MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotr3 Structured version   Visualization version   GIF version

Theorem cotr3 14944
Description: Two ways of saying a relation is transitive. (Contributed by RP, 22-Mar-2020.)
Hypotheses
Ref Expression
cotr3.a 𝐴 = dom 𝑅
cotr3.b 𝐵 = (𝐴𝐶)
cotr3.c 𝐶 = ran 𝑅
Assertion
Ref Expression
cotr3 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝐴,𝑦,𝑧   𝑦,𝐵,𝑧   𝑧,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem cotr3
StepHypRef Expression
1 cotr3.a . . 3 𝐴 = dom 𝑅
21eqimss2i 4008 . 2 dom 𝑅𝐴
3 cotr3.b . . . 4 𝐵 = (𝐴𝐶)
4 cotr3.c . . . . 5 𝐶 = ran 𝑅
51, 4ineq12i 4181 . . . 4 (𝐴𝐶) = (dom 𝑅 ∩ ran 𝑅)
63, 5eqtri 2752 . . 3 𝐵 = (dom 𝑅 ∩ ran 𝑅)
76eqimss2i 4008 . 2 (dom 𝑅 ∩ ran 𝑅) ⊆ 𝐵
84eqimss2i 4008 . 2 ran 𝑅𝐶
92, 7, 8cotr2 14943 1 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝐴𝑦𝐵𝑧𝐶 ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wral 3044  cin 3913  wss 3914   class class class wbr 5107  dom cdm 5638  ran crn 5639  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator