Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqimss2i | Structured version Visualization version GIF version |
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
Ref | Expression |
---|---|
eqimssi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqimss2i | ⊢ 𝐵 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3939 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | sseqtrri 3954 | 1 ⊢ 𝐵 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: cotr3 14617 supcvg 15496 prodfclim1 15533 ef0lem 15716 1strbas 16856 restid 17061 cayley 18937 gsumval3 19423 gsumzaddlem 19437 kgencn3 22617 hmeores 22830 opnfbas 22901 tsmsf1o 23204 ust0 23279 icchmeo 24010 plyeq0lem 25276 ulmdvlem1 25464 basellem7 26141 basellem9 26143 dchrisumlem3 26544 structvtxvallem 27293 struct2griedg 27301 gsumhashmul 31218 cycpmfvlem 31281 cycpmfv3 31284 ivthALT 34451 aomclem4 40798 hashnzfzclim 41829 binomcxplemrat 41857 climsuselem1 43038 gsumfsupp 45264 |
Copyright terms: Public domain | W3C validator |