![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsstrri | Structured version Visualization version GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.) |
Ref | Expression |
---|---|
eqsstr3.1 | ⊢ 𝐵 = 𝐴 |
eqsstr3.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
eqsstrri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstr3.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2744 | . 2 ⊢ 𝐴 = 𝐵 |
3 | eqsstr3.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
4 | 2, 3 | eqsstri 4030 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ss 3980 |
This theorem is referenced by: inss2 4246 dmv 5936 idssxp 6069 ofrfvalg 7705 ofval 7708 ofrval 7709 off 7715 ofres 7716 ofco 7722 dftpos4 8269 smores2 8393 dmttrcl 9759 rnttrcl 9760 onwf 9868 r0weon 10050 dju1dif 10211 unctb 10242 infmap2 10255 itunitc 10459 axcclem 10495 dfnn3 12278 cotr2 15013 ressbasssg 17282 ressbasssOLD 17285 prdsle 17509 prdsless 17510 cntrss 19362 dprd2da 20077 opsrle 22083 indiscld 23115 leordtval2 23236 fiuncmp 23428 prdstopn 23652 ustneism 24248 icchmeo 24985 itg1addlem4 25748 itg1addlem4OLD 25749 itg1addlem5 25750 aannenlem3 26387 efifo 26604 konigsbergssiedgw 30279 pjoml4i 31616 5oai 31690 3oai 31697 bdopssadj 32110 xrge00 33000 xrge0mulc1cn 33902 esumdivc 34064 rpsqrtcn 34587 subfacp1lem5 35169 filnetlem3 36363 filnetlem4 36364 mblfinlem4 37647 itg2gt0cn 37662 psubspset 39727 psubclsetN 39919 dvrelog2 42046 dvrelog3 42047 readvrec2 42370 relexpaddss 43708 corcltrcl 43729 relopabVD 44899 cncfiooicc 45850 amgmwlem 49033 |
Copyright terms: Public domain | W3C validator |