![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cotr3 | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020.) |
Ref | Expression |
---|---|
cotr3.a | ⊢ 𝐴 = dom 𝑅 |
cotr3.b | ⊢ 𝐵 = (𝐴 ∩ 𝐶) |
cotr3.c | ⊢ 𝐶 = ran 𝑅 |
Ref | Expression |
---|---|
cotr3 | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cotr3.a | . . 3 ⊢ 𝐴 = dom 𝑅 | |
2 | 1 | eqimss2i 4040 | . 2 ⊢ dom 𝑅 ⊆ 𝐴 |
3 | cotr3.b | . . . 4 ⊢ 𝐵 = (𝐴 ∩ 𝐶) | |
4 | cotr3.c | . . . . 5 ⊢ 𝐶 = ran 𝑅 | |
5 | 1, 4 | ineq12i 4207 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (dom 𝑅 ∩ ran 𝑅) |
6 | 3, 5 | eqtri 2756 | . . 3 ⊢ 𝐵 = (dom 𝑅 ∩ ran 𝑅) |
7 | 6 | eqimss2i 4040 | . 2 ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 |
8 | 4 | eqimss2i 4040 | . 2 ⊢ ran 𝑅 ⊆ 𝐶 |
9 | 2, 7, 8 | cotr2 14951 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∀wral 3057 ∩ cin 3944 ⊆ wss 3945 class class class wbr 5143 dom cdm 5673 ran crn 5674 ∘ ccom 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 df-opab 5206 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |