![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ondif2 | Structured version Visualization version GIF version |
Description: Two ways to say that 𝐴 is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015.) |
Ref | Expression |
---|---|
ondif2 | ⊢ (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3808 | . 2 ⊢ (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o)) | |
2 | 1on 7838 | . . . . 5 ⊢ 1o ∈ On | |
3 | ontri1 6001 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o ↔ ¬ 1o ∈ 𝐴)) | |
4 | onsssuc 6054 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o ↔ 𝐴 ∈ suc 1o)) | |
5 | df-2o 7832 | . . . . . . . 8 ⊢ 2o = suc 1o | |
6 | 5 | eleq2i 2898 | . . . . . . 7 ⊢ (𝐴 ∈ 2o ↔ 𝐴 ∈ suc 1o) |
7 | 4, 6 | syl6bbr 281 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o ↔ 𝐴 ∈ 2o)) |
8 | 3, 7 | bitr3d 273 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 1o ∈ On) → (¬ 1o ∈ 𝐴 ↔ 𝐴 ∈ 2o)) |
9 | 2, 8 | mpan2 682 | . . . 4 ⊢ (𝐴 ∈ On → (¬ 1o ∈ 𝐴 ↔ 𝐴 ∈ 2o)) |
10 | 9 | con1bid 347 | . . 3 ⊢ (𝐴 ∈ On → (¬ 𝐴 ∈ 2o ↔ 1o ∈ 𝐴)) |
11 | 10 | pm5.32i 570 | . 2 ⊢ ((𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o) ↔ (𝐴 ∈ On ∧ 1o ∈ 𝐴)) |
12 | 1, 11 | bitri 267 | 1 ⊢ (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∧ wa 386 ∈ wcel 2164 ∖ cdif 3795 ⊆ wss 3798 Oncon0 5967 suc csuc 5969 1oc1o 7824 2oc2o 7825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-tr 4978 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-ord 5970 df-on 5971 df-suc 5973 df-1o 7831 df-2o 7832 |
This theorem is referenced by: dif20el 7857 oeordi 7939 oewordi 7943 oaabs2 7997 omabs 7999 cnfcom3clem 8886 infxpenc2lem1 9162 |
Copyright terms: Public domain | W3C validator |