MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqimss2i Structured version   Visualization version   GIF version

Theorem eqimss2i 3885
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.)
Hypothesis
Ref Expression
eqimssi.1 𝐴 = 𝐵
Assertion
Ref Expression
eqimss2i 𝐵𝐴

Proof of Theorem eqimss2i
StepHypRef Expression
1 ssid 3848 . 2 𝐵𝐵
2 eqimssi.1 . 2 𝐴 = 𝐵
31, 2sseqtr4i 3863 1 𝐵𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1656  wss 3798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-in 3805  df-ss 3812
This theorem is referenced by:  cotr3  14103  supcvg  14969  prodfclim1  15005  ef0lem  15188  1strbas  16346  restid  16454  cayley  18191  gsumval3  18668  gsumzaddlem  18681  kgencn3  21739  hmeores  21952  opnfbas  22023  tsmsf1o  22325  ust0  22400  icchmeo  23117  plyeq0lem  24372  ulmdvlem1  24560  basellem7  25233  basellem9  25235  dchrisumlem3  25600  structvtxvallem  26325  struct2griedg  26333  ivthALT  32863  aomclem4  38469  hashnzfzclim  39360  binomcxplemrat  39388  climsuselem1  40632
  Copyright terms: Public domain W3C validator