![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cotr3 | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020.) |
Ref | Expression |
---|---|
cotr3.a | ⊢ 𝐴 = dom 𝑅 |
cotr3.b | ⊢ 𝐵 = (𝐴 ∩ 𝐶) |
cotr3.c | ⊢ 𝐶 = ran 𝑅 |
Ref | Expression |
---|---|
cotr3 | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cotr3.a | . . 3 ⊢ 𝐴 = dom 𝑅 | |
2 | 1 | eqimss2i 4057 | . 2 ⊢ dom 𝑅 ⊆ 𝐴 |
3 | cotr3.b | . . . 4 ⊢ 𝐵 = (𝐴 ∩ 𝐶) | |
4 | cotr3.c | . . . . 5 ⊢ 𝐶 = ran 𝑅 | |
5 | 1, 4 | ineq12i 4226 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (dom 𝑅 ∩ ran 𝑅) |
6 | 3, 5 | eqtri 2763 | . . 3 ⊢ 𝐵 = (dom 𝑅 ∩ ran 𝑅) |
7 | 6 | eqimss2i 4057 | . 2 ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 |
8 | 4 | eqimss2i 4057 | . 2 ⊢ ran 𝑅 ⊆ 𝐶 |
9 | 2, 7, 8 | cotr2 15013 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∀wral 3059 ∩ cin 3962 ⊆ wss 3963 class class class wbr 5148 dom cdm 5689 ran crn 5690 ∘ ccom 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |