| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimss2i | Structured version Visualization version GIF version | ||
| Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
| Ref | Expression |
|---|---|
| eqimssi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqimss2i | ⊢ 𝐵 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3958 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | sseqtrri 3985 | 1 ⊢ 𝐵 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3920 |
| This theorem is referenced by: cotr3 14885 supcvg 15763 prodfclim1 15800 ef0lem 15985 1strbas 17135 restid 17337 cayley 19293 gsumval3 19786 gsumzaddlem 19800 kgencn3 23443 hmeores 23656 opnfbas 23727 tsmsf1o 24030 ust0 24105 icchmeo 24836 icchmeoOLD 24837 plyeq0lem 26113 ulmdvlem1 26307 basellem7 26995 basellem9 26997 dchrisumlem3 27400 structvtxvallem 28965 struct2griedg 28973 gsumhashmul 33014 cycpmfvlem 33054 cycpmfv3 33057 constr01 33709 ivthALT 36309 aomclem4 43030 hashnzfzclim 44295 binomcxplemrat 44323 climsuselem1 45588 gsumfsupp 48166 |
| Copyright terms: Public domain | W3C validator |