| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnirred | Structured version Visualization version GIF version | ||
| Description: The property of being a non-irreducible (reducible) element in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| irred.1 | ⊢ 𝐵 = (Base‘𝑅) |
| irred.2 | ⊢ 𝑈 = (Unit‘𝑅) |
| irred.3 | ⊢ 𝐼 = (Irred‘𝑅) |
| irred.4 | ⊢ 𝑁 = (𝐵 ∖ 𝑈) |
| irred.5 | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| isnirred | ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irred.4 | . . . . . . 7 ⊢ 𝑁 = (𝐵 ∖ 𝑈) | |
| 2 | 1 | eleq2i 2821 | . . . . . 6 ⊢ (𝑋 ∈ 𝑁 ↔ 𝑋 ∈ (𝐵 ∖ 𝑈)) |
| 3 | eldif 3927 | . . . . . 6 ⊢ (𝑋 ∈ (𝐵 ∖ 𝑈) ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈)) | |
| 4 | 2, 3 | bitri 275 | . . . . 5 ⊢ (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈)) |
| 5 | 4 | baibr 536 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝑈 ↔ 𝑋 ∈ 𝑁)) |
| 6 | df-ne 2927 | . . . . . . . . 9 ⊢ ((𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ (𝑥 · 𝑦) = 𝑋) | |
| 7 | 6 | ralbii 3076 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑦 ∈ 𝑁 ¬ (𝑥 · 𝑦) = 𝑋) |
| 8 | ralnex 3056 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝑁 ¬ (𝑥 · 𝑦) = 𝑋 ↔ ¬ ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) | |
| 9 | 7, 8 | bitri 275 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) |
| 10 | 9 | ralbii 3076 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥 ∈ 𝑁 ¬ ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) |
| 11 | ralnex 3056 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑁 ¬ ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) | |
| 12 | 10, 11 | bitr2i 276 | . . . . 5 ⊢ (¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋) |
| 13 | 12 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) |
| 14 | 5, 13 | anbi12d 632 | . . 3 ⊢ (𝑋 ∈ 𝐵 → ((¬ 𝑋 ∈ 𝑈 ∧ ¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋))) |
| 15 | ioran 985 | . . 3 ⊢ (¬ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) ↔ (¬ 𝑋 ∈ 𝑈 ∧ ¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋)) | |
| 16 | irred.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 17 | irred.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
| 18 | irred.3 | . . . 4 ⊢ 𝐼 = (Irred‘𝑅) | |
| 19 | irred.5 | . . . 4 ⊢ · = (.r‘𝑅) | |
| 20 | 16, 17, 18, 1, 19 | isirred 20335 | . . 3 ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) |
| 21 | 14, 15, 20 | 3bitr4g 314 | . 2 ⊢ (𝑋 ∈ 𝐵 → (¬ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) ↔ 𝑋 ∈ 𝐼)) |
| 22 | 21 | con1bid 355 | 1 ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ∖ cdif 3914 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 Unitcui 20271 Irredcir 20272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-irred 20275 |
| This theorem is referenced by: irredn0 20339 irredrmul 20343 |
| Copyright terms: Public domain | W3C validator |