Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqimss2i | Structured version Visualization version GIF version |
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
Ref | Expression |
---|---|
eqimssi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqimss2i | ⊢ 𝐵 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3943 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | sseqtrri 3958 | 1 ⊢ 𝐵 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: cotr3 14689 supcvg 15568 prodfclim1 15605 ef0lem 15788 1strbas 16929 1strbasOLD 16930 restid 17144 cayley 19022 gsumval3 19508 gsumzaddlem 19522 kgencn3 22709 hmeores 22922 opnfbas 22993 tsmsf1o 23296 ust0 23371 icchmeo 24104 plyeq0lem 25371 ulmdvlem1 25559 basellem7 26236 basellem9 26238 dchrisumlem3 26639 structvtxvallem 27390 struct2griedg 27398 gsumhashmul 31316 cycpmfvlem 31379 cycpmfv3 31382 ivthALT 34524 aomclem4 40882 hashnzfzclim 41940 binomcxplemrat 41968 climsuselem1 43148 gsumfsupp 45376 |
Copyright terms: Public domain | W3C validator |