| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimss2i | Structured version Visualization version GIF version | ||
| Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
| Ref | Expression |
|---|---|
| eqimssi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqimss2i | ⊢ 𝐵 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3969 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | sseqtrri 3996 | 1 ⊢ 𝐵 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 |
| This theorem is referenced by: cotr3 14944 supcvg 15822 prodfclim1 15859 ef0lem 16044 1strbas 17194 restid 17396 cayley 19344 gsumval3 19837 gsumzaddlem 19851 kgencn3 23445 hmeores 23658 opnfbas 23729 tsmsf1o 24032 ust0 24107 icchmeo 24838 icchmeoOLD 24839 plyeq0lem 26115 ulmdvlem1 26309 basellem7 26997 basellem9 26999 dchrisumlem3 27402 structvtxvallem 28947 struct2griedg 28955 gsumhashmul 33001 cycpmfvlem 33069 cycpmfv3 33072 constr01 33732 ivthALT 36323 aomclem4 43046 hashnzfzclim 44311 binomcxplemrat 44339 climsuselem1 45605 gsumfsupp 48170 |
| Copyright terms: Public domain | W3C validator |