MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfse2 Structured version   Visualization version   GIF version

Theorem dfse2 6048
Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dfse2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfse2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-se 5568 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
2 dfrab3 4266 . . . . 5 {𝑦𝐴𝑦𝑅𝑥} = (𝐴 ∩ {𝑦𝑦𝑅𝑥})
3 iniseg 6045 . . . . . . 7 (𝑥 ∈ V → (𝑅 “ {𝑥}) = {𝑦𝑦𝑅𝑥})
43elv 3441 . . . . . 6 (𝑅 “ {𝑥}) = {𝑦𝑦𝑅𝑥}
54ineq2i 4164 . . . . 5 (𝐴 ∩ (𝑅 “ {𝑥})) = (𝐴 ∩ {𝑦𝑦𝑅𝑥})
62, 5eqtr4i 2757 . . . 4 {𝑦𝐴𝑦𝑅𝑥} = (𝐴 ∩ (𝑅 “ {𝑥}))
76eleq1i 2822 . . 3 ({𝑦𝐴𝑦𝑅𝑥} ∈ V ↔ (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
87ralbii 3078 . 2 (∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
91, 8bitri 275 1 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  {cab 2709  wral 3047  {crab 3395  Vcvv 3436  cin 3896  {csn 4573   class class class wbr 5089   Se wse 5565  ccnv 5613  cima 5617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-se 5568  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627
This theorem is referenced by:  dfse3  6283  isoselem  7275  fnse  8063
  Copyright terms: Public domain W3C validator