| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqsstr3.1 | ⊢ 𝐵 = 𝐴 |
| eqsstr3.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstrri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr3.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2744 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqsstr3.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 4 | 2, 3 | eqsstri 4005 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 |
| This theorem is referenced by: 3sstr3i 4009 inss2 4213 dmv 5902 idssxp 6036 ofrfvalg 7679 ofval 7682 ofrval 7683 off 7689 ofres 7690 ofco 7696 dftpos4 8244 smores2 8368 dmttrcl 9735 rnttrcl 9736 onwf 9844 r0weon 10026 dju1dif 10187 unctb 10218 infmap2 10231 itunitc 10435 axcclem 10471 dfnn3 12254 cotr2 14996 ressbasssg 17258 ressbasssOLD 17261 prdsle 17476 prdsless 17477 cntrss 19314 dprd2da 20025 opsrle 22005 indiscld 23029 leordtval2 23150 fiuncmp 23342 prdstopn 23566 ustneism 24162 icchmeo 24889 itg1addlem4 25652 itg1addlem5 25653 aannenlem3 26290 efifo 26508 konigsbergssiedgw 30231 pjoml4i 31568 5oai 31642 3oai 31649 bdopssadj 32062 xrge00 33007 xrge0mulc1cn 33972 esumdivc 34114 rpsqrtcn 34625 subfacp1lem5 35206 filnetlem3 36398 filnetlem4 36399 mblfinlem4 37684 itg2gt0cn 37699 psubspset 39763 psubclsetN 39955 dvrelog2 42077 dvrelog3 42078 readvrec2 42404 relexpaddss 43742 corcltrcl 43763 relopabVD 44925 cncfiooicc 45923 amgmwlem 49666 |
| Copyright terms: Public domain | W3C validator |