![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnirred | Structured version Visualization version GIF version |
Description: The property of being a non-irreducible (reducible) element in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
irred.1 | ⊢ 𝐵 = (Base‘𝑅) |
irred.2 | ⊢ 𝑈 = (Unit‘𝑅) |
irred.3 | ⊢ 𝐼 = (Irred‘𝑅) |
irred.4 | ⊢ 𝑁 = (𝐵 ∖ 𝑈) |
irred.5 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
isnirred | ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irred.4 | . . . . . . 7 ⊢ 𝑁 = (𝐵 ∖ 𝑈) | |
2 | 1 | eleq2i 2836 | . . . . . 6 ⊢ (𝑋 ∈ 𝑁 ↔ 𝑋 ∈ (𝐵 ∖ 𝑈)) |
3 | eldif 3986 | . . . . . 6 ⊢ (𝑋 ∈ (𝐵 ∖ 𝑈) ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈)) | |
4 | 2, 3 | bitri 275 | . . . . 5 ⊢ (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈)) |
5 | 4 | baibr 536 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝑈 ↔ 𝑋 ∈ 𝑁)) |
6 | df-ne 2947 | . . . . . . . . 9 ⊢ ((𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ (𝑥 · 𝑦) = 𝑋) | |
7 | 6 | ralbii 3099 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑦 ∈ 𝑁 ¬ (𝑥 · 𝑦) = 𝑋) |
8 | ralnex 3078 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝑁 ¬ (𝑥 · 𝑦) = 𝑋 ↔ ¬ ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) | |
9 | 7, 8 | bitri 275 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) |
10 | 9 | ralbii 3099 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥 ∈ 𝑁 ¬ ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) |
11 | ralnex 3078 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑁 ¬ ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) | |
12 | 10, 11 | bitr2i 276 | . . . . 5 ⊢ (¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋) |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) |
14 | 5, 13 | anbi12d 631 | . . 3 ⊢ (𝑋 ∈ 𝐵 → ((¬ 𝑋 ∈ 𝑈 ∧ ¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋))) |
15 | ioran 984 | . . 3 ⊢ (¬ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) ↔ (¬ 𝑋 ∈ 𝑈 ∧ ¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋)) | |
16 | irred.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
17 | irred.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
18 | irred.3 | . . . 4 ⊢ 𝐼 = (Irred‘𝑅) | |
19 | irred.5 | . . . 4 ⊢ · = (.r‘𝑅) | |
20 | 16, 17, 18, 1, 19 | isirred 20445 | . . 3 ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) |
21 | 14, 15, 20 | 3bitr4g 314 | . 2 ⊢ (𝑋 ∈ 𝐵 → (¬ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) ↔ 𝑋 ∈ 𝐼)) |
22 | 21 | con1bid 355 | 1 ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∖ cdif 3973 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 Unitcui 20381 Irredcir 20382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-irred 20385 |
This theorem is referenced by: irredn0 20449 irredrmul 20453 |
Copyright terms: Public domain | W3C validator |