![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cvnbtwn4 | Structured version Visualization version GIF version |
Description: The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of [MaedaMaeda] p. 31. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvnbtwn4 | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) → (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvnbtwn 31270 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) | |
2 | iman 403 | . . 3 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) → (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)) ↔ ¬ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ ¬ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵))) | |
3 | an4 655 | . . . . 5 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ (¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵)) ↔ ((𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ (𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵))) | |
4 | ioran 983 | . . . . . . 7 ⊢ (¬ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵) ↔ (¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵)) | |
5 | eqcom 2740 | . . . . . . . . 9 ⊢ (𝐶 = 𝐴 ↔ 𝐴 = 𝐶) | |
6 | 5 | notbii 320 | . . . . . . . 8 ⊢ (¬ 𝐶 = 𝐴 ↔ ¬ 𝐴 = 𝐶) |
7 | 6 | anbi1i 625 | . . . . . . 7 ⊢ ((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) ↔ (¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵)) |
8 | 4, 7 | bitri 275 | . . . . . 6 ⊢ (¬ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵) ↔ (¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵)) |
9 | 8 | anbi2i 624 | . . . . 5 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ ¬ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ (¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵))) |
10 | dfpss2 4046 | . . . . . 6 ⊢ (𝐴 ⊊ 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶)) | |
11 | dfpss2 4046 | . . . . . 6 ⊢ (𝐶 ⊊ 𝐵 ↔ (𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵)) | |
12 | 10, 11 | anbi12i 628 | . . . . 5 ⊢ ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊆ 𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ (𝐶 ⊆ 𝐵 ∧ ¬ 𝐶 = 𝐵))) |
13 | 3, 9, 12 | 3bitr4i 303 | . . . 4 ⊢ (((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ ¬ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)) ↔ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)) |
14 | 13 | notbii 320 | . . 3 ⊢ (¬ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) ∧ ¬ (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)) ↔ ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵)) |
15 | 2, 14 | bitr2i 276 | . 2 ⊢ (¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵) ↔ ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) → (𝐶 = 𝐴 ∨ 𝐶 = 𝐵))) |
16 | 1, 15 | syl6ib 251 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) → (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ⊆ wss 3911 ⊊ wpss 3912 class class class wbr 5106 Cℋ cch 29913 ⋖ℋ ccv 29948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-cv 31263 |
This theorem is referenced by: cvmdi 31308 |
Copyright terms: Public domain | W3C validator |