MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnirred Structured version   Visualization version   GIF version

Theorem isnirred 20363
Description: The property of being a non-irreducible (reducible) element in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irred.1 𝐡 = (Baseβ€˜π‘…)
irred.2 π‘ˆ = (Unitβ€˜π‘…)
irred.3 𝐼 = (Irredβ€˜π‘…)
irred.4 𝑁 = (𝐡 βˆ– π‘ˆ)
irred.5 Β· = (.rβ€˜π‘…)
Assertion
Ref Expression
isnirred (𝑋 ∈ 𝐡 β†’ (Β¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ π‘ˆ ∨ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋)))
Distinct variable groups:   π‘₯,𝑦,𝑁   π‘₯,𝑅,𝑦   π‘₯,𝑋,𝑦
Allowed substitution hints:   𝐡(π‘₯,𝑦)   Β· (π‘₯,𝑦)   π‘ˆ(π‘₯,𝑦)   𝐼(π‘₯,𝑦)

Proof of Theorem isnirred
StepHypRef Expression
1 irred.4 . . . . . . 7 𝑁 = (𝐡 βˆ– π‘ˆ)
21eleq2i 2817 . . . . . 6 (𝑋 ∈ 𝑁 ↔ 𝑋 ∈ (𝐡 βˆ– π‘ˆ))
3 eldif 3955 . . . . . 6 (𝑋 ∈ (𝐡 βˆ– π‘ˆ) ↔ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ∈ π‘ˆ))
42, 3bitri 274 . . . . 5 (𝑋 ∈ 𝑁 ↔ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ∈ π‘ˆ))
54baibr 535 . . . 4 (𝑋 ∈ 𝐡 β†’ (Β¬ 𝑋 ∈ π‘ˆ ↔ 𝑋 ∈ 𝑁))
6 df-ne 2931 . . . . . . . . 9 ((π‘₯ Β· 𝑦) β‰  𝑋 ↔ Β¬ (π‘₯ Β· 𝑦) = 𝑋)
76ralbii 3083 . . . . . . . 8 (βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋 ↔ βˆ€π‘¦ ∈ 𝑁 Β¬ (π‘₯ Β· 𝑦) = 𝑋)
8 ralnex 3062 . . . . . . . 8 (βˆ€π‘¦ ∈ 𝑁 Β¬ (π‘₯ Β· 𝑦) = 𝑋 ↔ Β¬ βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋)
97, 8bitri 274 . . . . . . 7 (βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋 ↔ Β¬ βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋)
109ralbii 3083 . . . . . 6 (βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋 ↔ βˆ€π‘₯ ∈ 𝑁 Β¬ βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋)
11 ralnex 3062 . . . . . 6 (βˆ€π‘₯ ∈ 𝑁 Β¬ βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋 ↔ Β¬ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋)
1210, 11bitr2i 275 . . . . 5 (Β¬ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋 ↔ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋)
1312a1i 11 . . . 4 (𝑋 ∈ 𝐡 β†’ (Β¬ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋 ↔ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋))
145, 13anbi12d 630 . . 3 (𝑋 ∈ 𝐡 β†’ ((Β¬ 𝑋 ∈ π‘ˆ ∧ Β¬ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋) ↔ (𝑋 ∈ 𝑁 ∧ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋)))
15 ioran 981 . . 3 (Β¬ (𝑋 ∈ π‘ˆ ∨ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋) ↔ (Β¬ 𝑋 ∈ π‘ˆ ∧ Β¬ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋))
16 irred.1 . . . 4 𝐡 = (Baseβ€˜π‘…)
17 irred.2 . . . 4 π‘ˆ = (Unitβ€˜π‘…)
18 irred.3 . . . 4 𝐼 = (Irredβ€˜π‘…)
19 irred.5 . . . 4 Β· = (.rβ€˜π‘…)
2016, 17, 18, 1, 19isirred 20362 . . 3 (𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑁 ∧ βˆ€π‘₯ ∈ 𝑁 βˆ€π‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) β‰  𝑋))
2114, 15, 203bitr4g 313 . 2 (𝑋 ∈ 𝐡 β†’ (Β¬ (𝑋 ∈ π‘ˆ ∨ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋) ↔ 𝑋 ∈ 𝐼))
2221con1bid 354 1 (𝑋 ∈ 𝐡 β†’ (Β¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ π‘ˆ ∨ βˆƒπ‘₯ ∈ 𝑁 βˆƒπ‘¦ ∈ 𝑁 (π‘₯ Β· 𝑦) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 845   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  βˆƒwrex 3060   βˆ– cdif 3942  β€˜cfv 6547  (class class class)co 7417  Basecbs 17179  .rcmulr 17233  Unitcui 20298  Irredcir 20299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6499  df-fun 6549  df-fv 6555  df-ov 7420  df-irred 20302
This theorem is referenced by:  irredn0  20366  irredrmul  20370
  Copyright terms: Public domain W3C validator