MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issqf Structured version   Visualization version   GIF version

Theorem issqf 27080
Description: Two ways to say that a number is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
issqf (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1))
Distinct variable group:   𝐴,𝑝

Proof of Theorem issqf
StepHypRef Expression
1 isnsqf 27079 . . 3 (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
21necon3abid 2961 . 2 (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴))
3 ralnex 3055 . . 3 (∀𝑝 ∈ ℙ ¬ (𝑝↑2) ∥ 𝐴 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)
4 1nn0 12436 . . . . . . 7 1 ∈ ℕ0
5 pccl 16797 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
65ancoms 458 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0)
7 nn0ltp1le 12570 . . . . . . 7 ((1 ∈ ℕ0 ∧ (𝑝 pCnt 𝐴) ∈ ℕ0) → (1 < (𝑝 pCnt 𝐴) ↔ (1 + 1) ≤ (𝑝 pCnt 𝐴)))
84, 6, 7sylancr 587 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (1 < (𝑝 pCnt 𝐴) ↔ (1 + 1) ≤ (𝑝 pCnt 𝐴)))
9 1re 11152 . . . . . . 7 1 ∈ ℝ
106nn0red 12482 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℝ)
11 ltnle 11231 . . . . . . 7 ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ) → (1 < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ 1))
129, 10, 11sylancr 587 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (1 < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ 1))
13 df-2 12227 . . . . . . . 8 2 = (1 + 1)
1413breq1i 5109 . . . . . . 7 (2 ≤ (𝑝 pCnt 𝐴) ↔ (1 + 1) ≤ (𝑝 pCnt 𝐴))
15 id 22 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℙ)
16 nnz 12528 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
17 2nn0 12437 . . . . . . . . 9 2 ∈ ℕ0
18 pcdvdsb 16817 . . . . . . . . 9 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 2 ∈ ℕ0) → (2 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴))
1917, 18mp3an3 1452 . . . . . . . 8 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴))
2015, 16, 19syl2anr 597 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (2 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴))
2114, 20bitr3id 285 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((1 + 1) ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴))
228, 12, 213bitr3d 309 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐴) ≤ 1 ↔ (𝑝↑2) ∥ 𝐴))
2322con1bid 355 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (¬ (𝑝↑2) ∥ 𝐴 ↔ (𝑝 pCnt 𝐴) ≤ 1))
2423ralbidva 3154 . . 3 (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ¬ (𝑝↑2) ∥ 𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1))
253, 24bitr3id 285 . 2 (𝐴 ∈ ℕ → (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1))
262, 25bitrd 279 1 (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11045  0cc0 11046  1c1 11047   + caddc 11049   < clt 11186  cle 11187  cn 12164  2c2 12219  0cn0 12420  cz 12507  cexp 14004  cdvds 16199  cprime 16618   pCnt cpc 16784  μcmu 27039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-n0 12421  df-z 12508  df-uz 12772  df-q 12886  df-rp 12930  df-fz 13447  df-fl 13732  df-mod 13810  df-seq 13945  df-exp 14005  df-hash 14274  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16200  df-gcd 16442  df-prm 16619  df-pc 16785  df-mu 27045
This theorem is referenced by:  sqfpc  27081  mumullem2  27124  sqff1o  27126
  Copyright terms: Public domain W3C validator