| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cvpss | Structured version Visualization version GIF version | ||
| Description: The covers relation implies proper subset. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cvpss | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvbr 32283 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) | |
| 2 | simpl 482 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) → 𝐴 ⊊ 𝐵) | |
| 3 | 1, 2 | biimtrdi 253 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2113 ∃wrex 3057 ⊊ wpss 3899 class class class wbr 5095 Cℋ cch 30930 ⋖ℋ ccv 30965 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-cv 32280 |
| This theorem is referenced by: cvnsym 32291 cvntr 32293 atcveq0 32349 chcv1 32356 cvati 32367 cvbr4i 32368 cvexchlem 32369 atexch 32382 atcvat2i 32388 |
| Copyright terms: Public domain | W3C validator |