MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matgsum Structured version   Visualization version   GIF version

Theorem matgsum 21334
Description: Finite commutative sums in a matrix algebra are taken componentwise. (Contributed by AV, 26-Sep-2019.)
Hypotheses
Ref Expression
matgsum.a 𝐴 = (𝑁 Mat 𝑅)
matgsum.b 𝐵 = (Base‘𝐴)
matgsum.z 0 = (0g𝐴)
matgsum.i (𝜑𝑁 ∈ Fin)
matgsum.j (𝜑𝐽𝑊)
matgsum.r (𝜑𝑅 ∈ Ring)
matgsum.f ((𝜑𝑦𝐽) → (𝑖𝑁, 𝑗𝑁𝑈) ∈ 𝐵)
matgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) finSupp 0 )
Assertion
Ref Expression
matgsum (𝜑 → (𝐴 Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑖,𝐽,𝑗,𝑦   𝑖,𝑁,𝑗,𝑦   𝑅,𝑖,𝑗,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑖,𝑗)   𝐴(𝑦,𝑖,𝑗)   𝐵(𝑦,𝑖,𝑗)   𝑈(𝑦,𝑖,𝑗)   𝑊(𝑦,𝑖,𝑗)   0 (𝑦,𝑖,𝑗)

Proof of Theorem matgsum
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 matgsum.j . . . 4 (𝜑𝐽𝑊)
21mptexd 7040 . . 3 (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) ∈ V)
3 matgsum.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
43ovexi 7247 . . . 4 𝐴 ∈ V
54a1i 11 . . 3 (𝜑𝐴 ∈ V)
6 ovexd 7248 . . 3 (𝜑 → (𝑅 freeLMod (𝑁 × 𝑁)) ∈ V)
7 matgsum.i . . . . 5 (𝜑𝑁 ∈ Fin)
8 matgsum.r . . . . 5 (𝜑𝑅 ∈ Ring)
9 eqid 2737 . . . . . 6 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
103, 9matbas 21310 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
117, 8, 10syl2anc 587 . . . 4 (𝜑 → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
1211eqcomd 2743 . . 3 (𝜑 → (Base‘𝐴) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
133, 9matplusg 21311 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g𝐴))
147, 8, 13syl2anc 587 . . . 4 (𝜑 → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g𝐴))
1514eqcomd 2743 . . 3 (𝜑 → (+g𝐴) = (+g‘(𝑅 freeLMod (𝑁 × 𝑁))))
162, 5, 6, 12, 15gsumpropd 18150 . 2 (𝜑 → (𝐴 Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))))
17 mpompts 7835 . . . . . 6 (𝑖𝑁, 𝑗𝑁𝑈) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)
1817a1i 11 . . . . 5 (𝜑 → (𝑖𝑁, 𝑗𝑁𝑈) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))
1918mpteq2dv 5151 . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) = (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)))
2019oveq2d 7229 . . 3 (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))))
21 eqid 2737 . . . 4 (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))
22 eqid 2737 . . . 4 (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g‘(𝑅 freeLMod (𝑁 × 𝑁)))
23 xpfi 8942 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
247, 7, 23syl2anc 587 . . . 4 (𝜑 → (𝑁 × 𝑁) ∈ Fin)
25 matgsum.f . . . . . 6 ((𝜑𝑦𝐽) → (𝑖𝑁, 𝑗𝑁𝑈) ∈ 𝐵)
26 matgsum.b . . . . . 6 𝐵 = (Base‘𝐴)
2725, 26eleqtrdi 2848 . . . . 5 ((𝜑𝑦𝐽) → (𝑖𝑁, 𝑗𝑁𝑈) ∈ (Base‘𝐴))
2817eqcomi 2746 . . . . . 6 (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈) = (𝑖𝑁, 𝑗𝑁𝑈)
2928a1i 11 . . . . 5 ((𝜑𝑦𝐽) → (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈) = (𝑖𝑁, 𝑗𝑁𝑈))
307, 8jca 515 . . . . . . 7 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3130adantr 484 . . . . . 6 ((𝜑𝑦𝐽) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3231, 10syl 17 . . . . 5 ((𝜑𝑦𝐽) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
3327, 29, 323eltr4d 2853 . . . 4 ((𝜑𝑦𝐽) → (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈) ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
34 matgsum.w . . . . . 6 (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) finSupp 0 )
3528mpteq2i 5147 . . . . . 6 (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) = (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))
36 matgsum.z . . . . . . 7 0 = (0g𝐴)
3736eqcomi 2746 . . . . . 6 (0g𝐴) = 0
3834, 35, 373brtr4g 5087 . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) finSupp (0g𝐴))
