| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ondif2 | Structured version Visualization version GIF version | ||
| Description: Two ways to say that 𝐴 is an ordinal greater than one. (Contributed by Mario Carneiro, 21-May-2015.) |
| Ref | Expression |
|---|---|
| ondif2 | ⊢ (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3907 | . 2 ⊢ (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o)) | |
| 2 | 1on 8397 | . . . . 5 ⊢ 1o ∈ On | |
| 3 | ontri1 6340 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o ↔ ¬ 1o ∈ 𝐴)) | |
| 4 | onsssuc 6398 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o ↔ 𝐴 ∈ suc 1o)) | |
| 5 | df-2o 8386 | . . . . . . . 8 ⊢ 2o = suc 1o | |
| 6 | 5 | eleq2i 2823 | . . . . . . 7 ⊢ (𝐴 ∈ 2o ↔ 𝐴 ∈ suc 1o) |
| 7 | 4, 6 | bitr4di 289 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 1o ∈ On) → (𝐴 ⊆ 1o ↔ 𝐴 ∈ 2o)) |
| 8 | 3, 7 | bitr3d 281 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 1o ∈ On) → (¬ 1o ∈ 𝐴 ↔ 𝐴 ∈ 2o)) |
| 9 | 2, 8 | mpan2 691 | . . . 4 ⊢ (𝐴 ∈ On → (¬ 1o ∈ 𝐴 ↔ 𝐴 ∈ 2o)) |
| 10 | 9 | con1bid 355 | . . 3 ⊢ (𝐴 ∈ On → (¬ 𝐴 ∈ 2o ↔ 1o ∈ 𝐴)) |
| 11 | 10 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ On ∧ ¬ 𝐴 ∈ 2o) ↔ (𝐴 ∈ On ∧ 1o ∈ 𝐴)) |
| 12 | 1, 11 | bitri 275 | 1 ⊢ (𝐴 ∈ (On ∖ 2o) ↔ (𝐴 ∈ On ∧ 1o ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∖ cdif 3894 ⊆ wss 3897 Oncon0 6306 suc csuc 6308 1oc1o 8378 2oc2o 8379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 df-suc 6312 df-1o 8385 df-2o 8386 |
| This theorem is referenced by: dif20el 8420 oeordi 8502 oewordi 8506 oaabs2 8564 omabs 8566 cnfcom3clem 9595 infxpenc2lem1 9910 onexoegt 43347 oege2 43410 rp-oelim2 43411 oeord2lim 43412 oeord2i 43413 oeord2com 43414 nnoeomeqom 43415 oenord1 43419 cantnftermord 43423 cantnfresb 43427 cantnf2 43428 omabs2 43435 omcl2 43436 |
| Copyright terms: Public domain | W3C validator |