MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondif2 Structured version   Visualization version   GIF version

Theorem ondif2 8501
Description: Two ways to say that 𝐴 is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
ondif2 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))

Proof of Theorem ondif2
StepHypRef Expression
1 eldif 3958 . 2 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o))
2 1on 8477 . . . . 5 1o ∈ On
3 ontri1 6398 . . . . . 6 ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o ↔ ¬ 1o𝐴))
4 onsssuc 6454 . . . . . . 7 ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o𝐴 ∈ suc 1o))
5 df-2o 8466 . . . . . . . 8 2o = suc 1o
65eleq2i 2825 . . . . . . 7 (𝐴 ∈ 2o𝐴 ∈ suc 1o)
74, 6bitr4di 288 . . . . . 6 ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o𝐴 ∈ 2o))
83, 7bitr3d 280 . . . . 5 ((𝐴 ∈ On ∧ 1o ∈ On) → (¬ 1o𝐴𝐴 ∈ 2o))
92, 8mpan2 689 . . . 4 (𝐴 ∈ On → (¬ 1o𝐴𝐴 ∈ 2o))
109con1bid 355 . . 3 (𝐴 ∈ On → (¬ 𝐴 ∈ 2o ↔ 1o𝐴))
1110pm5.32i 575 . 2 ((𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
121, 11bitri 274 1 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wcel 2106  cdif 3945  wss 3948  Oncon0 6364  suc csuc 6366  1oc1o 8458  2oc2o 8459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367  df-on 6368  df-suc 6370  df-1o 8465  df-2o 8466
This theorem is referenced by:  dif20el  8504  oeordi  8586  oewordi  8590  oaabs2  8647  omabs  8649  cnfcom3clem  9699  infxpenc2lem1  10013  onexoegt  41983  oege2  42047  rp-oelim2  42048  oeord2lim  42049  oeord2i  42050  oeord2com  42051  nnoeomeqom  42052  oenord1  42056  cantnftermord  42060  cantnfresb  42064  cantnf2  42065  omabs2  42072  omcl2  42073
  Copyright terms: Public domain W3C validator