MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnirred Structured version   Visualization version   GIF version

Theorem isnirred 19672
Description: The property of being a non-irreducible (reducible) element in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irred.1 𝐵 = (Base‘𝑅)
irred.2 𝑈 = (Unit‘𝑅)
irred.3 𝐼 = (Irred‘𝑅)
irred.4 𝑁 = (𝐵𝑈)
irred.5 · = (.r𝑅)
Assertion
Ref Expression
isnirred (𝑋𝐵 → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋)))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   · (𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐼(𝑥,𝑦)

Proof of Theorem isnirred
StepHypRef Expression
1 irred.4 . . . . . . 7 𝑁 = (𝐵𝑈)
21eleq2i 2822 . . . . . 6 (𝑋𝑁𝑋 ∈ (𝐵𝑈))
3 eldif 3863 . . . . . 6 (𝑋 ∈ (𝐵𝑈) ↔ (𝑋𝐵 ∧ ¬ 𝑋𝑈))
42, 3bitri 278 . . . . 5 (𝑋𝑁 ↔ (𝑋𝐵 ∧ ¬ 𝑋𝑈))
54baibr 540 . . . 4 (𝑋𝐵 → (¬ 𝑋𝑈𝑋𝑁))
6 df-ne 2933 . . . . . . . . 9 ((𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ (𝑥 · 𝑦) = 𝑋)
76ralbii 3078 . . . . . . . 8 (∀𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑦𝑁 ¬ (𝑥 · 𝑦) = 𝑋)
8 ralnex 3148 . . . . . . . 8 (∀𝑦𝑁 ¬ (𝑥 · 𝑦) = 𝑋 ↔ ¬ ∃𝑦𝑁 (𝑥 · 𝑦) = 𝑋)
97, 8bitri 278 . . . . . . 7 (∀𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ ∃𝑦𝑁 (𝑥 · 𝑦) = 𝑋)
109ralbii 3078 . . . . . 6 (∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥𝑁 ¬ ∃𝑦𝑁 (𝑥 · 𝑦) = 𝑋)
11 ralnex 3148 . . . . . 6 (∀𝑥𝑁 ¬ ∃𝑦𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ¬ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋)
1210, 11bitr2i 279 . . . . 5 (¬ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋)
1312a1i 11 . . . 4 (𝑋𝐵 → (¬ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋))
145, 13anbi12d 634 . . 3 (𝑋𝐵 → ((¬ 𝑋𝑈 ∧ ¬ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋) ↔ (𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋)))
15 ioran 984 . . 3 (¬ (𝑋𝑈 ∨ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋) ↔ (¬ 𝑋𝑈 ∧ ¬ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋))
16 irred.1 . . . 4 𝐵 = (Base‘𝑅)
17 irred.2 . . . 4 𝑈 = (Unit‘𝑅)
18 irred.3 . . . 4 𝐼 = (Irred‘𝑅)
19 irred.5 . . . 4 · = (.r𝑅)
2016, 17, 18, 1, 19isirred 19671 . . 3 (𝑋𝐼 ↔ (𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋))
2114, 15, 203bitr4g 317 . 2 (𝑋𝐵 → (¬ (𝑋𝑈 ∨ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋) ↔ 𝑋𝐼))
2221con1bid 359 1 (𝑋𝐵 → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2112  wne 2932  wral 3051  wrex 3052  cdif 3850  cfv 6358  (class class class)co 7191  Basecbs 16666  .rcmulr 16750  Unitcui 19611  Irredcir 19612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-iota 6316  df-fun 6360  df-fv 6366  df-ov 7194  df-irred 19615
This theorem is referenced by:  irredn0  19675  irredrmul  19679
  Copyright terms: Public domain W3C validator