| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ondif2 | Structured version Visualization version GIF version | ||
| Description: Two ways to say that 𝐴 is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015.) |
| Ref | Expression |
|---|---|
| ondif2 | ⊢ (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3924 | . 2 ⊢ (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o)) | |
| 2 | 1on 8446 | . . . . 5 ⊢ 1o ∈ On | |
| 3 | ontri1 6366 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o ↔ ¬ 1o ∈ 𝐴)) | |
| 4 | onsssuc 6424 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o ↔ 𝐴 ∈ suc 1o)) | |
| 5 | df-2o 8435 | . . . . . . . 8 ⊢ 2o = suc 1o | |
| 6 | 5 | eleq2i 2820 | . . . . . . 7 ⊢ (𝐴 ∈ 2o ↔ 𝐴 ∈ suc 1o) |
| 7 | 4, 6 | bitr4di 289 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o ↔ 𝐴 ∈ 2o)) |
| 8 | 3, 7 | bitr3d 281 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 1o ∈ On) → (¬ 1o ∈ 𝐴 ↔ 𝐴 ∈ 2o)) |
| 9 | 2, 8 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ On → (¬ 1o ∈ 𝐴 ↔ 𝐴 ∈ 2o)) |
| 10 | 9 | con1bid 355 | . . 3 ⊢ (𝐴 ∈ On → (¬ 𝐴 ∈ 2o ↔ 1o ∈ 𝐴)) |
| 11 | 10 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o) ↔ (𝐴 ∈ On ∧ 1o ∈ 𝐴)) |
| 12 | 1, 11 | bitri 275 | 1 ⊢ (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3911 ⊆ wss 3914 Oncon0 6332 suc csuc 6334 1oc1o 8427 2oc2o 8428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-suc 6338 df-1o 8434 df-2o 8435 |
| This theorem is referenced by: dif20el 8469 oeordi 8551 oewordi 8555 oaabs2 8613 omabs 8615 cnfcom3clem 9658 infxpenc2lem1 9972 onexoegt 43233 oege2 43296 rp-oelim2 43297 oeord2lim 43298 oeord2i 43299 oeord2com 43300 nnoeomeqom 43301 oenord1 43305 cantnftermord 43309 cantnfresb 43313 cantnf2 43314 omabs2 43321 omcl2 43322 |
| Copyright terms: Public domain | W3C validator |