HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvpss Structured version   Visualization version   GIF version

Theorem cvpss 32317
Description: The covers relation implies proper subset. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvpss ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))

Proof of Theorem cvpss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cvbr 32314 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
2 simpl 482 . 2 ((𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)) → 𝐴𝐵)
31, 2biimtrdi 253 1 ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wrex 3076  wpss 3977   class class class wbr 5166   C cch 30961   ccv 30996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cv 32311
This theorem is referenced by:  cvnsym  32322  cvntr  32324  atcveq0  32380  chcv1  32387  cvati  32398  cvbr4i  32399  cvexchlem  32400  atexch  32413  atcvat2i  32419
  Copyright terms: Public domain W3C validator