MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqimss2i Structured version   Visualization version   GIF version

Theorem eqimss2i 3976
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.)
Hypothesis
Ref Expression
eqimssi.1 𝐴 = 𝐵
Assertion
Ref Expression
eqimss2i 𝐵𝐴

Proof of Theorem eqimss2i
StepHypRef Expression
1 ssid 3939 . 2 𝐵𝐵
2 eqimssi.1 . 2 𝐴 = 𝐵
31, 2sseqtrri 3954 1 𝐵𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by:  cotr3  14617  supcvg  15496  prodfclim1  15533  ef0lem  15716  1strbas  16856  restid  17061  cayley  18937  gsumval3  19423  gsumzaddlem  19437  kgencn3  22617  hmeores  22830  opnfbas  22901  tsmsf1o  23204  ust0  23279  icchmeo  24010  plyeq0lem  25276  ulmdvlem1  25464  basellem7  26141  basellem9  26143  dchrisumlem3  26544  structvtxvallem  27293  struct2griedg  27301  gsumhashmul  31218  cycpmfvlem  31281  cycpmfv3  31284  ivthALT  34451  aomclem4  40798  hashnzfzclim  41829  binomcxplemrat  41857  climsuselem1  43038  gsumfsupp  45264
  Copyright terms: Public domain W3C validator