![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cotr2 | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is transitive. Special instance of cotr2g 15025. (Contributed by RP, 22-Mar-2020.) |
Ref | Expression |
---|---|
cotr2.a | ⊢ dom 𝑅 ⊆ 𝐴 |
cotr2.b | ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 |
cotr2.c | ⊢ ran 𝑅 ⊆ 𝐶 |
Ref | Expression |
---|---|
cotr2 | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cotr2.a | . 2 ⊢ dom 𝑅 ⊆ 𝐴 | |
2 | incom 4230 | . . 3 ⊢ (dom 𝑅 ∩ ran 𝑅) = (ran 𝑅 ∩ dom 𝑅) | |
3 | cotr2.b | . . 3 ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 | |
4 | 2, 3 | eqsstrri 4044 | . 2 ⊢ (ran 𝑅 ∩ dom 𝑅) ⊆ 𝐵 |
5 | cotr2.c | . 2 ⊢ ran 𝑅 ⊆ 𝐶 | |
6 | 1, 4, 5 | cotr2g 15025 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3067 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 dom cdm 5700 ran crn 5701 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 |
This theorem is referenced by: cotr3 15027 |
Copyright terms: Public domain | W3C validator |