![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfse2 | Structured version Visualization version GIF version |
Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.) |
Ref | Expression |
---|---|
dfse2 | ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-se 5638 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
2 | dfrab3 4311 | . . . . 5 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑥}) | |
3 | iniseg 6107 | . . . . . . 7 ⊢ (𝑥 ∈ V → (◡𝑅 “ {𝑥}) = {𝑦 ∣ 𝑦𝑅𝑥}) | |
4 | 3 | elv 3468 | . . . . . 6 ⊢ (◡𝑅 “ {𝑥}) = {𝑦 ∣ 𝑦𝑅𝑥} |
5 | 4 | ineq2i 4210 | . . . . 5 ⊢ (𝐴 ∩ (◡𝑅 “ {𝑥})) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑥}) |
6 | 2, 5 | eqtr4i 2757 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = (𝐴 ∩ (◡𝑅 “ {𝑥})) |
7 | 6 | eleq1i 2817 | . . 3 ⊢ ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
8 | 7 | ralbii 3083 | . 2 ⊢ (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
9 | 1, 8 | bitri 274 | 1 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∈ wcel 2099 {cab 2703 ∀wral 3051 {crab 3419 Vcvv 3462 ∩ cin 3946 {csn 4633 class class class wbr 5153 Se wse 5635 ◡ccnv 5681 “ cima 5685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-se 5638 df-xp 5688 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 |
This theorem is referenced by: dfse3 6349 isoselem 7353 fnse 8147 |
Copyright terms: Public domain | W3C validator |