Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqimss2i | Structured version Visualization version GIF version |
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
Ref | Expression |
---|---|
eqimssi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
eqimss2i | ⊢ 𝐵 ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3947 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
3 | 1, 2 | sseqtrri 3962 | 1 ⊢ 𝐵 ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ⊆ wss 3891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 |
This theorem is referenced by: cotr3 14670 supcvg 15549 prodfclim1 15586 ef0lem 15769 1strbas 16910 1strbasOLD 16911 restid 17125 cayley 19003 gsumval3 19489 gsumzaddlem 19503 kgencn3 22690 hmeores 22903 opnfbas 22974 tsmsf1o 23277 ust0 23352 icchmeo 24085 plyeq0lem 25352 ulmdvlem1 25540 basellem7 26217 basellem9 26219 dchrisumlem3 26620 structvtxvallem 27371 struct2griedg 27379 gsumhashmul 31295 cycpmfvlem 31358 cycpmfv3 31361 ivthALT 34503 aomclem4 40862 hashnzfzclim 41893 binomcxplemrat 41921 climsuselem1 43102 gsumfsupp 45328 |
Copyright terms: Public domain | W3C validator |