MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnirred Structured version   Visualization version   GIF version

Theorem isnirred 20323
Description: The property of being a non-irreducible (reducible) element in a ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irred.1 𝐵 = (Base‘𝑅)
irred.2 𝑈 = (Unit‘𝑅)
irred.3 𝐼 = (Irred‘𝑅)
irred.4 𝑁 = (𝐵𝑈)
irred.5 · = (.r𝑅)
Assertion
Ref Expression
isnirred (𝑋𝐵 → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋)))
Distinct variable groups:   𝑥,𝑦,𝑁   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   · (𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐼(𝑥,𝑦)

Proof of Theorem isnirred
StepHypRef Expression
1 irred.4 . . . . . . 7 𝑁 = (𝐵𝑈)
21eleq2i 2820 . . . . . 6 (𝑋𝑁𝑋 ∈ (𝐵𝑈))
3 eldif 3915 . . . . . 6 (𝑋 ∈ (𝐵𝑈) ↔ (𝑋𝐵 ∧ ¬ 𝑋𝑈))
42, 3bitri 275 . . . . 5 (𝑋𝑁 ↔ (𝑋𝐵 ∧ ¬ 𝑋𝑈))
54baibr 536 . . . 4 (𝑋𝐵 → (¬ 𝑋𝑈𝑋𝑁))
6 df-ne 2926 . . . . . . . . 9 ((𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ (𝑥 · 𝑦) = 𝑋)
76ralbii 3075 . . . . . . . 8 (∀𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑦𝑁 ¬ (𝑥 · 𝑦) = 𝑋)
8 ralnex 3055 . . . . . . . 8 (∀𝑦𝑁 ¬ (𝑥 · 𝑦) = 𝑋 ↔ ¬ ∃𝑦𝑁 (𝑥 · 𝑦) = 𝑋)
97, 8bitri 275 . . . . . . 7 (∀𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ¬ ∃𝑦𝑁 (𝑥 · 𝑦) = 𝑋)
109ralbii 3075 . . . . . 6 (∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋 ↔ ∀𝑥𝑁 ¬ ∃𝑦𝑁 (𝑥 · 𝑦) = 𝑋)
11 ralnex 3055 . . . . . 6 (∀𝑥𝑁 ¬ ∃𝑦𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ¬ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋)
1210, 11bitr2i 276 . . . . 5 (¬ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋)
1312a1i 11 . . . 4 (𝑋𝐵 → (¬ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋 ↔ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋))
145, 13anbi12d 632 . . 3 (𝑋𝐵 → ((¬ 𝑋𝑈 ∧ ¬ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋) ↔ (𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋)))
15 ioran 985 . . 3 (¬ (𝑋𝑈 ∨ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋) ↔ (¬ 𝑋𝑈 ∧ ¬ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋))
16 irred.1 . . . 4 𝐵 = (Base‘𝑅)
17 irred.2 . . . 4 𝑈 = (Unit‘𝑅)
18 irred.3 . . . 4 𝐼 = (Irred‘𝑅)
19 irred.5 . . . 4 · = (.r𝑅)
2016, 17, 18, 1, 19isirred 20322 . . 3 (𝑋𝐼 ↔ (𝑋𝑁 ∧ ∀𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) ≠ 𝑋))
2114, 15, 203bitr4g 314 . 2 (𝑋𝐵 → (¬ (𝑋𝑈 ∨ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋) ↔ 𝑋𝐼))
2221con1bid 355 1 (𝑋𝐵 → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥𝑁𝑦𝑁 (𝑥 · 𝑦) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3902  cfv 6486  (class class class)co 7353  Basecbs 17138  .rcmulr 17180  Unitcui 20258  Irredcir 20259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-irred 20262
This theorem is referenced by:  irredn0  20326  irredrmul  20330
  Copyright terms: Public domain W3C validator