| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cvpss | Structured version Visualization version GIF version | ||
| Description: The covers relation implies proper subset. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cvpss | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvbr 32209 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) | |
| 2 | simpl 482 | . 2 ⊢ ((𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) → 𝐴 ⊊ 𝐵) | |
| 3 | 1, 2 | biimtrdi 253 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ∃wrex 3060 ⊊ wpss 3927 class class class wbr 5119 Cℋ cch 30856 ⋖ℋ ccv 30891 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-cv 32206 |
| This theorem is referenced by: cvnsym 32217 cvntr 32219 atcveq0 32275 chcv1 32282 cvati 32293 cvbr4i 32294 cvexchlem 32295 atexch 32308 atcvat2i 32314 |
| Copyright terms: Public domain | W3C validator |