Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isnirred | Structured version Visualization version GIF version |
Description: The property of being a non-irreducible (reducible) element in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.) |
Ref | Expression |
---|---|
irred.1 | ⊢ 𝐵 = (Base‘𝑅) |
irred.2 | ⊢ 𝑈 = (Unit‘𝑅) |
irred.3 | ⊢ 𝐼 = (Irred‘𝑅) |
irred.4 | ⊢ 𝑁 = (𝐵 ∖ 𝑈) |
irred.5 | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
isnirred | ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irred.4 | . . . . . . 7 ⊢ 𝑁 = (𝐵 ∖ 𝑈) | |
2 | 1 | eleq2i 2831 | . . . . . 6 ⊢ (𝑋 ∈ 𝑁 ↔ 𝑋 ∈ (𝐵 ∖ 𝑈)) |
3 | eldif 3901 | . . . . . 6 ⊢ (𝑋 ∈ (𝐵 ∖ 𝑈) ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈)) | |
4 | 2, 3 | bitri 274 | . . . . 5 ⊢ (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ∈ 𝑈)) |
5 | 4 | baibr 536 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝑈 ↔ 𝑋 ∈ 𝑁)) |
6 | df-ne 2945 | . . . . . . . . 9 ⊢ ((𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ (𝑥 · 𝑦) = 𝑋) | |
7 | 6 | ralbii 3092 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑦 ∈ 𝑁 ¬ (𝑥 · 𝑦) = 𝑋) |
8 | ralnex 3165 | . . . . . . . 8 ⊢ (∀𝑦 ∈ 𝑁 ¬ (𝑥 · 𝑦) = 𝑋 ↔ ¬ ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) | |
9 | 7, 8 | bitri 274 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) |
10 | 9 | ralbii 3092 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥 ∈ 𝑁 ¬ ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) |
11 | ralnex 3165 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝑁 ¬ ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) | |
12 | 10, 11 | bitr2i 275 | . . . . 5 ⊢ (¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋) |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) |
14 | 5, 13 | anbi12d 630 | . . 3 ⊢ (𝑋 ∈ 𝐵 → ((¬ 𝑋 ∈ 𝑈 ∧ ¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋))) |
15 | ioran 980 | . . 3 ⊢ (¬ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) ↔ (¬ 𝑋 ∈ 𝑈 ∧ ¬ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋)) | |
16 | irred.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
17 | irred.2 | . . . 4 ⊢ 𝑈 = (Unit‘𝑅) | |
18 | irred.3 | . . . 4 ⊢ 𝐼 = (Irred‘𝑅) | |
19 | irred.5 | . . . 4 ⊢ · = (.r‘𝑅) | |
20 | 16, 17, 18, 1, 19 | isirred 19922 | . . 3 ⊢ (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑁 (𝑥 · 𝑦) ≠ 𝑋)) |
21 | 14, 15, 20 | 3bitr4g 313 | . 2 ⊢ (𝑋 ∈ 𝐵 → (¬ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋) ↔ 𝑋 ∈ 𝐼)) |
22 | 21 | con1bid 355 | 1 ⊢ (𝑋 ∈ 𝐵 → (¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ 𝑁 ∃𝑦 ∈ 𝑁 (𝑥 · 𝑦) = 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 ∃wrex 3066 ∖ cdif 3888 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 .rcmulr 16944 Unitcui 19862 Irredcir 19863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-irred 19866 |
This theorem is referenced by: irredn0 19926 irredrmul 19930 |
Copyright terms: Public domain | W3C validator |