| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimss2i | Structured version Visualization version GIF version | ||
| Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
| Ref | Expression |
|---|---|
| eqimssi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqimss2i | ⊢ 𝐵 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3972 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | sseqtrri 3999 | 1 ⊢ 𝐵 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 |
| This theorem is referenced by: cotr3 14951 supcvg 15829 prodfclim1 15866 ef0lem 16051 1strbas 17201 restid 17403 cayley 19351 gsumval3 19844 gsumzaddlem 19858 kgencn3 23452 hmeores 23665 opnfbas 23736 tsmsf1o 24039 ust0 24114 icchmeo 24845 icchmeoOLD 24846 plyeq0lem 26122 ulmdvlem1 26316 basellem7 27004 basellem9 27006 dchrisumlem3 27409 structvtxvallem 28954 struct2griedg 28962 gsumhashmul 33008 cycpmfvlem 33076 cycpmfv3 33079 constr01 33739 ivthALT 36330 aomclem4 43053 hashnzfzclim 44318 binomcxplemrat 44346 climsuselem1 45612 gsumfsupp 48174 |
| Copyright terms: Public domain | W3C validator |