![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsstrri | Structured version Visualization version GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.) |
Ref | Expression |
---|---|
eqsstr3.1 | ⊢ 𝐵 = 𝐴 |
eqsstr3.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
eqsstrri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstr3.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2749 | . 2 ⊢ 𝐴 = 𝐵 |
3 | eqsstr3.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
4 | 2, 3 | eqsstri 4043 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: inss2 4259 dmv 5947 idssxp 6078 ofrfvalg 7722 ofval 7725 ofrval 7726 off 7732 ofres 7733 ofco 7738 dftpos4 8286 smores2 8410 dmttrcl 9790 rnttrcl 9791 onwf 9899 r0weon 10081 dju1dif 10242 unctb 10273 infmap2 10286 itunitc 10490 axcclem 10526 dfnn3 12307 cotr2 15026 ressbasssg 17295 ressbasssOLD 17298 prdsle 17522 prdsless 17523 cntrss 19371 dprd2da 20086 opsrle 22088 indiscld 23120 leordtval2 23241 fiuncmp 23433 prdstopn 23657 ustneism 24253 icchmeo 24990 itg1addlem4 25753 itg1addlem4OLD 25754 itg1addlem5 25755 aannenlem3 26390 efifo 26607 konigsbergssiedgw 30282 pjoml4i 31619 5oai 31693 3oai 31700 bdopssadj 32113 xrge00 32998 xrge0mulc1cn 33887 esumdivc 34047 rpsqrtcn 34570 subfacp1lem5 35152 filnetlem3 36346 filnetlem4 36347 mblfinlem4 37620 itg2gt0cn 37635 psubspset 39701 psubclsetN 39893 dvrelog2 42021 dvrelog3 42022 relexpaddss 43680 corcltrcl 43701 relopabVD 44872 cncfiooicc 45815 amgmwlem 48896 |
Copyright terms: Public domain | W3C validator |