| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqimss2i | Structured version Visualization version GIF version | ||
| Description: Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.) |
| Ref | Expression |
|---|---|
| eqimssi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| eqimss2i | ⊢ 𝐵 ⊆ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3966 | . 2 ⊢ 𝐵 ⊆ 𝐵 | |
| 2 | eqimssi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 3 | 1, 2 | sseqtrri 3993 | 1 ⊢ 𝐵 ⊆ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 |
| This theorem is referenced by: cotr3 14920 supcvg 15798 prodfclim1 15835 ef0lem 16020 1strbas 17170 restid 17372 cayley 19328 gsumval3 19821 gsumzaddlem 19835 kgencn3 23478 hmeores 23691 opnfbas 23762 tsmsf1o 24065 ust0 24140 icchmeo 24871 icchmeoOLD 24872 plyeq0lem 26148 ulmdvlem1 26342 basellem7 27030 basellem9 27032 dchrisumlem3 27435 structvtxvallem 29000 struct2griedg 29008 gsumhashmul 33044 cycpmfvlem 33084 cycpmfv3 33087 constr01 33725 ivthALT 36316 aomclem4 43039 hashnzfzclim 44304 binomcxplemrat 44332 climsuselem1 45598 gsumfsupp 48163 |
| Copyright terms: Public domain | W3C validator |