![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqsstrri | Structured version Visualization version GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.) |
Ref | Expression |
---|---|
eqsstr3.1 | ⊢ 𝐵 = 𝐴 |
eqsstr3.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
eqsstrri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstr3.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2733 | . 2 ⊢ 𝐴 = 𝐵 |
3 | eqsstr3.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
4 | 2, 3 | eqsstri 4008 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ⊆ wss 3940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3947 df-ss 3957 |
This theorem is referenced by: inss2 4221 dmv 5912 idssxp 6038 ofrfvalg 7671 ofval 7674 ofrval 7675 off 7681 ofres 7682 ofco 7686 dftpos4 8225 smores2 8349 dmttrcl 9711 rnttrcl 9712 onwf 9820 r0weon 10002 dju1dif 10162 unctb 10195 infmap2 10208 itunitc 10411 axcclem 10447 dfnn3 12222 cotr2 14920 ressbasssg 17179 ressbasssOLD 17182 prdsle 17406 prdsless 17407 cntrss 19236 dprd2da 19953 opsrle 21911 indiscld 22916 leordtval2 23037 fiuncmp 23229 prdstopn 23453 ustneism 24049 icchmeo 24786 itg1addlem4 25549 itg1addlem4OLD 25550 itg1addlem5 25551 tdeglem4OLD 25917 aannenlem3 26183 efifo 26397 konigsbergssiedgw 29938 pjoml4i 31275 5oai 31349 3oai 31356 bdopssadj 31769 xrge00 32618 xrge0mulc1cn 33376 esumdivc 33536 rpsqrtcn 34060 subfacp1lem5 34630 filnetlem3 35721 filnetlem4 35722 mblfinlem4 36984 itg2gt0cn 36999 psubspset 39071 psubclsetN 39263 dvrelog2 41388 dvrelog3 41389 relexpaddss 42924 corcltrcl 42945 relopabVD 44117 cncfiooicc 45061 amgmwlem 48003 |
Copyright terms: Public domain | W3C validator |