| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqsstr3.1 | ⊢ 𝐵 = 𝐴 |
| eqsstr3.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstrri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr3.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2740 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqsstr3.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 4 | 2, 3 | eqsstri 3976 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 |
| This theorem is referenced by: 3sstr3i 3980 inss2 4183 dmv 5857 idssxp 5993 ofrfvalg 7613 ofval 7616 ofrval 7617 off 7623 ofres 7624 ofco 7630 dftpos4 8170 smores2 8269 dmttrcl 9606 rnttrcl 9607 onwf 9718 r0weon 9898 dju1dif 10059 unctb 10090 infmap2 10103 itunitc 10307 axcclem 10343 dfnn3 12134 cotr2 14879 ressbasssg 17143 ressbasssOLD 17146 prdsle 17361 prdsless 17362 cntrss 19238 dprd2da 19951 opsrle 21977 indiscld 23001 leordtval2 23122 fiuncmp 23314 prdstopn 23538 ustneism 24134 icchmeo 24860 itg1addlem4 25622 itg1addlem5 25623 aannenlem3 26260 efifo 26478 konigsbergssiedgw 30222 pjoml4i 31559 5oai 31633 3oai 31640 bdopssadj 32053 xrge00 32987 xrge0mulc1cn 33946 esumdivc 34088 rpsqrtcn 34598 subfacp1lem5 35220 filnetlem3 36414 filnetlem4 36415 mblfinlem4 37700 itg2gt0cn 37715 psubspset 39783 psubclsetN 39975 dvrelog2 42097 dvrelog3 42098 readvrec2 42394 relexpaddss 43751 corcltrcl 43772 relopabVD 44933 cncfiooicc 45932 amgmwlem 49834 |
| Copyright terms: Public domain | W3C validator |