MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondif2 Structured version   Visualization version   GIF version

Theorem ondif2 8332
Description: Two ways to say that 𝐴 is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
ondif2 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))

Proof of Theorem ondif2
StepHypRef Expression
1 eldif 3897 . 2 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o))
2 1on 8309 . . . . 5 1o ∈ On
3 ontri1 6300 . . . . . 6 ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o ↔ ¬ 1o𝐴))
4 onsssuc 6353 . . . . . . 7 ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o𝐴 ∈ suc 1o))
5 df-2o 8298 . . . . . . . 8 2o = suc 1o
65eleq2i 2830 . . . . . . 7 (𝐴 ∈ 2o𝐴 ∈ suc 1o)
74, 6bitr4di 289 . . . . . 6 ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o𝐴 ∈ 2o))
83, 7bitr3d 280 . . . . 5 ((𝐴 ∈ On ∧ 1o ∈ On) → (¬ 1o𝐴𝐴 ∈ 2o))
92, 8mpan2 688 . . . 4 (𝐴 ∈ On → (¬ 1o𝐴𝐴 ∈ 2o))
109con1bid 356 . . 3 (𝐴 ∈ On → (¬ 𝐴 ∈ 2o ↔ 1o𝐴))
1110pm5.32i 575 . 2 ((𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
121, 11bitri 274 1 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wcel 2106  cdif 3884  wss 3887  Oncon0 6266  suc csuc 6268  1oc1o 8290  2oc2o 8291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-suc 6272  df-1o 8297  df-2o 8298
This theorem is referenced by:  dif20el  8335  oeordi  8418  oewordi  8422  oaabs2  8479  omabs  8481  cnfcom3clem  9463  infxpenc2lem1  9775
  Copyright terms: Public domain W3C validator