HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvpss Structured version   Visualization version   GIF version

Theorem cvpss 30934
Description: The covers relation implies proper subset. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvpss ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))

Proof of Theorem cvpss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cvbr 30931 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
2 simpl 484 . 2 ((𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)) → 𝐴𝐵)
31, 2syl6bi 253 1 ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wcel 2106  wrex 3071  wpss 3902   class class class wbr 5096   C cch 29578   ccv 29613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pr 5376
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-br 5097  df-opab 5159  df-cv 30928
This theorem is referenced by:  cvnsym  30939  cvntr  30941  atcveq0  30997  chcv1  31004  cvati  31015  cvbr4i  31016  cvexchlem  31017  atexch  31030  atcvat2i  31036
  Copyright terms: Public domain W3C validator