| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onmindif | Structured version Visualization version GIF version | ||
| Description: When its successor is subtracted from a class of ordinal numbers, an ordinal number is less than the minimum of the resulting subclass. (Contributed by NM, 1-Dec-2003.) |
| Ref | Expression |
|---|---|
| onmindif | ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → 𝐵 ∈ ∩ (𝐴 ∖ suc 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3927 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ suc 𝐵)) | |
| 2 | ssel2 3944 | . . . . . . . . 9 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ On) | |
| 3 | ontri1 6369 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝑥)) | |
| 4 | onsssuc 6427 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ⊆ 𝐵 ↔ 𝑥 ∈ suc 𝐵)) | |
| 5 | 3, 4 | bitr3d 281 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝐵 ∈ 𝑥 ↔ 𝑥 ∈ suc 𝐵)) |
| 6 | 5 | con1bid 355 | . . . . . . . . 9 ⊢ ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (¬ 𝑥 ∈ suc 𝐵 ↔ 𝐵 ∈ 𝑥)) |
| 7 | 2, 6 | sylan 580 | . . . . . . . 8 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ∈ On) → (¬ 𝑥 ∈ suc 𝐵 ↔ 𝐵 ∈ 𝑥)) |
| 8 | 7 | biimpd 229 | . . . . . . 7 ⊢ (((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) ∧ 𝐵 ∈ On) → (¬ 𝑥 ∈ suc 𝐵 → 𝐵 ∈ 𝑥)) |
| 9 | 8 | exp31 419 | . . . . . 6 ⊢ (𝐴 ⊆ On → (𝑥 ∈ 𝐴 → (𝐵 ∈ On → (¬ 𝑥 ∈ suc 𝐵 → 𝐵 ∈ 𝑥)))) |
| 10 | 9 | com23 86 | . . . . 5 ⊢ (𝐴 ⊆ On → (𝐵 ∈ On → (𝑥 ∈ 𝐴 → (¬ 𝑥 ∈ suc 𝐵 → 𝐵 ∈ 𝑥)))) |
| 11 | 10 | imp4b 421 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ suc 𝐵) → 𝐵 ∈ 𝑥)) |
| 12 | 1, 11 | biimtrid 242 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → (𝑥 ∈ (𝐴 ∖ suc 𝐵) → 𝐵 ∈ 𝑥)) |
| 13 | 12 | ralrimiv 3125 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → ∀𝑥 ∈ (𝐴 ∖ suc 𝐵)𝐵 ∈ 𝑥) |
| 14 | elintg 4921 | . . 3 ⊢ (𝐵 ∈ On → (𝐵 ∈ ∩ (𝐴 ∖ suc 𝐵) ↔ ∀𝑥 ∈ (𝐴 ∖ suc 𝐵)𝐵 ∈ 𝑥)) | |
| 15 | 14 | adantl 481 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → (𝐵 ∈ ∩ (𝐴 ∖ suc 𝐵) ↔ ∀𝑥 ∈ (𝐴 ∖ suc 𝐵)𝐵 ∈ 𝑥)) |
| 16 | 13, 15 | mpbird 257 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐵 ∈ On) → 𝐵 ∈ ∩ (𝐴 ∖ suc 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3045 ∖ cdif 3914 ⊆ wss 3917 ∩ cint 4913 Oncon0 6335 suc csuc 6337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-suc 6341 |
| This theorem is referenced by: unblem3 9248 fin23lem26 10285 inaex 44293 |
| Copyright terms: Public domain | W3C validator |