![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfse2 | Structured version Visualization version GIF version |
Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.) |
Ref | Expression |
---|---|
dfse2 | ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-se 5653 | . 2 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) | |
2 | dfrab3 4338 | . . . . 5 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑥}) | |
3 | iniseg 6127 | . . . . . . 7 ⊢ (𝑥 ∈ V → (◡𝑅 “ {𝑥}) = {𝑦 ∣ 𝑦𝑅𝑥}) | |
4 | 3 | elv 3493 | . . . . . 6 ⊢ (◡𝑅 “ {𝑥}) = {𝑦 ∣ 𝑦𝑅𝑥} |
5 | 4 | ineq2i 4238 | . . . . 5 ⊢ (𝐴 ∩ (◡𝑅 “ {𝑥})) = (𝐴 ∩ {𝑦 ∣ 𝑦𝑅𝑥}) |
6 | 2, 5 | eqtr4i 2771 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} = (𝐴 ∩ (◡𝑅 “ {𝑥})) |
7 | 6 | eleq1i 2835 | . . 3 ⊢ ({𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
8 | 7 | ralbii 3099 | . 2 ⊢ (∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
9 | 1, 8 | bitri 275 | 1 ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 (𝐴 ∩ (◡𝑅 “ {𝑥})) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 {crab 3443 Vcvv 3488 ∩ cin 3975 {csn 4648 class class class wbr 5166 Se wse 5650 ◡ccnv 5699 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-se 5653 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: dfse3 6368 isoselem 7377 fnse 8174 |
Copyright terms: Public domain | W3C validator |