![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cotr2 | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is transitive. Special instance of cotr2g 14950. (Contributed by RP, 22-Mar-2020.) |
Ref | Expression |
---|---|
cotr2.a | ⊢ dom 𝑅 ⊆ 𝐴 |
cotr2.b | ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 |
cotr2.c | ⊢ ran 𝑅 ⊆ 𝐶 |
Ref | Expression |
---|---|
cotr2 | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cotr2.a | . 2 ⊢ dom 𝑅 ⊆ 𝐴 | |
2 | incom 4198 | . . 3 ⊢ (dom 𝑅 ∩ ran 𝑅) = (ran 𝑅 ∩ dom 𝑅) | |
3 | cotr2.b | . . 3 ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 | |
4 | 2, 3 | eqsstrri 4014 | . 2 ⊢ (ran 𝑅 ∩ dom 𝑅) ⊆ 𝐵 |
5 | cotr2.c | . 2 ⊢ ran 𝑅 ⊆ 𝐶 | |
6 | 1, 4, 5 | cotr2g 14950 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wral 3057 ∩ cin 3944 ⊆ wss 3945 class class class wbr 5143 dom cdm 5673 ran crn 5674 ∘ ccom 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 df-opab 5206 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 |
This theorem is referenced by: cotr3 14952 |
Copyright terms: Public domain | W3C validator |