![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnirred | Structured version Visualization version GIF version |
Description: The property of being a non-irreducible (reducible) element in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
irred.1 | ⊢ 𝐵 = (Base‘𝑅) |
irred.2 | ⊢ 𝑈 = (Unit‘𝑅) |
irred.3 | ⊢ 𝐼 = (Irred‘𝑅) |
irred.4 | ⊢ 𝑁 = (𝐵 ∖ 𝑈) |
irred.5 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
isnirred | ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irred.4 | . . . . . . 7 ⊢ 𝑁 = (𝐵 ∖ 𝑈) | |
2 | 1 | eleq2i 2850 | . . . . . 6 ⊢ (𝑋 ∈ 𝑁 ↔ 𝑋 ∈ (𝐵 ∖ 𝑈)) |
3 | eldif 3832 | . . . . . 6 ⊢ (𝑋 ∈ (𝐵 ∖ 𝑈) ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈)) | |
4 | 2, 3 | bitri 267 | . . . . 5 ⊢ (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈)) |
5 | 4 | baibr 529 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝑈 ↔ 𝑋 ∈ 𝑁)) |
6 | df-ne 2961 | . . . . . . . . 9 ⊢ ((𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ (𝑥 · 𝑦) = 𝑋) | |
7 | 6 | ralbii 3108 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑦 ∈ 𝑁 ¬ (𝑥 · 𝑦) = 𝑋) |
8 | ralnex 3176 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝑁 ¬ (𝑥 · 𝑦) = 𝑋 ↔ ¬ ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) | |
9 | 7, 8 | bitri 267 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) |
10 | 9 | ralbii 3108 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥 ∈ 𝑁 ¬ ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) |
11 | ralnex 3176 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑁 ¬ ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) | |
12 | 10, 11 | bitr2i 268 | . . . . 5 ⊢ (¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋) |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) |
14 | 5, 13 | anbi12d 622 | . . 3 ⊢ (𝑋 ∈ 𝐵 → ((¬ 𝑋 ∈ 𝑈 ∧ ¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋))) |
15 | ioran 967 | . . 3 ⊢ (¬ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) ↔ (¬ 𝑋 ∈ 𝑈 ∧ ¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋)) | |
16 | irred.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
17 | irred.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
18 | irred.3 | . . . 4 ⊢ 𝐼 = (Irred‘𝑅) | |
19 | irred.5 | . . . 4 ⊢ · = (.r‘𝑅) | |
20 | 16, 17, 18, 1, 19 | isirred 19184 | . . 3 ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) |
21 | 14, 15, 20 | 3bitr4g 306 | . 2 ⊢ (𝑋 ∈ 𝐵 → (¬ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) ↔ 𝑋 ∈ 𝐼)) |
22 | 21 | con1bid 348 | 1 ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∨ wo 834 = wceq 1508 ∈ wcel 2051 ≠ wne 2960 ∀wral 3081 ∃wrex 3082 ∖ cdif 3819 ‘cfv 6185 (class class class)co 6974 Basecbs 16337 .rcmulr 16420 Unitcui 19124 Irredcir 19125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-iota 6149 df-fun 6187 df-fv 6193 df-ov 6977 df-irred 19128 |
This theorem is referenced by: irredn0 19188 irredrmul 19192 |
Copyright terms: Public domain | W3C validator |