![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqimss2i | Structured version Visualization version GIF version |
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
Ref | Expression |
---|---|
eqimssi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqimss2i | ⊢ 𝐵 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4031 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | sseqtrri 4046 | 1 ⊢ 𝐵 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 |
This theorem is referenced by: cotr3 15027 supcvg 15904 prodfclim1 15941 ef0lem 16126 1strbas 17275 1strbasOLD 17276 restid 17493 cayley 19456 gsumval3 19949 gsumzaddlem 19963 kgencn3 23587 hmeores 23800 opnfbas 23871 tsmsf1o 24174 ust0 24249 icchmeo 24990 icchmeoOLD 24991 plyeq0lem 26269 ulmdvlem1 26461 basellem7 27148 basellem9 27150 dchrisumlem3 27553 structvtxvallem 29055 struct2griedg 29063 gsumhashmul 33040 cycpmfvlem 33105 cycpmfv3 33108 constr01 33732 ivthALT 36301 aomclem4 43014 hashnzfzclim 44291 binomcxplemrat 44319 climsuselem1 45528 gsumfsupp 47905 |
Copyright terms: Public domain | W3C validator |