Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cvpss | Structured version Visualization version GIF version |
Description: The covers relation implies proper subset. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvpss | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvbr 30931 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) | |
2 | simpl 484 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) → 𝐴 ⊊ 𝐵) | |
3 | 1, 2 | syl6bi 253 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∈ wcel 2106 ∃wrex 3071 ⊊ wpss 3902 class class class wbr 5096 Cℋ cch 29578 ⋖ℋ ccv 29613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-br 5097 df-opab 5159 df-cv 30928 |
This theorem is referenced by: cvnsym 30939 cvntr 30941 atcveq0 30997 chcv1 31004 cvati 31015 cvbr4i 31016 cvexchlem 31017 atexch 31030 atcvat2i 31036 |
Copyright terms: Public domain | W3C validator |