MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matgsum Structured version   Visualization version   GIF version

Theorem matgsum 22324
Description: Finite commutative sums in a matrix algebra are taken componentwise. (Contributed by AV, 26-Sep-2019.)
Hypotheses
Ref Expression
matgsum.a 𝐴 = (𝑁 Mat 𝑅)
matgsum.b 𝐵 = (Base‘𝐴)
matgsum.z 0 = (0g𝐴)
matgsum.i (𝜑𝑁 ∈ Fin)
matgsum.j (𝜑𝐽𝑊)
matgsum.r (𝜑𝑅 ∈ Ring)
matgsum.f ((𝜑𝑦𝐽) → (𝑖𝑁, 𝑗𝑁𝑈) ∈ 𝐵)
matgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) finSupp 0 )
Assertion
Ref Expression
matgsum (𝜑 → (𝐴 Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑖,𝐽,𝑗,𝑦   𝑖,𝑁,𝑗,𝑦   𝑅,𝑖,𝑗,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑖,𝑗)   𝐴(𝑦,𝑖,𝑗)   𝐵(𝑦,𝑖,𝑗)   𝑈(𝑦,𝑖,𝑗)   𝑊(𝑦,𝑖,𝑗)   0 (𝑦,𝑖,𝑗)

Proof of Theorem matgsum
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 matgsum.j . . . 4 (𝜑𝐽𝑊)
21mptexd 7198 . . 3 (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) ∈ V)
3 matgsum.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
43ovexi 7421 . . . 4 𝐴 ∈ V
54a1i 11 . . 3 (𝜑𝐴 ∈ V)
6 ovexd 7422 . . 3 (𝜑 → (𝑅 freeLMod (𝑁 × 𝑁)) ∈ V)
7 matgsum.i . . . . 5 (𝜑𝑁 ∈ Fin)
8 matgsum.r . . . . 5 (𝜑𝑅 ∈ Ring)
9 eqid 2729 . . . . . 6 (𝑅 freeLMod (𝑁 × 𝑁)) = (𝑅 freeLMod (𝑁 × 𝑁))
103, 9matbas 22300 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
117, 8, 10syl2anc 584 . . . 4 (𝜑 → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
1211eqcomd 2735 . . 3 (𝜑 → (Base‘𝐴) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
133, 9matplusg 22301 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g𝐴))
147, 8, 13syl2anc 584 . . . 4 (𝜑 → (+g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (+g𝐴))
1514eqcomd 2735 . . 3 (𝜑 → (+g𝐴) = (+g‘(𝑅 freeLMod (𝑁 × 𝑁))))
162, 5, 6, 12, 15gsumpropd 18605 . 2 (𝜑 → (𝐴 Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))))
17 mpompts 8044 . . . . . 6 (𝑖𝑁, 𝑗𝑁𝑈) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)
1817a1i 11 . . . . 5 (𝜑 → (𝑖𝑁, 𝑗𝑁𝑈) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))
1918mpteq2dv 5201 . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) = (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)))
2019oveq2d 7403 . . 3 (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))))
21 eqid 2729 . . . 4 (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘(𝑅 freeLMod (𝑁 × 𝑁)))
22 eqid 2729 . . . 4 (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g‘(𝑅 freeLMod (𝑁 × 𝑁)))
23 xpfi 9269 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
247, 7, 23syl2anc 584 . . . 4 (𝜑 → (𝑁 × 𝑁) ∈ Fin)
25 matgsum.f . . . . . 6 ((𝜑𝑦𝐽) → (𝑖𝑁, 𝑗𝑁𝑈) ∈ 𝐵)
26 matgsum.b . . . . . 6 𝐵 = (Base‘𝐴)
2725, 26eleqtrdi 2838 . . . . 5 ((𝜑𝑦𝐽) → (𝑖𝑁, 𝑗𝑁𝑈) ∈ (Base‘𝐴))
2817eqcomi 2738 . . . . . 6 (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈) = (𝑖𝑁, 𝑗𝑁𝑈)
2928a1i 11 . . . . 5 ((𝜑𝑦𝐽) → (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈) = (𝑖𝑁, 𝑗𝑁𝑈))
307, 8jca 511 . . . . . . 7 (𝜑 → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3130adantr 480 . . . . . 6 ((𝜑𝑦𝐽) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
3231, 10syl 17 . . . . 5 ((𝜑𝑦𝐽) → (Base‘(𝑅 freeLMod (𝑁 × 𝑁))) = (Base‘𝐴))
3327, 29, 323eltr4d 2843 . . . 4 ((𝜑𝑦𝐽) → (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈) ∈ (Base‘(𝑅 freeLMod (𝑁 × 𝑁))))
34 matgsum.w . . . . . 6 (𝜑 → (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈)) finSupp 0 )
3528mpteq2i 5203 . . . . . 6 (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) = (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))
36 matgsum.z . . . . . . 7 0 = (0g𝐴)
3736eqcomi 2738 . . . . . 6 (0g𝐴) = 0
3834, 35, 373brtr4g 5141 . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) finSupp (0g𝐴))
393, 9mat0 22304 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g𝐴))
407, 8, 39syl2anc 584 . . . . 5 (𝜑 → (0g‘(𝑅 freeLMod (𝑁 × 𝑁))) = (0g𝐴))
4138, 40breqtrrd 5135 . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) finSupp (0g‘(𝑅 freeLMod (𝑁 × 𝑁))))
429, 21, 22, 24, 1, 8, 33, 41frlmgsum 21681 . . 3 (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))))
4320, 42eqtrd 2764 . 2 (𝜑 → ((𝑅 freeLMod (𝑁 × 𝑁)) Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))))
44 fvex 6871 . . . . . . . 8 (2nd𝑧) ∈ V
45 csbov2g 7435 . . . . . . . 8 ((2nd𝑧) ∈ V → (2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)) = (𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈)))
4644, 45ax-mp 5 . . . . . . 7 (2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)) = (𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈))
4746csbeq2i 3870 . . . . . 6 (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)) = (1st𝑧) / 𝑖(𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈))
48 fvex 6871 . . . . . . 7 (1st𝑧) ∈ V
49 csbov2g 7435 . . . . . . 7 ((1st𝑧) ∈ V → (1st𝑧) / 𝑖(𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈)) = (𝑅 Σg (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈)))
5048, 49ax-mp 5 . . . . . 6 (1st𝑧) / 𝑖(𝑅 Σg (2nd𝑧) / 𝑗(𝑦𝐽𝑈)) = (𝑅 Σg (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈))
51 csbmpt2 5518 . . . . . . . . . 10 ((2nd𝑧) ∈ V → (2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (𝑦𝐽(2nd𝑧) / 𝑗𝑈))
5244, 51ax-mp 5 . . . . . . . . 9 (2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (𝑦𝐽(2nd𝑧) / 𝑗𝑈)
5352csbeq2i 3870 . . . . . . . 8 (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (1st𝑧) / 𝑖(𝑦𝐽(2nd𝑧) / 𝑗𝑈)
54 csbmpt2 5518 . . . . . . . . 9 ((1st𝑧) ∈ V → (1st𝑧) / 𝑖(𝑦𝐽(2nd𝑧) / 𝑗𝑈) = (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))
5548, 54ax-mp 5 . . . . . . . 8 (1st𝑧) / 𝑖(𝑦𝐽(2nd𝑧) / 𝑗𝑈) = (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)
5653, 55eqtri 2752 . . . . . . 7 (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈) = (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)
5756oveq2i 7398 . . . . . 6 (𝑅 Σg (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑦𝐽𝑈)) = (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))
5847, 50, 573eqtrri 2757 . . . . 5 (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈)) = (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈))
5958mpteq2i 5203 . . . 4 (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)))
60 mpompts 8044 . . . 4 (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))) = (𝑧 ∈ (𝑁 × 𝑁) ↦ (1st𝑧) / 𝑖(2nd𝑧) / 𝑗(𝑅 Σg (𝑦𝐽𝑈)))
6159, 60eqtr4i 2755 . . 3 (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈)))
6261a1i 11 . 2 (𝜑 → (𝑧 ∈ (𝑁 × 𝑁) ↦ (𝑅 Σg (𝑦𝐽(1st𝑧) / 𝑖(2nd𝑧) / 𝑗𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
6316, 43, 623eqtrd 2768 1 (𝜑 → (𝐴 Σg (𝑦𝐽 ↦ (𝑖𝑁, 𝑗𝑁𝑈))) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  csb 3862   class class class wbr 5107  cmpt 5188   × cxp 5636  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  Fincfn 8918   finSupp cfsupp 9312  Basecbs 17179  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403  Ringcrg 20142   freeLMod cfrlm 21655   Mat cmat 22294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-mat 22295
This theorem is referenced by:  decpmatmul  22659  pmatcollpw2  22665
  Copyright terms: Public domain W3C validator