| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqsstr3.1 | ⊢ 𝐵 = 𝐴 |
| eqsstr3.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstrri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr3.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2738 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqsstr3.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 4 | 2, 3 | eqsstri 3990 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 |
| This theorem is referenced by: 3sstr3i 3994 inss2 4197 dmv 5876 idssxp 6009 ofrfvalg 7641 ofval 7644 ofrval 7645 off 7651 ofres 7652 ofco 7658 dftpos4 8201 smores2 8300 dmttrcl 9650 rnttrcl 9651 onwf 9759 r0weon 9941 dju1dif 10102 unctb 10133 infmap2 10146 itunitc 10350 axcclem 10386 dfnn3 12176 cotr2 14919 ressbasssg 17183 ressbasssOLD 17186 prdsle 17401 prdsless 17402 cntrss 19239 dprd2da 19950 opsrle 21930 indiscld 22954 leordtval2 23075 fiuncmp 23267 prdstopn 23491 ustneism 24087 icchmeo 24814 itg1addlem4 25576 itg1addlem5 25577 aannenlem3 26214 efifo 26432 konigsbergssiedgw 30152 pjoml4i 31489 5oai 31563 3oai 31570 bdopssadj 31983 xrge00 32926 xrge0mulc1cn 33904 esumdivc 34046 rpsqrtcn 34557 subfacp1lem5 35144 filnetlem3 36341 filnetlem4 36342 mblfinlem4 37627 itg2gt0cn 37642 psubspset 39711 psubclsetN 39903 dvrelog2 42025 dvrelog3 42026 readvrec2 42322 relexpaddss 43680 corcltrcl 43701 relopabVD 44863 cncfiooicc 45865 amgmwlem 49764 |
| Copyright terms: Public domain | W3C validator |