| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimss2i | Structured version Visualization version GIF version | ||
| Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
| Ref | Expression |
|---|---|
| eqimssi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqimss2i | ⊢ 𝐵 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3966 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | sseqtrri 3993 | 1 ⊢ 𝐵 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 |
| This theorem is referenced by: cotr3 14920 supcvg 15798 prodfclim1 15835 ef0lem 16020 1strbas 17170 restid 17372 cayley 19320 gsumval3 19813 gsumzaddlem 19827 kgencn3 23421 hmeores 23634 opnfbas 23705 tsmsf1o 24008 ust0 24083 icchmeo 24814 icchmeoOLD 24815 plyeq0lem 26091 ulmdvlem1 26285 basellem7 26973 basellem9 26975 dchrisumlem3 27378 structvtxvallem 28923 struct2griedg 28931 gsumhashmul 32974 cycpmfvlem 33042 cycpmfv3 33045 constr01 33705 ivthALT 36296 aomclem4 43019 hashnzfzclim 44284 binomcxplemrat 44312 climsuselem1 45578 gsumfsupp 48143 |
| Copyright terms: Public domain | W3C validator |