| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimss2i | Structured version Visualization version GIF version | ||
| Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
| Ref | Expression |
|---|---|
| eqimssi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqimss2i | ⊢ 𝐵 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3981 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | sseqtrri 4008 | 1 ⊢ 𝐵 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 |
| This theorem is referenced by: cotr3 14997 supcvg 15872 prodfclim1 15909 ef0lem 16094 1strbas 17244 1strbasOLD 17245 restid 17447 cayley 19395 gsumval3 19888 gsumzaddlem 19902 kgencn3 23496 hmeores 23709 opnfbas 23780 tsmsf1o 24083 ust0 24158 icchmeo 24889 icchmeoOLD 24890 plyeq0lem 26167 ulmdvlem1 26361 basellem7 27049 basellem9 27051 dchrisumlem3 27454 structvtxvallem 28999 struct2griedg 29007 gsumhashmul 33055 cycpmfvlem 33123 cycpmfv3 33126 constr01 33776 ivthALT 36353 aomclem4 43081 hashnzfzclim 44346 binomcxplemrat 44374 climsuselem1 45636 gsumfsupp 48157 |
| Copyright terms: Public domain | W3C validator |