| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqsstr3.1 | ⊢ 𝐵 = 𝐴 |
| eqsstr3.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstrri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr3.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2739 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqsstr3.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 4 | 2, 3 | eqsstri 3996 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 |
| This theorem is referenced by: 3sstr3i 4000 inss2 4204 dmv 5889 idssxp 6023 ofrfvalg 7664 ofval 7667 ofrval 7668 off 7674 ofres 7675 ofco 7681 dftpos4 8227 smores2 8326 dmttrcl 9681 rnttrcl 9682 onwf 9790 r0weon 9972 dju1dif 10133 unctb 10164 infmap2 10177 itunitc 10381 axcclem 10417 dfnn3 12207 cotr2 14950 ressbasssg 17214 ressbasssOLD 17217 prdsle 17432 prdsless 17433 cntrss 19270 dprd2da 19981 opsrle 21961 indiscld 22985 leordtval2 23106 fiuncmp 23298 prdstopn 23522 ustneism 24118 icchmeo 24845 itg1addlem4 25607 itg1addlem5 25608 aannenlem3 26245 efifo 26463 konigsbergssiedgw 30186 pjoml4i 31523 5oai 31597 3oai 31604 bdopssadj 32017 xrge00 32960 xrge0mulc1cn 33938 esumdivc 34080 rpsqrtcn 34591 subfacp1lem5 35178 filnetlem3 36375 filnetlem4 36376 mblfinlem4 37661 itg2gt0cn 37676 psubspset 39745 psubclsetN 39937 dvrelog2 42059 dvrelog3 42060 readvrec2 42356 relexpaddss 43714 corcltrcl 43735 relopabVD 44897 cncfiooicc 45899 amgmwlem 49795 |
| Copyright terms: Public domain | W3C validator |