HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvpss Structured version   Visualization version   GIF version

Theorem cvpss 32214
Description: The covers relation implies proper subset. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvpss ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))

Proof of Theorem cvpss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cvbr 32211 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
2 simpl 482 . 2 ((𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)) → 𝐴𝐵)
31, 2biimtrdi 253 1 ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wrex 3053  wpss 3915   class class class wbr 5107   C cch 30858   ccv 30893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-cv 32208
This theorem is referenced by:  cvnsym  32219  cvntr  32221  atcveq0  32277  chcv1  32284  cvati  32295  cvbr4i  32296  cvexchlem  32297  atexch  32310  atcvat2i  32316
  Copyright terms: Public domain W3C validator