MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coemptyd Structured version   Visualization version   GIF version

Theorem coemptyd 14886
Description: Deduction about composition of classes with no relational content in common. (Contributed by RP, 24-Dec-2019.)
Hypothesis
Ref Expression
coemptyd.1 (𝜑 → (dom 𝐴 ∩ ran 𝐵) = ∅)
Assertion
Ref Expression
coemptyd (𝜑 → (𝐴𝐵) = ∅)

Proof of Theorem coemptyd
StepHypRef Expression
1 coemptyd.1 . 2 (𝜑 → (dom 𝐴 ∩ ran 𝐵) = ∅)
2 coeq0 6204 . 2 ((𝐴𝐵) = ∅ ↔ (dom 𝐴 ∩ ran 𝐵) = ∅)
31, 2sylibr 234 1 (𝜑 → (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3902  c0 4284  dom cdm 5619  ran crn 5620  ccom 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631
This theorem is referenced by:  xptrrel  14887  cosnopne  32636  coeq0i  42726  conrel1d  43636  conrel2d  43637  clsneibex  44075  neicvgbex  44085
  Copyright terms: Public domain W3C validator