| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfse2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.) |
| Ref | Expression |
|---|---|
| dfse2 | ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-se 5607 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
| 2 | dfrab3 4294 | . . . . 5 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑥}) | |
| 3 | iniseg 6084 | . . . . . . 7 ⊢ (𝑥 ∈ V → (◡𝑅 “ {𝑥}) = {𝑦 ∣ 𝑦𝑅𝑥}) | |
| 4 | 3 | elv 3464 | . . . . . 6 ⊢ (◡𝑅 “ {𝑥}) = {𝑦 ∣ 𝑦𝑅𝑥} |
| 5 | 4 | ineq2i 4192 | . . . . 5 ⊢ (𝐴 ∩ (◡𝑅 “ {𝑥})) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑥}) |
| 6 | 2, 5 | eqtr4i 2761 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = (𝐴 ∩ (◡𝑅 “ {𝑥})) |
| 7 | 6 | eleq1i 2825 | . . 3 ⊢ ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
| 8 | 7 | ralbii 3082 | . 2 ⊢ (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
| 9 | 1, 8 | bitri 275 | 1 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 {cab 2713 ∀wral 3051 {crab 3415 Vcvv 3459 ∩ cin 3925 {csn 4601 class class class wbr 5119 Se wse 5604 ◡ccnv 5653 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-se 5607 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: dfse3 6325 isoselem 7333 fnse 8130 |
| Copyright terms: Public domain | W3C validator |