![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cotr3 | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020.) |
Ref | Expression |
---|---|
cotr3.a | ⊢ 𝐴 = dom 𝑅 |
cotr3.b | ⊢ 𝐵 = (𝐴 ∩ 𝐶) |
cotr3.c | ⊢ 𝐶 = ran 𝑅 |
Ref | Expression |
---|---|
cotr3 | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cotr3.a | . . 3 ⊢ 𝐴 = dom 𝑅 | |
2 | 1 | eqimss2i 4070 | . 2 ⊢ dom 𝑅 ⊆ 𝐴 |
3 | cotr3.b | . . . 4 ⊢ 𝐵 = (𝐴 ∩ 𝐶) | |
4 | cotr3.c | . . . . 5 ⊢ 𝐶 = ran 𝑅 | |
5 | 1, 4 | ineq12i 4239 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (dom 𝑅 ∩ ran 𝑅) |
6 | 3, 5 | eqtri 2768 | . . 3 ⊢ 𝐵 = (dom 𝑅 ∩ ran 𝑅) |
7 | 6 | eqimss2i 4070 | . 2 ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 |
8 | 4 | eqimss2i 4070 | . 2 ⊢ ran 𝑅 ⊆ 𝐶 |
9 | 2, 7, 8 | cotr2 15026 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∀wral 3067 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 dom cdm 5700 ran crn 5701 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |