| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqsstr3.1 | ⊢ 𝐵 = 𝐴 |
| eqsstr3.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstrri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr3.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2738 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqsstr3.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 4 | 2, 3 | eqsstri 3993 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 |
| This theorem is referenced by: 3sstr3i 3997 inss2 4201 dmv 5886 idssxp 6020 ofrfvalg 7661 ofval 7664 ofrval 7665 off 7671 ofres 7672 ofco 7678 dftpos4 8224 smores2 8323 dmttrcl 9674 rnttrcl 9675 onwf 9783 r0weon 9965 dju1dif 10126 unctb 10157 infmap2 10170 itunitc 10374 axcclem 10410 dfnn3 12200 cotr2 14943 ressbasssg 17207 ressbasssOLD 17210 prdsle 17425 prdsless 17426 cntrss 19263 dprd2da 19974 opsrle 21954 indiscld 22978 leordtval2 23099 fiuncmp 23291 prdstopn 23515 ustneism 24111 icchmeo 24838 itg1addlem4 25600 itg1addlem5 25601 aannenlem3 26238 efifo 26456 konigsbergssiedgw 30179 pjoml4i 31516 5oai 31590 3oai 31597 bdopssadj 32010 xrge00 32953 xrge0mulc1cn 33931 esumdivc 34073 rpsqrtcn 34584 subfacp1lem5 35171 filnetlem3 36368 filnetlem4 36369 mblfinlem4 37654 itg2gt0cn 37669 psubspset 39738 psubclsetN 39930 dvrelog2 42052 dvrelog3 42053 readvrec2 42349 relexpaddss 43707 corcltrcl 43728 relopabVD 44890 cncfiooicc 45892 amgmwlem 49791 |
| Copyright terms: Public domain | W3C validator |