HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvnbtwn4 Structured version   Visualization version   GIF version

Theorem cvnbtwn4 30552
Description: The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of [MaedaMaeda] p. 31. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvnbtwn4 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → (𝐶 = 𝐴𝐶 = 𝐵))))

Proof of Theorem cvnbtwn4
StepHypRef Expression
1 cvnbtwn 30549 . 2 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵)))
2 iman 401 . . 3 (((𝐴𝐶𝐶𝐵) → (𝐶 = 𝐴𝐶 = 𝐵)) ↔ ¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ (𝐶 = 𝐴𝐶 = 𝐵)))
3 an4 652 . . . . 5 (((𝐴𝐶𝐶𝐵) ∧ (¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵)) ↔ ((𝐴𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ (𝐶𝐵 ∧ ¬ 𝐶 = 𝐵)))
4 ioran 980 . . . . . . 7 (¬ (𝐶 = 𝐴𝐶 = 𝐵) ↔ (¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵))
5 eqcom 2745 . . . . . . . . 9 (𝐶 = 𝐴𝐴 = 𝐶)
65notbii 319 . . . . . . . 8 𝐶 = 𝐴 ↔ ¬ 𝐴 = 𝐶)
76anbi1i 623 . . . . . . 7 ((¬ 𝐶 = 𝐴 ∧ ¬ 𝐶 = 𝐵) ↔ (¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵))
84, 7bitri 274 . . . . . 6 (¬ (𝐶 = 𝐴𝐶 = 𝐵) ↔ (¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵))
98anbi2i 622 . . . . 5 (((𝐴𝐶𝐶𝐵) ∧ ¬ (𝐶 = 𝐴𝐶 = 𝐵)) ↔ ((𝐴𝐶𝐶𝐵) ∧ (¬ 𝐴 = 𝐶 ∧ ¬ 𝐶 = 𝐵)))
10 dfpss2 4016 . . . . . 6 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴 = 𝐶))
11 dfpss2 4016 . . . . . 6 (𝐶𝐵 ↔ (𝐶𝐵 ∧ ¬ 𝐶 = 𝐵))
1210, 11anbi12i 626 . . . . 5 ((𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶 ∧ ¬ 𝐴 = 𝐶) ∧ (𝐶𝐵 ∧ ¬ 𝐶 = 𝐵)))
133, 9, 123bitr4i 302 . . . 4 (((𝐴𝐶𝐶𝐵) ∧ ¬ (𝐶 = 𝐴𝐶 = 𝐵)) ↔ (𝐴𝐶𝐶𝐵))
1413notbii 319 . . 3 (¬ ((𝐴𝐶𝐶𝐵) ∧ ¬ (𝐶 = 𝐴𝐶 = 𝐵)) ↔ ¬ (𝐴𝐶𝐶𝐵))
152, 14bitr2i 275 . 2 (¬ (𝐴𝐶𝐶𝐵) ↔ ((𝐴𝐶𝐶𝐵) → (𝐶 = 𝐴𝐶 = 𝐵)))
161, 15syl6ib 250 1 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ((𝐴𝐶𝐶𝐵) → (𝐶 = 𝐴𝐶 = 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wss 3883  wpss 3884   class class class wbr 5070   C cch 29192   ccv 29227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cv 30542
This theorem is referenced by:  cvmdi  30587
  Copyright terms: Public domain W3C validator