MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqimss2i Structured version   Visualization version   GIF version

Theorem eqimss2i 3980
Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.)
Hypothesis
Ref Expression
eqimssi.1 𝐴 = 𝐵
Assertion
Ref Expression
eqimss2i 𝐵𝐴

Proof of Theorem eqimss2i
StepHypRef Expression
1 ssid 3943 . 2 𝐵𝐵
2 eqimssi.1 . 2 𝐴 = 𝐵
31, 2sseqtrri 3958 1 𝐵𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  cotr3  14689  supcvg  15568  prodfclim1  15605  ef0lem  15788  1strbas  16929  1strbasOLD  16930  restid  17144  cayley  19022  gsumval3  19508  gsumzaddlem  19522  kgencn3  22709  hmeores  22922  opnfbas  22993  tsmsf1o  23296  ust0  23371  icchmeo  24104  plyeq0lem  25371  ulmdvlem1  25559  basellem7  26236  basellem9  26238  dchrisumlem3  26639  structvtxvallem  27390  struct2griedg  27398  gsumhashmul  31316  cycpmfvlem  31379  cycpmfv3  31382  ivthALT  34524  aomclem4  40882  hashnzfzclim  41940  binomcxplemrat  41968  climsuselem1  43148  gsumfsupp  45376
  Copyright terms: Public domain W3C validator