| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cotr3 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020.) |
| Ref | Expression |
|---|---|
| cotr3.a | ⊢ 𝐴 = dom 𝑅 |
| cotr3.b | ⊢ 𝐵 = (𝐴 ∩ 𝐶) |
| cotr3.c | ⊢ 𝐶 = ran 𝑅 |
| Ref | Expression |
|---|---|
| cotr3 | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cotr3.a | . . 3 ⊢ 𝐴 = dom 𝑅 | |
| 2 | 1 | eqimss2i 3991 | . 2 ⊢ dom 𝑅 ⊆ 𝐴 |
| 3 | cotr3.b | . . . 4 ⊢ 𝐵 = (𝐴 ∩ 𝐶) | |
| 4 | cotr3.c | . . . . 5 ⊢ 𝐶 = ran 𝑅 | |
| 5 | 1, 4 | ineq12i 4163 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (dom 𝑅 ∩ ran 𝑅) |
| 6 | 3, 5 | eqtri 2754 | . . 3 ⊢ 𝐵 = (dom 𝑅 ∩ ran 𝑅) |
| 7 | 6 | eqimss2i 3991 | . 2 ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 |
| 8 | 4 | eqimss2i 3991 | . 2 ⊢ ran 𝑅 ⊆ 𝐶 |
| 9 | 2, 7, 8 | cotr2 14879 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∀wral 3047 ∩ cin 3896 ⊆ wss 3897 class class class wbr 5086 dom cdm 5611 ran crn 5612 ∘ ccom 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |