Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjALTVid Structured version   Visualization version   GIF version

Theorem disjALTVid 38757
Description: The class of identity relations is disjoint. (Contributed by Peter Mazsa, 20-Jun-2021.)
Assertion
Ref Expression
disjALTVid Disj I

Proof of Theorem disjALTVid
StepHypRef Expression
1 cosscnvid 38483 . . 3 I = I
21eqimssi 4043 . 2 I ⊆ I
3 reli 5835 . 2 Rel I
4 dfdisjALTV2 38716 . 2 ( Disj I ↔ ( ≀ I ⊆ I ∧ Rel I ))
52, 3, 4mpbir2an 711 1 Disj I
Colors of variables: wff setvar class
Syntax hints:  wss 3950   I cid 5576  ccnv 5683  Rel wrel 5689  ccoss 38183   Disj wdisjALTV 38217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-coss 38413  df-cnvrefrel 38529  df-disjALTV 38707
This theorem is referenced by:  disjALTVidres  38758  disjALTVinidres  38759  disjALTVxrnidres  38760  eqvrelid  38791  detid  38795  eqvrelcossid  38796  petid2  38818
  Copyright terms: Public domain W3C validator