MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotr3 Structured version   Visualization version   GIF version

Theorem cotr3 14617
Description: Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020.)
Hypotheses
Ref Expression
cotr3.a 𝐴 = dom 𝑅
cotr3.b 𝐵 = (𝐴𝐶)
cotr3.c 𝐶 = ran 𝑅
Assertion
Ref Expression
cotr3 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑧,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem cotr3
StepHypRef Expression
1 cotr3.a . . 3 𝐴 = dom 𝑅
21eqimss2i 3976 . 2 dom 𝑅𝐴
3 cotr3.b . . . 4 𝐵 = (𝐴𝐶)
4 cotr3.c . . . . 5 𝐶 = ran 𝑅
51, 4ineq12i 4141 . . . 4 (𝐴𝐶) = (dom 𝑅 ∩ ran 𝑅)
63, 5eqtri 2766 . . 3 𝐵 = (dom 𝑅 ∩ ran 𝑅)
76eqimss2i 3976 . 2 (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵
84eqimss2i 3976 . 2 ran 𝑅𝐶
92, 7, 8cotr2 14616 1 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wral 3063  cin 3882  wss 3883   class class class wbr 5070  dom cdm 5580  ran crn 5581  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator