Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cotr2 | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is transitive. Special instance of cotr2g 14687. (Contributed by RP, 22-Mar-2020.) |
Ref | Expression |
---|---|
cotr2.a | ⊢ dom 𝑅 ⊆ 𝐴 |
cotr2.b | ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 |
cotr2.c | ⊢ ran 𝑅 ⊆ 𝐶 |
Ref | Expression |
---|---|
cotr2 | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cotr2.a | . 2 ⊢ dom 𝑅 ⊆ 𝐴 | |
2 | incom 4135 | . . 3 ⊢ (dom 𝑅 ∩ ran 𝑅) = (ran 𝑅 ∩ dom 𝑅) | |
3 | cotr2.b | . . 3 ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 | |
4 | 2, 3 | eqsstrri 3956 | . 2 ⊢ (ran 𝑅 ∩ dom 𝑅) ⊆ 𝐵 |
5 | cotr2.c | . 2 ⊢ ran 𝑅 ⊆ 𝐶 | |
6 | 1, 4, 5 | cotr2g 14687 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wral 3064 ∩ cin 3886 ⊆ wss 3887 class class class wbr 5074 dom cdm 5589 ran crn 5590 ∘ ccom 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 |
This theorem is referenced by: cotr3 14689 |
Copyright terms: Public domain | W3C validator |