MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondif2 Structured version   Visualization version   GIF version

Theorem ondif2 8523
Description: Two ways to say that 𝐴 is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
ondif2 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))

Proof of Theorem ondif2
StepHypRef Expression
1 eldif 3957 . 2 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o))
2 1on 8499 . . . . 5 1o ∈ On
3 ontri1 6403 . . . . . 6 ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o ↔ ¬ 1o𝐴))
4 onsssuc 6459 . . . . . . 7 ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o𝐴 ∈ suc 1o))
5 df-2o 8488 . . . . . . . 8 2o = suc 1o
65eleq2i 2821 . . . . . . 7 (𝐴 ∈ 2o𝐴 ∈ suc 1o)
74, 6bitr4di 289 . . . . . 6 ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o𝐴 ∈ 2o))
83, 7bitr3d 281 . . . . 5 ((𝐴 ∈ On ∧ 1o ∈ On) → (¬ 1o𝐴𝐴 ∈ 2o))
92, 8mpan2 690 . . . 4 (𝐴 ∈ On → (¬ 1o𝐴𝐴 ∈ 2o))
109con1bid 355 . . 3 (𝐴 ∈ On → (¬ 𝐴 ∈ 2o ↔ 1o𝐴))
1110pm5.32i 574 . 2 ((𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
121, 11bitri 275 1 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wcel 2099  cdif 3944  wss 3947  Oncon0 6369  suc csuc 6371  1oc1o 8480  2oc2o 8481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-ord 6372  df-on 6373  df-suc 6375  df-1o 8487  df-2o 8488
This theorem is referenced by:  dif20el  8526  oeordi  8608  oewordi  8612  oaabs2  8670  omabs  8672  cnfcom3clem  9729  infxpenc2lem1  10043  onexoegt  42672  oege2  42736  rp-oelim2  42737  oeord2lim  42738  oeord2i  42739  oeord2com  42740  nnoeomeqom  42741  oenord1  42745  cantnftermord  42749  cantnfresb  42753  cantnf2  42754  omabs2  42761  omcl2  42762
  Copyright terms: Public domain W3C validator