| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsstrri | Structured version Visualization version GIF version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqsstr3.1 | ⊢ 𝐵 = 𝐴 |
| eqsstr3.2 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| eqsstrri | ⊢ 𝐴 ⊆ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstr3.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2738 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqsstr3.2 | . 2 ⊢ 𝐵 ⊆ 𝐶 | |
| 4 | 2, 3 | eqsstri 3982 | 1 ⊢ 𝐴 ⊆ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3920 |
| This theorem is referenced by: 3sstr3i 3986 inss2 4189 dmv 5865 idssxp 6000 ofrfvalg 7621 ofval 7624 ofrval 7625 off 7631 ofres 7632 ofco 7638 dftpos4 8178 smores2 8277 dmttrcl 9617 rnttrcl 9618 onwf 9726 r0weon 9906 dju1dif 10067 unctb 10098 infmap2 10111 itunitc 10315 axcclem 10351 dfnn3 12142 cotr2 14884 ressbasssg 17148 ressbasssOLD 17151 prdsle 17366 prdsless 17367 cntrss 19210 dprd2da 19923 opsrle 21952 indiscld 22976 leordtval2 23097 fiuncmp 23289 prdstopn 23513 ustneism 24109 icchmeo 24836 itg1addlem4 25598 itg1addlem5 25599 aannenlem3 26236 efifo 26454 konigsbergssiedgw 30194 pjoml4i 31531 5oai 31605 3oai 31612 bdopssadj 32025 xrge00 32968 xrge0mulc1cn 33908 esumdivc 34050 rpsqrtcn 34561 subfacp1lem5 35157 filnetlem3 36354 filnetlem4 36355 mblfinlem4 37640 itg2gt0cn 37655 psubspset 39723 psubclsetN 39915 dvrelog2 42037 dvrelog3 42038 readvrec2 42334 relexpaddss 43691 corcltrcl 43712 relopabVD 44874 cncfiooicc 45875 amgmwlem 49787 |
| Copyright terms: Public domain | W3C validator |