| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cotr2 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a relation is transitive. Special instance of cotr2g 14942. (Contributed by RP, 22-Mar-2020.) |
| Ref | Expression |
|---|---|
| cotr2.a | ⊢ dom 𝑅 ⊆ 𝐴 |
| cotr2.b | ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 |
| cotr2.c | ⊢ ran 𝑅 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| cotr2 | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cotr2.a | . 2 ⊢ dom 𝑅 ⊆ 𝐴 | |
| 2 | incom 4172 | . . 3 ⊢ (dom 𝑅 ∩ ran 𝑅) = (ran 𝑅 ∩ dom 𝑅) | |
| 3 | cotr2.b | . . 3 ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 | |
| 4 | 2, 3 | eqsstrri 3994 | . 2 ⊢ (ran 𝑅 ∩ dom 𝑅) ⊆ 𝐵 |
| 5 | cotr2.c | . 2 ⊢ ran 𝑅 ⊆ 𝐶 | |
| 6 | 1, 4, 5 | cotr2g 14942 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3044 ∩ cin 3913 ⊆ wss 3914 class class class wbr 5107 dom cdm 5638 ran crn 5639 ∘ ccom 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: cotr3 14944 |
| Copyright terms: Public domain | W3C validator |