| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issqf | Structured version Visualization version GIF version | ||
| Description: Two ways to say that a number is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| Ref | Expression |
|---|---|
| issqf | ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnsqf 27079 | . . 3 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) | |
| 2 | 1 | necon3abid 2961 | . 2 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
| 3 | ralnex 3055 | . . 3 ⊢ (∀𝑝 ∈ ℙ ¬ (𝑝↑2) ∥ 𝐴 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) | |
| 4 | 1nn0 12436 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 5 | pccl 16797 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝 pCnt 𝐴) ∈ ℕ0) | |
| 6 | 5 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0) |
| 7 | nn0ltp1le 12570 | . . . . . . 7 ⊢ ((1 ∈ ℕ0 ∧ (𝑝 pCnt 𝐴) ∈ ℕ0) → (1 < (𝑝 pCnt 𝐴) ↔ (1 + 1) ≤ (𝑝 pCnt 𝐴))) | |
| 8 | 4, 6, 7 | sylancr 587 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (1 < (𝑝 pCnt 𝐴) ↔ (1 + 1) ≤ (𝑝 pCnt 𝐴))) |
| 9 | 1re 11152 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
| 10 | 6 | nn0red 12482 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℝ) |
| 11 | ltnle 11231 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ) → (1 < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ 1)) | |
| 12 | 9, 10, 11 | sylancr 587 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (1 < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ 1)) |
| 13 | df-2 12227 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
| 14 | 13 | breq1i 5109 | . . . . . . 7 ⊢ (2 ≤ (𝑝 pCnt 𝐴) ↔ (1 + 1) ≤ (𝑝 pCnt 𝐴)) |
| 15 | id 22 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℙ) | |
| 16 | nnz 12528 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
| 17 | 2nn0 12437 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
| 18 | pcdvdsb 16817 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 2 ∈ ℕ0) → (2 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴)) | |
| 19 | 17, 18 | mp3an3 1452 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴)) |
| 20 | 15, 16, 19 | syl2anr 597 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (2 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴)) |
| 21 | 14, 20 | bitr3id 285 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((1 + 1) ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴)) |
| 22 | 8, 12, 21 | 3bitr3d 309 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐴) ≤ 1 ↔ (𝑝↑2) ∥ 𝐴)) |
| 23 | 22 | con1bid 355 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (¬ (𝑝↑2) ∥ 𝐴 ↔ (𝑝 pCnt 𝐴) ≤ 1)) |
| 24 | 23 | ralbidva 3154 | . . 3 ⊢ (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ¬ (𝑝↑2) ∥ 𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1)) |
| 25 | 3, 24 | bitr3id 285 | . 2 ⊢ (𝐴 ∈ ℕ → (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1)) |
| 26 | 2, 25 | bitrd 279 | 1 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℝcr 11045 0cc0 11046 1c1 11047 + caddc 11049 < clt 11186 ≤ cle 11187 ℕcn 12164 2c2 12219 ℕ0cn0 12420 ℤcz 12507 ↑cexp 14004 ∥ cdvds 16199 ℙcprime 16618 pCnt cpc 16784 μcmu 27039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 ax-pre-sup 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-div 11814 df-nn 12165 df-2 12227 df-3 12228 df-n0 12421 df-z 12508 df-uz 12772 df-q 12886 df-rp 12930 df-fz 13447 df-fl 13732 df-mod 13810 df-seq 13945 df-exp 14005 df-hash 14274 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-dvds 16200 df-gcd 16442 df-prm 16619 df-pc 16785 df-mu 27045 |
| This theorem is referenced by: sqfpc 27081 mumullem2 27124 sqff1o 27126 |
| Copyright terms: Public domain | W3C validator |