MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqimss2i Structured version   Visualization version   GIF version

Theorem eqimss2i 4070
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.)
Hypothesis
Ref Expression
eqimssi.1 𝐴 = 𝐵
Assertion
Ref Expression
eqimss2i 𝐵𝐴

Proof of Theorem eqimss2i
StepHypRef Expression
1 ssid 4031 . 2 𝐵𝐵
2 eqimssi.1 . 2 𝐴 = 𝐵
31, 2sseqtrri 4046 1 𝐵𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ss 3993
This theorem is referenced by:  cotr3  15027  supcvg  15904  prodfclim1  15941  ef0lem  16126  1strbas  17275  1strbasOLD  17276  restid  17493  cayley  19456  gsumval3  19949  gsumzaddlem  19963  kgencn3  23587  hmeores  23800  opnfbas  23871  tsmsf1o  24174  ust0  24249  icchmeo  24990  icchmeoOLD  24991  plyeq0lem  26269  ulmdvlem1  26461  basellem7  27148  basellem9  27150  dchrisumlem3  27553  structvtxvallem  29055  struct2griedg  29063  gsumhashmul  33040  cycpmfvlem  33105  cycpmfv3  33108  constr01  33732  ivthALT  36301  aomclem4  43014  hashnzfzclim  44291  binomcxplemrat  44319  climsuselem1  45528  gsumfsupp  47905
  Copyright terms: Public domain W3C validator