Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cossssid3 Structured version   Visualization version   GIF version

Theorem cossssid3 36587
Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.)
Assertion
Ref Expression
cossssid3 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Proof of Theorem cossssid3
StepHypRef Expression
1 cossssid2 36586 . 2 ( ≀ 𝑅 ⊆ I ↔ ∀𝑥𝑦(∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
2 19.23v 1945 . . . . 5 (∀𝑢((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ (∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
32albii 1822 . . . 4 (∀𝑦𝑢((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦(∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
4 alcom 2156 . . . 4 (∀𝑦𝑢((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ ∀𝑢𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
53, 4bitr3i 276 . . 3 (∀𝑦(∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ ∀𝑢𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
65albii 1822 . 2 (∀𝑥𝑦(∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥𝑢𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
7 alcom 2156 . 2 (∀𝑥𝑢𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ ∀𝑢𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
81, 6, 73bitri 297 1 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wex 1782  wss 3887   class class class wbr 5074   I cid 5488  ccoss 36333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137  df-id 5489  df-coss 36537
This theorem is referenced by:  cossssid4  36588  cosscnvssid3  36594  cosselcnvrefrels3  36653  dffunALTV3  36800
  Copyright terms: Public domain W3C validator