Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqsstrri | Structured version Visualization version GIF version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.) |
Ref | Expression |
---|---|
eqsstr3.1 | ⊢ 𝐵 = 𝐴 |
eqsstr3.2 | ⊢ 𝐵 ⊆ 𝐶 |
Ref | Expression |
---|---|
eqsstrri | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstr3.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2748 | . 2 ⊢ 𝐴 = 𝐵 |
3 | eqsstr3.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
4 | 2, 3 | eqsstri 3959 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊆ wss 3891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 |
This theorem is referenced by: inss2 4168 dmv 5828 idssxp 5953 ofrfvalg 7532 ofval 7535 ofrval 7536 off 7542 ofres 7543 ofco 7547 dftpos4 8045 smores2 8169 dmttrcl 9440 rnttrcl 9441 onwf 9572 r0weon 9752 dju1dif 9912 unctb 9945 infmap2 9958 itunitc 10161 axcclem 10197 dfnn3 11970 cotr2 14669 ressbasss 16931 prdsle 17154 prdsless 17155 cntrss 18917 dprd2da 19626 opsrle 21229 indiscld 22223 leordtval2 22344 fiuncmp 22536 prdstopn 22760 ustneism 23356 itg1addlem4 24844 itg1addlem4OLD 24845 itg1addlem5 24846 tdeglem4OLD 25206 aannenlem3 25471 efifo 25684 konigsbergssiedgw 28593 pjoml4i 29928 5oai 30002 3oai 30009 bdopssadj 30422 xrge00 31274 xrge0mulc1cn 31870 esumdivc 32030 rpsqrtcn 32552 subfacp1lem5 33125 filnetlem3 34548 filnetlem4 34549 mblfinlem4 35796 itg2gt0cn 35811 psubspset 37737 psubclsetN 37929 dvrelog2 40052 dvrelog3 40053 relexpaddss 41279 corcltrcl 41300 relopabVD 42474 cncfiooicc 43389 amgmwlem 46458 |
Copyright terms: Public domain | W3C validator |