MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matgsum Structured version   Visualization version   GIF version

Theorem matgsum 22352
Description: Finite commutative sums in a matrix algebra are taken componentwise. (Contributed by AV, 26-Sep-2019.)
Hypotheses
Ref Expression
matgsum.a 𝐴 = (𝑁 Mat 𝑅)
matgsum.b 𝐵 = (Base‘𝐴)
matgsum.z 0 = (0g𝐴)
matgsum.i (𝜑𝑁 ∈ Fin)
matgsum.j (𝜑𝐽𝑊)
matgsum.r (𝜑𝑅 ∈ Ring)
matgsum.f ((𝜑𝑦𝐽) → (𝑖𝑁, 𝑗𝑁𝑈) ∈ 𝐵)
matgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) finSupp 0 )
Assertion
Ref Expression
matgsum (𝜑 → (𝐴 Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑖,𝐽,𝑗,𝑦   𝑖,𝑁,𝑗,𝑦   𝑅,𝑖,𝑗,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑖,𝑗)   𝐴(𝑦,𝑖,𝑗)   𝐵(𝑦,𝑖,𝑗)   𝑈(𝑦,𝑖,𝑗)   𝑊(𝑦,𝑖,𝑗)   0 (𝑦,𝑖,𝑗)

Proof of Theorem matgsum
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 matgsum.j . . . 4 (𝜑𝐽𝑊)
21mptexd 7158 . . 3 (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) ∈ V)
3 matgsum.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
43ovexi 7380 . . . 4 𝐴 ∈ V
54a1i 11 . . 3 (𝜑𝐴 ∈ V)
6 ovexd 7381 . . 3 (𝜑 → (𝑅 freeLMod (𝑁 × 𝑁)) ∈ V)
7 matgsum.i . . . . 5 (𝜑𝑁 ∈ Fin)
8 matgsum.r . . . . 5 (𝜑𝑅 ∈ Ring)
9 eqid 2731 . . . . . 6 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
103, 9matbas 22328 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
117, 8, 10syl2anc 584 . . . 4 (𝜑 → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
1211eqcomd 2737 . . 3 (𝜑 → (Base‘𝐴) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
133, 9matplusg 22329 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g𝐴))
147, 8, 13syl2anc 584 . . . 4 (𝜑 → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g𝐴))
1514eqcomd 2737 . . 3 (𝜑 → (+g𝐴) = (+g‘(𝑅 freeLMod (𝑁 × 𝑁))))
162, 5, 6, 12, 15gsumpropd 18586 . 2 (𝜑 → (𝐴 Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))))
17 mpompts 7997 . . . . . 6 (𝑖𝑁, 𝑗𝑁𝑈) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)
1817a1i 11 . . . . 5 (𝜑 → (𝑖𝑁, 𝑗𝑁𝑈) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))
1918mpteq2dv 5183 . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) = (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)))
2019oveq2d 7362 . . 3 (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))))
21 eqid 2731 . . . 4 (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))
22 eqid 2731 . . . 4 (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g‘(𝑅 freeLMod (𝑁 × 𝑁)))
23 xpfi 9204 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
247, 7, 23syl2anc 584 . . . 4 (𝜑 → (𝑁 × 𝑁) ∈ Fin)
25 matgsum.f . . . . . 6 ((𝜑𝑦𝐽) → (𝑖𝑁, 𝑗𝑁𝑈) ∈ 𝐵)
26 matgsum.b . . . . . 6 𝐵 = (Base‘𝐴)
2725, 26eleqtrdi 2841 . . . . 5 ((𝜑𝑦𝐽) → (𝑖𝑁, 𝑗𝑁𝑈) ∈ (Base‘𝐴))
2817eqcomi 2740 . . . . . 6 (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈) = (𝑖𝑁, 𝑗𝑁𝑈)
2928a1i 11 . . . . 5 ((𝜑𝑦𝐽) → (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈) = (𝑖𝑁, 𝑗𝑁𝑈))
307, 8jca 511 . . . . . . 7 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3130adantr 480 . . . . . 6 ((𝜑𝑦𝐽) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3231, 10syl 17 . . . . 5 ((𝜑𝑦𝐽) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
3327, 29, 323eltr4d 2846 . . . 4 ((𝜑𝑦𝐽) → (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈) ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
34 matgsum.w . . . . . 6 (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) finSupp 0 )
3528mpteq2i 5185 . . . . . 6 (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) = (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))
