![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqimss2i | Structured version Visualization version GIF version |
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
Ref | Expression |
---|---|
eqimssi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqimss2i | ⊢ 𝐵 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 4018 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | sseqtrri 4033 | 1 ⊢ 𝐵 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-ss 3980 |
This theorem is referenced by: cotr3 15014 supcvg 15889 prodfclim1 15926 ef0lem 16111 1strbas 17262 1strbasOLD 17263 restid 17480 cayley 19447 gsumval3 19940 gsumzaddlem 19954 kgencn3 23582 hmeores 23795 opnfbas 23866 tsmsf1o 24169 ust0 24244 icchmeo 24985 icchmeoOLD 24986 plyeq0lem 26264 ulmdvlem1 26458 basellem7 27145 basellem9 27147 dchrisumlem3 27550 structvtxvallem 29052 struct2griedg 29060 gsumhashmul 33047 cycpmfvlem 33115 cycpmfv3 33118 constr01 33747 ivthALT 36318 aomclem4 43046 hashnzfzclim 44318 binomcxplemrat 44346 climsuselem1 45563 gsumfsupp 48026 |
Copyright terms: Public domain | W3C validator |