Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjALTVid | Structured version Visualization version GIF version |
Description: The class of identity relations is disjoint. (Contributed by Peter Mazsa, 20-Jun-2021.) |
Ref | Expression |
---|---|
disjALTVid | ⊢ Disj I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cosscnvid 36799 | . . 3 ⊢ ≀ ◡ I = I | |
2 | 1 | eqimssi 3990 | . 2 ⊢ ≀ ◡ I ⊆ I |
3 | reli 5769 | . 2 ⊢ Rel I | |
4 | dfdisjALTV2 37032 | . 2 ⊢ ( Disj I ↔ ( ≀ ◡ I ⊆ I ∧ Rel I )) | |
5 | 2, 3, 4 | mpbir2an 708 | 1 ⊢ Disj I |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3898 I cid 5518 ◡ccnv 5620 Rel wrel 5626 ≀ ccoss 36489 Disj wdisjALTV 36523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-br 5094 df-opab 5156 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-coss 36729 df-cnvrefrel 36845 df-disjALTV 37023 |
This theorem is referenced by: disjALTVidres 37074 disjALTVinidres 37075 disjALTVxrnidres 37076 eqvrelid 37107 detid 37111 eqvrelcossid 37112 petid2 37134 |
Copyright terms: Public domain | W3C validator |