Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cotr3 | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020.) |
Ref | Expression |
---|---|
cotr3.a | ⊢ 𝐴 = dom 𝑅 |
cotr3.b | ⊢ 𝐵 = (𝐴 ∩ 𝐶) |
cotr3.c | ⊢ 𝐶 = ran 𝑅 |
Ref | Expression |
---|---|
cotr3 | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cotr3.a | . . 3 ⊢ 𝐴 = dom 𝑅 | |
2 | 1 | eqimss2i 3976 | . 2 ⊢ dom 𝑅 ⊆ 𝐴 |
3 | cotr3.b | . . . 4 ⊢ 𝐵 = (𝐴 ∩ 𝐶) | |
4 | cotr3.c | . . . . 5 ⊢ 𝐶 = ran 𝑅 | |
5 | 1, 4 | ineq12i 4141 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (dom 𝑅 ∩ ran 𝑅) |
6 | 3, 5 | eqtri 2766 | . . 3 ⊢ 𝐵 = (dom 𝑅 ∩ ran 𝑅) |
7 | 6 | eqimss2i 3976 | . 2 ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 |
8 | 4 | eqimss2i 3976 | . 2 ⊢ ran 𝑅 ⊆ 𝐶 |
9 | 2, 7, 8 | cotr2 14616 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∀wral 3063 ∩ cin 3882 ⊆ wss 3883 class class class wbr 5070 dom cdm 5580 ran crn 5581 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |