MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ondif2 Structured version   Visualization version   GIF version

Theorem ondif2 8512
Description: Two ways to say that 𝐴 is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
ondif2 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))

Proof of Theorem ondif2
StepHypRef Expression
1 eldif 3936 . 2 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o))
2 1on 8490 . . . . 5 1o ∈ On
3 ontri1 6386 . . . . . 6 ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o ↔ ¬ 1o𝐴))
4 onsssuc 6443 . . . . . . 7 ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o𝐴 ∈ suc 1o))
5 df-2o 8479 . . . . . . . 8 2o = suc 1o
65eleq2i 2826 . . . . . . 7 (𝐴 ∈ 2o𝐴 ∈ suc 1o)
74, 6bitr4di 289 . . . . . 6 ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o𝐴 ∈ 2o))
83, 7bitr3d 281 . . . . 5 ((𝐴 ∈ On ∧ 1o ∈ On) → (¬ 1o𝐴𝐴 ∈ 2o))
92, 8mpan2 691 . . . 4 (𝐴 ∈ On → (¬ 1o𝐴𝐴 ∈ 2o))
109con1bid 355 . . 3 (𝐴 ∈ On → (¬ 𝐴 ∈ 2o ↔ 1o𝐴))
1110pm5.32i 574 . 2 ((𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
121, 11bitri 275 1 (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wcel 2108  cdif 3923  wss 3926  Oncon0 6352  suc csuc 6354  1oc1o 8471  2oc2o 8472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-suc 6358  df-1o 8478  df-2o 8479
This theorem is referenced by:  dif20el  8515  oeordi  8597  oewordi  8601  oaabs2  8659  omabs  8661  cnfcom3clem  9717  infxpenc2lem1  10031  onexoegt  43215  oege2  43278  rp-oelim2  43279  oeord2lim  43280  oeord2i  43281  oeord2com  43282  nnoeomeqom  43283  oenord1  43287  cantnftermord  43291  cantnfresb  43295  cantnf2  43296  omabs2  43303  omcl2  43304
  Copyright terms: Public domain W3C validator