Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issqf | Structured version Visualization version GIF version |
Description: Two ways to say that a number is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.) |
Ref | Expression |
---|---|
issqf | ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnsqf 26189 | . . 3 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) | |
2 | 1 | necon3abid 2979 | . 2 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
3 | ralnex 3163 | . . 3 ⊢ (∀𝑝 ∈ ℙ ¬ (𝑝↑2) ∥ 𝐴 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) | |
4 | 1nn0 12179 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
5 | pccl 16478 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝 pCnt 𝐴) ∈ ℕ0) | |
6 | 5 | ancoms 458 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0) |
7 | nn0ltp1le 12308 | . . . . . . 7 ⊢ ((1 ∈ ℕ0 ∧ (𝑝 pCnt 𝐴) ∈ ℕ0) → (1 < (𝑝 pCnt 𝐴) ↔ (1 + 1) ≤ (𝑝 pCnt 𝐴))) | |
8 | 4, 6, 7 | sylancr 586 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (1 < (𝑝 pCnt 𝐴) ↔ (1 + 1) ≤ (𝑝 pCnt 𝐴))) |
9 | 1re 10906 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
10 | 6 | nn0red 12224 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℝ) |
11 | ltnle 10985 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ) → (1 < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ 1)) | |
12 | 9, 10, 11 | sylancr 586 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (1 < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ 1)) |
13 | df-2 11966 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
14 | 13 | breq1i 5077 | . . . . . . 7 ⊢ (2 ≤ (𝑝 pCnt 𝐴) ↔ (1 + 1) ≤ (𝑝 pCnt 𝐴)) |
15 | id 22 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℙ) | |
16 | nnz 12272 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
17 | 2nn0 12180 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
18 | pcdvdsb 16498 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 2 ∈ ℕ0) → (2 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴)) | |
19 | 17, 18 | mp3an3 1448 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴)) |
20 | 15, 16, 19 | syl2anr 596 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (2 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴)) |
21 | 14, 20 | bitr3id 284 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((1 + 1) ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴)) |
22 | 8, 12, 21 | 3bitr3d 308 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐴) ≤ 1 ↔ (𝑝↑2) ∥ 𝐴)) |
23 | 22 | con1bid 355 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (¬ (𝑝↑2) ∥ 𝐴 ↔ (𝑝 pCnt 𝐴) ≤ 1)) |
24 | 23 | ralbidva 3119 | . . 3 ⊢ (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ¬ (𝑝↑2) ∥ 𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1)) |
25 | 3, 24 | bitr3id 284 | . 2 ⊢ (𝐴 ∈ ℕ → (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1)) |
26 | 2, 25 | bitrd 278 | 1 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 ≤ cle 10941 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ℤcz 12249 ↑cexp 13710 ∥ cdvds 15891 ℙcprime 16304 pCnt cpc 16465 μcmu 26149 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-fz 13169 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 df-prm 16305 df-pc 16466 df-mu 26155 |
This theorem is referenced by: sqfpc 26191 mumullem2 26234 sqff1o 26236 |
Copyright terms: Public domain | W3C validator |