MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnirred Structured version   Visualization version   GIF version

Theorem isnirred 20037
Description: The property of being a non-irreducible (reducible) element in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irred.1 𝐡 = (Baseβ€˜π‘…)
irred.2 π‘ˆ = (Unitβ€˜π‘…)
irred.3 𝐼 = (Irredβ€˜π‘…)
irred.4 𝑁 = (𝐡 βˆ– π‘ˆ)
irred.5 Β· = (.rβ€˜π‘…)
Assertion
Ref Expression
isnirred (𝑋 ∈ 𝐡 β†’ (Β¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ π‘ˆ ∨ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋)))
Distinct variable groups:   π‘₯,𝑦,𝑁   π‘₯,𝑅,𝑦   π‘₯,𝑋,𝑦
Allowed substitution hints:   𝐡(π‘₯,𝑦)   Β· (π‘₯,𝑦)   π‘ˆ(π‘₯,𝑦)   𝐼(π‘₯,𝑦)

Proof of Theorem isnirred
StepHypRef Expression
1 irred.4 . . . . . . 7 𝑁 = (𝐡 βˆ– π‘ˆ)
21eleq2i 2828 . . . . . 6 (𝑋 ∈ 𝑁 ↔ 𝑋 ∈ (𝐡 βˆ– π‘ˆ))
3 eldif 3908 . . . . . 6 (𝑋 ∈ (𝐡 βˆ– π‘ˆ) ↔ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ∈ π‘ˆ))
42, 3bitri 274 . . . . 5 (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ∈ π‘ˆ))
54baibr 537 . . . 4 (𝑋 ∈ 𝐡 β†’ (Β¬ 𝑋 ∈ π‘ˆ ↔ 𝑋 ∈ 𝑁))
6 df-ne 2941 . . . . . . . . 9 ((π‘₯ Β· 𝑦) β‰  𝑋 ↔ Β¬ (π‘₯ Β· 𝑦) = 𝑋)
76ralbii 3092 . . . . . . . 8 (βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋 ↔ βˆ€π‘¦ ∈ 𝑁 Β¬ (π‘₯ Β· 𝑦) = 𝑋)
8 ralnex 3072 . . . . . . . 8 (βˆ€π‘¦ ∈ 𝑁 Β¬ (π‘₯ Β· 𝑦) = 𝑋 ↔ Β¬ βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋)
97, 8bitri 274 . . . . . . 7 (βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋 ↔ Β¬ βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋)
109ralbii 3092 . . . . . 6 (βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋 ↔ βˆ€π‘₯ ∈ 𝑁 Β¬ βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋)
11 ralnex 3072 . . . . . 6 (βˆ€π‘₯ ∈ 𝑁 Β¬ βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋 ↔ Β¬ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋)
1210, 11bitr2i 275 . . . . 5 (Β¬ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋 ↔ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋)
1312a1i 11 . . . 4 (𝑋 ∈ 𝐡 β†’ (Β¬ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋 ↔ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋))
145, 13anbi12d 631 . . 3 (𝑋 ∈ 𝐡 β†’ ((Β¬ 𝑋 ∈ π‘ˆ ∧ Β¬ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋) ↔ (𝑋 ∈ 𝑁 ∧ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋)))
15 ioran 981 . . 3 (Β¬ (𝑋 ∈ π‘ˆ ∨ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋) ↔ (Β¬ 𝑋 ∈ π‘ˆ ∧ Β¬ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋))
16 irred.1 . . . 4 𝐡 = (Baseβ€˜π‘…)
17 irred.2 . . . 4 π‘ˆ = (Unitβ€˜π‘…)
18 irred.3 . . . 4 𝐼 = (Irredβ€˜π‘…)
19 irred.5 . . . 4 Β· = (.rβ€˜π‘…)
2016, 17, 18, 1, 19isirred 20036 . . 3 (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋))
2114, 15, 203bitr4g 313 . 2 (𝑋 ∈ 𝐡 β†’ (Β¬ (𝑋 ∈ π‘ˆ ∨ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋) ↔ 𝑋 ∈ 𝐼))
2221con1bid 355 1 (𝑋 ∈ 𝐡 β†’ (Β¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ π‘ˆ ∨ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 844   = wceq 1540   ∈ wcel 2105   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070   βˆ– cdif 3895  β€˜cfv 6479  (class class class)co 7337  Basecbs 17009  .rcmulr 17060  Unitcui 19976  Irredcir 19977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-iota 6431  df-fun 6481  df-fv 6487  df-ov 7340  df-irred 19980
This theorem is referenced by:  irredn0  20040  irredrmul  20044
  Copyright terms: Public domain W3C validator