|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cossssid3 | Structured version Visualization version GIF version | ||
| Description: Equivalent expressions for the class of cosets by 𝑅 to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019.) | 
| Ref | Expression | 
|---|---|
| cossssid3 | ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cossssid2 38469 | . 2 ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑥∀𝑦(∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | |
| 2 | 19.23v 1942 | . . . . 5 ⊢ (∀𝑢((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ (∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | |
| 3 | 2 | albii 1819 | . . . 4 ⊢ (∀𝑦∀𝑢((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ ∀𝑦(∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | 
| 4 | alcom 2159 | . . . 4 ⊢ (∀𝑦∀𝑢((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ ∀𝑢∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | |
| 5 | 3, 4 | bitr3i 277 | . . 3 ⊢ (∀𝑦(∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ ∀𝑢∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | 
| 6 | 5 | albii 1819 | . 2 ⊢ (∀𝑥∀𝑦(∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑢∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | 
| 7 | alcom 2159 | . 2 ⊢ (∀𝑥∀𝑢∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦) ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | |
| 8 | 1, 6, 7 | 3bitri 297 | 1 ⊢ ( ≀ 𝑅 ⊆ I ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦) → 𝑥 = 𝑦)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ⊆ wss 3951 class class class wbr 5143 I cid 5577 ≀ ccoss 38182 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-opab 5206 df-id 5578 df-coss 38412 | 
| This theorem is referenced by: cossssid4 38471 cosscnvssid3 38477 cosselcnvrefrels3 38540 dffunALTV3 38690 | 
| Copyright terms: Public domain | W3C validator |