| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjALTVid | Structured version Visualization version GIF version | ||
| Description: The class of identity relations is disjoint. (Contributed by Peter Mazsa, 20-Jun-2021.) |
| Ref | Expression |
|---|---|
| disjALTVid | ⊢ Disj I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cosscnvid 38472 | . . 3 ⊢ ≀ ◡ I = I | |
| 2 | 1 | eqimssi 4007 | . 2 ⊢ ≀ ◡ I ⊆ I |
| 3 | reli 5789 | . 2 ⊢ Rel I | |
| 4 | dfdisjALTV2 38706 | . 2 ⊢ ( Disj I ↔ ( ≀ ◡ I ⊆ I ∧ Rel I )) | |
| 5 | 2, 3, 4 | mpbir2an 711 | 1 ⊢ Disj I |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 I cid 5532 ◡ccnv 5637 Rel wrel 5643 ≀ ccoss 38169 Disj wdisjALTV 38203 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-coss 38402 df-cnvrefrel 38518 df-disjALTV 38697 |
| This theorem is referenced by: disjALTVidres 38748 disjALTVinidres 38749 disjALTVxrnidres 38750 eqvrelid 38781 detid 38785 eqvrelcossid 38786 petid2 38808 |
| Copyright terms: Public domain | W3C validator |