MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotr2 Structured version   Visualization version   GIF version

Theorem cotr2 14688
Description: Two ways of saying a relation is transitive. Special instance of cotr2g 14687. (Contributed by RP, 22-Mar-2020.)
Hypotheses
Ref Expression
cotr2.a dom 𝑅𝐴
cotr2.b (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵
cotr2.c ran 𝑅𝐶
Assertion
Ref Expression
cotr2 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑧,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem cotr2
StepHypRef Expression
1 cotr2.a . 2 dom 𝑅𝐴
2 incom 4135 . . 3 (dom 𝑅 ∩ ran 𝑅) = (ran 𝑅 ∩ dom 𝑅)
3 cotr2.b . . 3 (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵
42, 3eqsstrri 3956 . 2 (ran 𝑅 ∩ dom 𝑅) ⊆ 𝐵
5 cotr2.c . 2 ran 𝑅𝐶
61, 4, 5cotr2g 14687 1 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wral 3064  cin 3886  wss 3887   class class class wbr 5074  dom cdm 5589  ran crn 5590  ccom 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600
This theorem is referenced by:  cotr3  14689
  Copyright terms: Public domain W3C validator