MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotr2 Structured version   Visualization version   GIF version

Theorem cotr2 14879
Description: Two ways of saying a relation is transitive. Special instance of cotr2g 14878. (Contributed by RP, 22-Mar-2020.)
Hypotheses
Ref Expression
cotr2.a dom 𝑅𝐴
cotr2.b (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵
cotr2.c ran 𝑅𝐶
Assertion
Ref Expression
cotr2 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑧,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem cotr2
StepHypRef Expression
1 cotr2.a . 2 dom 𝑅𝐴
2 incom 4154 . . 3 (dom 𝑅 ∩ ran 𝑅) = (ran 𝑅 ∩ dom 𝑅)
3 cotr2.b . . 3 (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵
42, 3eqsstrri 3977 . 2 (ran 𝑅 ∩ dom 𝑅) ⊆ 𝐵
5 cotr2.c . 2 ran 𝑅𝐶
61, 4, 5cotr2g 14878 1 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wral 3047  cin 3896  wss 3897   class class class wbr 5086  dom cdm 5611  ran crn 5612  ccom 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622
This theorem is referenced by:  cotr3  14880
  Copyright terms: Public domain W3C validator