| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cotr3 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020.) |
| Ref | Expression |
|---|---|
| cotr3.a | ⊢ 𝐴 = dom 𝑅 |
| cotr3.b | ⊢ 𝐵 = (𝐴 ∩ 𝐶) |
| cotr3.c | ⊢ 𝐶 = ran 𝑅 |
| Ref | Expression |
|---|---|
| cotr3 | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cotr3.a | . . 3 ⊢ 𝐴 = dom 𝑅 | |
| 2 | 1 | eqimss2i 4011 | . 2 ⊢ dom 𝑅 ⊆ 𝐴 |
| 3 | cotr3.b | . . . 4 ⊢ 𝐵 = (𝐴 ∩ 𝐶) | |
| 4 | cotr3.c | . . . . 5 ⊢ 𝐶 = ran 𝑅 | |
| 5 | 1, 4 | ineq12i 4184 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (dom 𝑅 ∩ ran 𝑅) |
| 6 | 3, 5 | eqtri 2753 | . . 3 ⊢ 𝐵 = (dom 𝑅 ∩ ran 𝑅) |
| 7 | 6 | eqimss2i 4011 | . 2 ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 |
| 8 | 4 | eqimss2i 4011 | . 2 ⊢ ran 𝑅 ⊆ 𝐶 |
| 9 | 2, 7, 8 | cotr2 14950 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3045 ∩ cin 3916 ⊆ wss 3917 class class class wbr 5110 dom cdm 5641 ran crn 5642 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |