![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > atdmd | Structured version Visualization version GIF version |
Description: Two Hilbert lattice elements have the dual modular pair property if the first is an atom. Theorem 7.6(c) of [MaedaMaeda] p. 31. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atdmd | ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → 𝐴 𝑀ℋ* 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvp 32060 | . . . . 5 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ HAtoms) → ((𝐵 ∩ 𝐴) = 0ℋ ↔ 𝐵 ⋖ℋ (𝐵 ∨ℋ 𝐴))) | |
2 | atelch 32029 | . . . . . . 7 ⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) | |
3 | chjcom 31191 | . . . . . . 7 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝐵 ∨ℋ 𝐴) = (𝐴 ∨ℋ 𝐵)) | |
4 | 2, 3 | sylan2 592 | . . . . . 6 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ HAtoms) → (𝐵 ∨ℋ 𝐴) = (𝐴 ∨ℋ 𝐵)) |
5 | 4 | breq2d 5160 | . . . . 5 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ HAtoms) → (𝐵 ⋖ℋ (𝐵 ∨ℋ 𝐴) ↔ 𝐵 ⋖ℋ (𝐴 ∨ℋ 𝐵))) |
6 | 1, 5 | bitrd 279 | . . . 4 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ HAtoms) → ((𝐵 ∩ 𝐴) = 0ℋ ↔ 𝐵 ⋖ℋ (𝐴 ∨ℋ 𝐵))) |
7 | 6 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → ((𝐵 ∩ 𝐴) = 0ℋ ↔ 𝐵 ⋖ℋ (𝐴 ∨ℋ 𝐵))) |
8 | cvdmd 32022 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐵 ⋖ℋ (𝐴 ∨ℋ 𝐵)) → 𝐴 𝑀ℋ* 𝐵) | |
9 | 8 | 3expia 1120 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐵 ⋖ℋ (𝐴 ∨ℋ 𝐵) → 𝐴 𝑀ℋ* 𝐵)) |
10 | 2, 9 | sylan 579 | . . 3 ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → (𝐵 ⋖ℋ (𝐴 ∨ℋ 𝐵) → 𝐴 𝑀ℋ* 𝐵)) |
11 | 7, 10 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → ((𝐵 ∩ 𝐴) = 0ℋ → 𝐴 𝑀ℋ* 𝐵)) |
12 | atnssm0 32061 | . . . . 5 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ HAtoms) → (¬ 𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 0ℋ)) | |
13 | 12 | ancoms 458 | . . . 4 ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → (¬ 𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 0ℋ)) |
14 | 13 | con1bid 355 | . . 3 ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → (¬ (𝐵 ∩ 𝐴) = 0ℋ ↔ 𝐴 ⊆ 𝐵)) |
15 | ssdmd1 31998 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 𝑀ℋ* 𝐵) | |
16 | 15 | 3expia 1120 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⊆ 𝐵 → 𝐴 𝑀ℋ* 𝐵)) |
17 | 2, 16 | sylan 579 | . . 3 ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⊆ 𝐵 → 𝐴 𝑀ℋ* 𝐵)) |
18 | 14, 17 | sylbid 239 | . 2 ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → (¬ (𝐵 ∩ 𝐴) = 0ℋ → 𝐴 𝑀ℋ* 𝐵)) |
19 | 11, 18 | pm2.61d 179 | 1 ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → 𝐴 𝑀ℋ* 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∩ cin 3947 ⊆ wss 3948 class class class wbr 5148 (class class class)co 7412 Cℋ cch 30614 ∨ℋ chj 30618 0ℋc0h 30620 ⋖ℋ ccv 30649 HAtomscat 30650 𝑀ℋ* cdmd 30652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cc 10436 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 ax-hilex 30684 ax-hfvadd 30685 ax-hvcom 30686 ax-hvass 30687 ax-hv0cl 30688 ax-hvaddid 30689 ax-hfvmul 30690 ax-hvmulid 30691 ax-hvmulass 30692 ax-hvdistr1 30693 ax-hvdistr2 30694 ax-hvmul0 30695 ax-hfi 30764 ax-his1 30767 ax-his2 30768 ax-his3 30769 ax-his4 30770 ax-hcompl 30887 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-oadd 8476 df-omul 8477 df-er 8709 df-map 8828 df-pm 8829 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-fi 9412 df-sup 9443 df-inf 9444 df-oi 9511 df-card 9940 df-acn 9943 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-ioo 13335 df-ico 13337 df-icc 13338 df-fz 13492 df-fzo 13635 df-fl 13764 df-seq 13974 df-exp 14035 df-hash 14298 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-clim 15439 df-rlim 15440 df-sum 15640 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-mulg 18994 df-cntz 19229 df-cmn 19698 df-psmet 21224 df-xmet 21225 df-met 21226 df-bl 21227 df-mopn 21228 df-fbas 21229 df-fg 21230 df-cnfld 21233 df-top 22715 df-topon 22732 df-topsp 22754 df-bases 22768 df-cld 22842 df-ntr 22843 df-cls 22844 df-nei 22921 df-cn 23050 df-cnp 23051 df-lm 23052 df-haus 23138 df-tx 23385 df-hmeo 23578 df-fil 23669 df-fm 23761 df-flim 23762 df-flf 23763 df-xms 24145 df-ms 24146 df-tms 24147 df-cfil 25102 df-cau 25103 df-cmet 25104 df-grpo 30178 df-gid 30179 df-ginv 30180 df-gdiv 30181 df-ablo 30230 df-vc 30244 df-nv 30277 df-va 30280 df-ba 30281 df-sm 30282 df-0v 30283 df-vs 30284 df-nmcv 30285 df-ims 30286 df-dip 30386 df-ssp 30407 df-ph 30498 df-cbn 30548 df-hnorm 30653 df-hba 30654 df-hvsub 30656 df-hlim 30657 df-hcau 30658 df-sh 30892 df-ch 30906 df-oc 30937 df-ch0 30938 df-shs 30993 df-span 30994 df-chj 30995 df-chsup 30996 df-pjh 31080 df-cv 31964 df-md 31965 df-dmd 31966 df-at 32023 |
This theorem is referenced by: atmd 32084 atdmd2 32099 |
Copyright terms: Public domain | W3C validator |