| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimss2i | Structured version Visualization version GIF version | ||
| Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
| Ref | Expression |
|---|---|
| eqimssi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqimss2i | ⊢ 𝐵 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3952 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | sseqtrri 3979 | 1 ⊢ 𝐵 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 |
| This theorem is referenced by: cotr3 14885 supcvg 15763 prodfclim1 15800 ef0lem 15985 1strbas 17135 restid 17337 cayley 19326 gsumval3 19819 gsumzaddlem 19833 kgencn3 23473 hmeores 23686 opnfbas 23757 tsmsf1o 24060 ust0 24135 icchmeo 24865 icchmeoOLD 24866 plyeq0lem 26142 ulmdvlem1 26336 basellem7 27024 basellem9 27026 dchrisumlem3 27429 structvtxvallem 28998 struct2griedg 29006 gsumhashmul 33041 cycpmfvlem 33081 cycpmfv3 33084 constr01 33755 ivthALT 36377 aomclem4 43098 hashnzfzclim 44363 binomcxplemrat 44391 climsuselem1 45655 gsumfsupp 48221 |
| Copyright terms: Public domain | W3C validator |