MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotr2 Structured version   Visualization version   GIF version

Theorem cotr2 15013
Description: Two ways of saying a relation is transitive. Special instance of cotr2g 15012. (Contributed by RP, 22-Mar-2020.)
Hypotheses
Ref Expression
cotr2.a dom 𝑅𝐴
cotr2.b (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵
cotr2.c ran 𝑅𝐶
Assertion
Ref Expression
cotr2 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑧,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem cotr2
StepHypRef Expression
1 cotr2.a . 2 dom 𝑅𝐴
2 incom 4217 . . 3 (dom 𝑅 ∩ ran 𝑅) = (ran 𝑅 ∩ dom 𝑅)
3 cotr2.b . . 3 (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵
42, 3eqsstrri 4031 . 2 (ran 𝑅 ∩ dom 𝑅) ⊆ 𝐵
5 cotr2.c . 2 ran 𝑅𝐶
61, 4, 5cotr2g 15012 1 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wral 3059  cin 3962  wss 3963   class class class wbr 5148  dom cdm 5689  ran crn 5690  ccom 5693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700
This theorem is referenced by:  cotr3  15014
  Copyright terms: Public domain W3C validator