| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cotr3 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020.) |
| Ref | Expression |
|---|---|
| cotr3.a | ⊢ 𝐴 = dom 𝑅 |
| cotr3.b | ⊢ 𝐵 = (𝐴 ∩ 𝐶) |
| cotr3.c | ⊢ 𝐶 = ran 𝑅 |
| Ref | Expression |
|---|---|
| cotr3 | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cotr3.a | . . 3 ⊢ 𝐴 = dom 𝑅 | |
| 2 | 1 | eqimss2i 4044 | . 2 ⊢ dom 𝑅 ⊆ 𝐴 |
| 3 | cotr3.b | . . . 4 ⊢ 𝐵 = (𝐴 ∩ 𝐶) | |
| 4 | cotr3.c | . . . . 5 ⊢ 𝐶 = ran 𝑅 | |
| 5 | 1, 4 | ineq12i 4217 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (dom 𝑅 ∩ ran 𝑅) |
| 6 | 3, 5 | eqtri 2764 | . . 3 ⊢ 𝐵 = (dom 𝑅 ∩ ran 𝑅) |
| 7 | 6 | eqimss2i 4044 | . 2 ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 |
| 8 | 4 | eqimss2i 4044 | . 2 ⊢ ran 𝑅 ⊆ 𝐶 |
| 9 | 2, 7, 8 | cotr2 15017 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∀wral 3060 ∩ cin 3949 ⊆ wss 3950 class class class wbr 5142 dom cdm 5684 ran crn 5685 ∘ ccom 5688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |