HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvpss Structured version   Visualization version   GIF version

Theorem cvpss 31525
Description: The covers relation implies proper subset. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvpss ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))

Proof of Theorem cvpss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cvbr 31522 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
2 simpl 483 . 2 ((𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)) → 𝐴𝐵)
31, 2syl6bi 252 1 ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wcel 2106  wrex 3070  wpss 3948   class class class wbr 5147   C cch 30169   ccv 30204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-cv 31519
This theorem is referenced by:  cvnsym  31530  cvntr  31532  atcveq0  31588  chcv1  31595  cvati  31606  cvbr4i  31607  cvexchlem  31608  atexch  31621  atcvat2i  31627
  Copyright terms: Public domain W3C validator