| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cotr3 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020.) |
| Ref | Expression |
|---|---|
| cotr3.a | ⊢ 𝐴 = dom 𝑅 |
| cotr3.b | ⊢ 𝐵 = (𝐴 ∩ 𝐶) |
| cotr3.c | ⊢ 𝐶 = ran 𝑅 |
| Ref | Expression |
|---|---|
| cotr3 | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cotr3.a | . . 3 ⊢ 𝐴 = dom 𝑅 | |
| 2 | 1 | eqimss2i 4025 | . 2 ⊢ dom 𝑅 ⊆ 𝐴 |
| 3 | cotr3.b | . . . 4 ⊢ 𝐵 = (𝐴 ∩ 𝐶) | |
| 4 | cotr3.c | . . . . 5 ⊢ 𝐶 = ran 𝑅 | |
| 5 | 1, 4 | ineq12i 4198 | . . . 4 ⊢ (𝐴 ∩ 𝐶) = (dom 𝑅 ∩ ran 𝑅) |
| 6 | 3, 5 | eqtri 2759 | . . 3 ⊢ 𝐵 = (dom 𝑅 ∩ ran 𝑅) |
| 7 | 6 | eqimss2i 4025 | . 2 ⊢ (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵 |
| 8 | 4 | eqimss2i 4025 | . 2 ⊢ ran 𝑅 ⊆ 𝐶 |
| 9 | 2, 7, 8 | cotr2 15001 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∀wral 3052 ∩ cin 3930 ⊆ wss 3931 class class class wbr 5124 dom cdm 5659 ran crn 5660 ∘ ccom 5663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |