MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotr2 Structured version   Visualization version   GIF version

Theorem cotr2 15026
Description: Two ways of saying a relation is transitive. Special instance of cotr2g 15025. (Contributed by RP, 22-Mar-2020.)
Hypotheses
Ref Expression
cotr2.a dom 𝑅𝐴
cotr2.b (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵
cotr2.c ran 𝑅𝐶
Assertion
Ref Expression
cotr2 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑧,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem cotr2
StepHypRef Expression
1 cotr2.a . 2 dom 𝑅𝐴
2 incom 4230 . . 3 (dom 𝑅 ∩ ran 𝑅) = (ran 𝑅 ∩ dom 𝑅)
3 cotr2.b . . 3 (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵
42, 3eqsstrri 4044 . 2 (ran 𝑅 ∩ dom 𝑅) ⊆ 𝐵
5 cotr2.c . 2 ran 𝑅𝐶
61, 4, 5cotr2g 15025 1 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wral 3067  cin 3975  wss 3976   class class class wbr 5166  dom cdm 5700  ran crn 5701  ccom 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711
This theorem is referenced by:  cotr3  15027
  Copyright terms: Public domain W3C validator