HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvpss Structured version   Visualization version   GIF version

Theorem cvpss 32221
Description: The covers relation implies proper subset. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvpss ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))

Proof of Theorem cvpss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cvbr 32218 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
2 simpl 482 . 2 ((𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)) → 𝐴𝐵)
31, 2biimtrdi 253 1 ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wrex 3054  wpss 3918   class class class wbr 5110   C cch 30865   ccv 30900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-cv 32215
This theorem is referenced by:  cvnsym  32226  cvntr  32228  atcveq0  32284  chcv1  32291  cvati  32302  cvbr4i  32303  cvexchlem  32304  atexch  32317  atcvat2i  32323
  Copyright terms: Public domain W3C validator