MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnirred Structured version   Visualization version   GIF version

Theorem isnirred 20380
Description: The property of being a non-irreducible (reducible) element in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irred.1 𝐵 = (Base‘𝑅)
irred.2 𝑈 = (Unit‘𝑅)
irred.3 𝐼 = (Irred‘𝑅)
irred.4 𝑁 = (𝐵𝑈)
irred.5 · = (.r𝑅)
Assertion
Ref Expression
isnirred (𝑋𝐵 → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋)))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   · (𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐼(𝑥,𝑦)

Proof of Theorem isnirred
StepHypRef Expression
1 irred.4 . . . . . . 7 𝑁 = (𝐵𝑈)
21eleq2i 2826 . . . . . 6 (𝑋𝑁𝑋 ∈ (𝐵𝑈))
3 eldif 3936 . . . . . 6 (𝑋 ∈ (𝐵𝑈) ↔ (𝑋𝐵 ∧ ¬ 𝑋𝑈))
42, 3bitri 275 . . . . 5 (𝑋𝑁 ↔ (𝑋𝐵 ∧ ¬ 𝑋𝑈))
54baibr 536 . . . 4 (𝑋𝐵 → (¬ 𝑋𝑈𝑋𝑁))
6 df-ne 2933 . . . . . . . . 9 ((𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ (𝑥 · 𝑦) = 𝑋)
76ralbii 3082 . . . . . . . 8 (∀𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑦𝑁 ¬ (𝑥 · 𝑦) = 𝑋)
8 ralnex 3062 . . . . . . . 8 (∀𝑦𝑁 ¬ (𝑥 · 𝑦) = 𝑋 ↔ ¬ ∃𝑦𝑁 (𝑥 · 𝑦) = 𝑋)
97, 8bitri 275 . . . . . . 7 (∀𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ ∃𝑦𝑁 (𝑥 · 𝑦) = 𝑋)
109ralbii 3082 . . . . . 6 (∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥𝑁 ¬ ∃𝑦𝑁 (𝑥 · 𝑦) = 𝑋)
11 ralnex 3062 . . . . . 6 (∀𝑥𝑁 ¬ ∃𝑦𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ¬ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋)
1210, 11bitr2i 276 . . . . 5 (¬ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋)
1312a1i 11 . . . 4 (𝑋𝐵 → (¬ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋))
145, 13anbi12d 632 . . 3 (𝑋𝐵 → ((¬ 𝑋𝑈 ∧ ¬ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋) ↔ (𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋)))
15 ioran 985 . . 3 (¬ (𝑋𝑈 ∨ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋) ↔ (¬ 𝑋𝑈 ∧ ¬ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋))
16 irred.1 . . . 4 𝐵 = (Base‘𝑅)
17 irred.2 . . . 4 𝑈 = (Unit‘𝑅)
18 irred.3 . . . 4 𝐼 = (Irred‘𝑅)
19 irred.5 . . . 4 · = (.r𝑅)
2016, 17, 18, 1, 19isirred 20379 . . 3 (𝑋𝐼 ↔ (𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋))
2114, 15, 203bitr4g 314 . 2 (𝑋𝐵 → (¬ (𝑋𝑈 ∨ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋) ↔ 𝑋𝐼))
2221con1bid 355 1 (𝑋𝐵 → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  cdif 3923  cfv 6531  (class class class)co 7405  Basecbs 17228  .rcmulr 17272  Unitcui 20315  Irredcir 20316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-irred 20319
This theorem is referenced by:  irredn0  20383  irredrmul  20387
  Copyright terms: Public domain W3C validator