393, 9mat0 21314 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g𝐴))
407, 8, 39syl2anc 587 . . . . 5 (𝜑 → (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g𝐴))
4138, 40breqtrrd 5081 . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) finSupp (0g‘(𝑅 freeLMod (𝑁 × 𝑁))))
429, 21, 22, 24, 1, 8, 33, 41frlmgsum 20734 . . 3 (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))))
4320, 42eqtrd 2777 . 2 (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))))
44 fvex 6730 . . . . . . . 8 (2nd𝑧) ∈ V
45 csbov2g 7259 . . . . . . . 8 ((2nd𝑧) ∈ V → (2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)) = (𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈)))
4644, 45ax-mp 5 . . . . . . 7 (2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)) = (𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈))
4746csbeq2i 3819 . . . . . 6 (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)) = (1st𝑧) / 𝑖(𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈))
48 fvex 6730 . . . . . . 7 (1st𝑧) ∈ V
49 csbov2g 7259 . . . . . . 7 ((1st𝑧) ∈ V → (1st𝑧) / 𝑖(𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈)) = (𝑅 Σg (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈)))
5048, 49ax-mp 5 . . . . . 6 (1st𝑧) / 𝑖(𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈)) = (𝑅 Σg (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈))
51 csbmpt2 5439 . . . . . . . . . 10 ((2nd𝑧) ∈ V → (2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (𝑦𝐽(2nd𝑧) / 𝑗𝑈))
5244, 51ax-mp 5 . . . . . . . . 9 (2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (𝑦𝐽(2nd𝑧) / 𝑗𝑈)
5352csbeq2i 3819 . . . . . . . 8 (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (1st𝑧) / 𝑖(𝑦𝐽(2nd𝑧) / 𝑗𝑈)
54 csbmpt2 5439 . . . . . . . . 9 ((1st𝑧) ∈ V → (1st𝑧) / 𝑖(𝑦𝐽(2nd𝑧) / 𝑗𝑈) = (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))
5548, 54ax-mp 5 . . . . . . . 8 (1st𝑧) / 𝑖(𝑦𝐽(2nd𝑧) / 𝑗𝑈) = (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)
5653, 55eqtri 2765 . . . . . . 7 (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)
5756oveq2i 7224 . . . . . 6 (𝑅 Σg (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈)) = (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))
5847, 50, 573eqtrri 2770 . . . . 5 (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) = (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈))
5958mpteq2i 5147 . . . 4 (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)))
60 mpompts 7835 . . . 4 (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)))
6159, 60eqtr4i 2768 . . 3 (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈)))
6261a1i 11 . 2 (𝜑 → (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
6316, 43, 623eqtrd 2781 1 (𝜑 → (𝐴 Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  csb 3811   class class class wbr 5053  cmpt 5135   × cxp 5549  cfv 6380  (class class class)co 7213  cmpo 7215  1st c1st 7759  2nd c2nd 7760  Fincfn 8626   finSupp cfsupp 8985  Basecbs 16760  +gcplusg 16802  0gc0g 16944   Σg cgsu 16945  Ringcrg 19562   freeLMod cfrlm 20708   Mat cmat 21304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-ot 4550  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-sup 9058  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-hom 16826  df-cco 16827  df-0g 16946  df-gsum 16947  df-prds 16952  df-pws 16954  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-subrg 19798  df-lmod 19901  df-lss 19969  df-sra 20209  df-rgmod 20210  df-dsmm 20694  df-frlm 20709  df-mat 21305
This theorem is referenced by:  decpmatmul  21669  pmatcollpw2  21675
  Copyright terms: Public domain W3C validator