MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqimss2i Structured version   Visualization version   GIF version

Theorem eqimss2i 3997
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.)
Hypothesis
Ref Expression
eqimssi.1 𝐴 = 𝐵
Assertion
Ref Expression
eqimss2i 𝐵𝐴

Proof of Theorem eqimss2i
StepHypRef Expression
1 ssid 3958 . 2 𝐵𝐵
2 eqimssi.1 . 2 𝐴 = 𝐵
31, 2sseqtrri 3985 1 𝐵𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ss 3920
This theorem is referenced by:  cotr3  14885  supcvg  15763  prodfclim1  15800  ef0lem  15985  1strbas  17135  restid  17337  cayley  19293  gsumval3  19786  gsumzaddlem  19800  kgencn3  23443  hmeores  23656  opnfbas  23727  tsmsf1o  24030  ust0  24105  icchmeo  24836  icchmeoOLD  24837  plyeq0lem  26113  ulmdvlem1  26307  basellem7  26995  basellem9  26997  dchrisumlem3  27400  structvtxvallem  28965  struct2griedg  28973  gsumhashmul  33014  cycpmfvlem  33054  cycpmfv3  33057  constr01  33709  ivthALT  36309  aomclem4  43030  hashnzfzclim  44295  binomcxplemrat  44323  climsuselem1  45588  gsumfsupp  48166
  Copyright terms: Public domain W3C validator