐵)) | |
2 | ssel2 4003 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
3 | ontri1 6429 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝑥)) | |
4 | onsssuc 6485 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) | |
5 | 3, 4 | bitr3d 281 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵 ∈ 𝑥 ↔ 𝑥 ∈ suc 𝐵)) |
6 | 5 | con1bid 355 | . . . . . . . . 9 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝑥 ∈ suc 𝐵 ↔ 𝐵 ∈ 𝑥)) |
7 | 2, 6 | sylan 579 | . . . . . . . 8 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ∈ On) → (¬ 𝑥 ∈ suc 𝐵 ↔ 𝐵 ∈ 𝑥)) |
8 | 7 | biimpd 229 | . . . . . . 7 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ∈ On) → (¬ 𝑥 ∈ suc 𝐵 → 𝐵 ∈ 𝑥)) |
9 | 8 | exp31 419 | . . . . . 6 ⊢ (𝐴 ⊆ On → (𝑥 ∈ 𝐴 → (𝐵 ∈ On → (¬ 𝑥 ∈ suc 𝐵 → 𝐵 ∈ 𝑥)))) |
10 | 9 | com23 86 | . . . . 5 ⊢ (𝐴 ⊆ On → (𝐵 ∈ On → (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ suc 𝐵 → 𝐵 ∈ 𝑥)))) |
11 | 10 | imp4b 421 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ suc 𝐵) → 𝐵 ∈ 𝑥)) |
12 | 1, 11 | biimtrid 242 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → (𝑥 ∈ (𝐴 ∖ suc 𝐵) → 𝐵 ∈ 𝑥)) |
13 | 12 | ralrimiv 3151 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → ∀𝑥 ∈ (𝐴 ∖ suc 𝐵)𝐵 ∈ 𝑥) |
14 | elintg 4978 | . . 3 ⊢ (𝐵 ∈ On → (𝐵 ∈ ∩ (𝐴 ∖ suc 𝐵) ↔ ∀𝑥 ∈ (𝐴 ∖ suc 𝐵)𝐵 ∈ 𝑥)) | |
15 | 14 | adantl 481 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → (𝐵 ∈ ∩ (𝐴 ∖ suc 𝐵) ↔ ∀𝑥 ∈ (𝐴 ∖ suc 𝐵)𝐵 ∈ 𝑥)) |
16 | 13, 15 | mpbird 257 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → 𝐵 ∈ ∩ (𝐴 ∖ suc 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 ⊆ wss 3976 ∩ cint 4970 Oncon0 6395 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-suc 6401 |
This theorem is referenced by: unblem3 9358 fin23lem26 10394 inaex 44266 |
Copyright terms: Public domain | W3C validator |