36 matgsum.z . . . . . . 7 0 = (0g𝐴)
3736eqcomi 2740 . . . . . 6 (0g𝐴) = 0
3834, 35, 373brtr4g 5123 . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) finSupp (0g𝐴))
393, 9mat0 22332 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g𝐴))
407, 8, 39syl2anc 584 . . . . 5 (𝜑 → (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g𝐴))
4138, 40breqtrrd 5117 . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) finSupp (0g‘(𝑅 freeLMod (𝑁 × 𝑁))))
429, 21, 22, 24, 1, 8, 33, 41frlmgsum 21709 . . 3 (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))))
4320, 42eqtrd 2766 . 2 (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))))
44 fvex 6835 . . . . . . . 8 (2nd𝑧) ∈ V
45 csbov2g 7394 . . . . . . . 8 ((2nd𝑧) ∈ V → (2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)) = (𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈)))
4644, 45ax-mp 5 . . . . . . 7 (2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)) = (𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈))
4746csbeq2i 3853 . . . . . 6 (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)) = (1st𝑧) / 𝑖(𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈))
48 fvex 6835 . . . . . . 7 (1st𝑧) ∈ V
49 csbov2g 7394 . . . . . . 7 ((1st𝑧) ∈ V → (1st𝑧) / 𝑖(𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈)) = (𝑅 Σg (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈)))
5048, 49ax-mp 5 . . . . . 6 (1st𝑧) / 𝑖(𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈)) = (𝑅 Σg (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈))
51 csbmpt2 5496 . . . . . . . . . 10 ((2nd𝑧) ∈ V → (2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (𝑦𝐽(2nd𝑧) / 𝑗𝑈))
5244, 51ax-mp 5 . . . . . . . . 9 (2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (𝑦𝐽(2nd𝑧) / 𝑗𝑈)
5352csbeq2i 3853 . . . . . . . 8 (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (1st𝑧) / 𝑖(𝑦𝐽(2nd𝑧) / 𝑗𝑈)
54 csbmpt2 5496 . . . . . . . . 9 ((1st𝑧) ∈ V → (1st𝑧) / 𝑖(𝑦𝐽(2nd𝑧) / 𝑗𝑈) = (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))
5548, 54ax-mp 5 . . . . . . . 8 (1st𝑧) / 𝑖(𝑦𝐽(2nd𝑧) / 𝑗𝑈) = (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)
5653, 55eqtri 2754 . . . . . . 7 (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)
5756oveq2i 7357 . . . . . 6 (𝑅 Σg (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈)) = (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))
5847, 50, 573eqtrri 2759 . . . . 5 (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) = (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈))
5958mpteq2i 5185 . . . 4 (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)))
60 mpompts 7997 . . . 4 (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)))
6159, 60eqtr4i 2757 . . 3 (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈)))
6261a1i 11 . 2 (𝜑 → (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
6316, 43, 623eqtrd 2770 1 (𝜑 → (𝐴 Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  csb 3845   class class class wbr 5089  cmpt 5170   × cxp 5612  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920  Fincfn 8869   finSupp cfsupp 9245  Basecbs 17120  +gcplusg 17161  0gc0g 17343   Σg cgsu 17344  Ringcrg 20151   freeLMod cfrlm 21683   Mat cmat 22322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-subrg 20485  df-lmod 20795  df-lss 20865  df-sra 21107  df-rgmod 21108  df-dsmm 21669  df-frlm 21684  df-mat 22323
This theorem is referenced by:  decpmatmul  22687  pmatcollpw2  22693
  Copyright terms: Public domain W3C validator