| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cotr2 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a relation is transitive. Special instance of cotr2g 14998. (Contributed by RP, 22-Mar-2020.) |
| Ref | Expression |
|---|---|
| cotr2.a | ⊢ dom 𝑅 ⊆ 𝐴 |
| cotr2.b | ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 |
| cotr2.c | ⊢ ran 𝑅 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| cotr2 | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cotr2.a | . 2 ⊢ dom 𝑅 ⊆ 𝐴 | |
| 2 | incom 4191 | . . 3 ⊢ (dom 𝑅 ∩ ran 𝑅) = (ran 𝑅 ∩ dom 𝑅) | |
| 3 | cotr2.b | . . 3 ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 | |
| 4 | 2, 3 | eqsstrri 4013 | . 2 ⊢ (ran 𝑅 ∩ dom 𝑅) ⊆ 𝐵 |
| 5 | cotr2.c | . 2 ⊢ ran 𝑅 ⊆ 𝐶 | |
| 6 | 1, 4, 5 | cotr2g 14998 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3050 ∩ cin 3932 ⊆ wss 3933 class class class wbr 5125 dom cdm 5667 ran crn 5668 ∘ ccom 5671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 |
| This theorem is referenced by: cotr3 15000 |
| Copyright terms: Public domain | W3C validator |