| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coemptyd | Structured version Visualization version GIF version | ||
| Description: Deduction about composition of classes with no relational content in common. (Contributed by RP, 24-Dec-2019.) |
| Ref | Expression |
|---|---|
| coemptyd.1 | ⊢ (𝜑 → (dom 𝐴 ∩ ran 𝐵) = ∅) |
| Ref | Expression |
|---|---|
| coemptyd | ⊢ (𝜑 → (𝐴 ∘ 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coemptyd.1 | . 2 ⊢ (𝜑 → (dom 𝐴 ∩ ran 𝐵) = ∅) | |
| 2 | coeq0 6203 | . 2 ⊢ ((𝐴 ∘ 𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅) | |
| 3 | 1, 2 | sylibr 234 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3896 ∅c0 4280 dom cdm 5614 ran crn 5615 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 |
| This theorem is referenced by: xptrrel 14887 cosnopne 32675 coeq0i 42794 conrel1d 43704 conrel2d 43705 clsneibex 44143 neicvgbex 44153 |
| Copyright terms: Public domain | W3C validator |