MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotr3 Structured version   Visualization version   GIF version

Theorem cotr3 14952
Description: Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020.)
Hypotheses
Ref Expression
cotr3.a 𝐴 = dom 𝑅
cotr3.b 𝐵 = (𝐴𝐶)
cotr3.c 𝐶 = ran 𝑅
Assertion
Ref Expression
cotr3 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑧,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem cotr3
StepHypRef Expression
1 cotr3.a . . 3 𝐴 = dom 𝑅
21eqimss2i 4040 . 2 dom 𝑅𝐴
3 cotr3.b . . . 4 𝐵 = (𝐴𝐶)
4 cotr3.c . . . . 5 𝐶 = ran 𝑅
51, 4ineq12i 4207 . . . 4 (𝐴𝐶) = (dom 𝑅 ∩ ran 𝑅)
63, 5eqtri 2756 . . 3 𝐵 = (dom 𝑅 ∩ ran 𝑅)
76eqimss2i 4040 . 2 (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵
84eqimss2i 4040 . 2 ran 𝑅𝐶
92, 7, 8cotr2 14951 1 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wral 3057  cin 3944  wss 3945   class class class wbr 5143  dom cdm 5673  ran crn 5674  ccom 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5144  df-opab 5206  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator