MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfse2 Structured version   Visualization version   GIF version

Theorem dfse2 6130
Description: Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
dfse2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem dfse2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-se 5653 . 2 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
2 dfrab3 4338 . . . . 5 {𝑦𝐴𝑦𝑅𝑥} = (𝐴 ∩ {𝑦𝑦𝑅𝑥})
3 iniseg 6127 . . . . . . 7 (𝑥 ∈ V → (𝑅 “ {𝑥}) = {𝑦𝑦𝑅𝑥})
43elv 3493 . . . . . 6 (𝑅 “ {𝑥}) = {𝑦𝑦𝑅𝑥}
54ineq2i 4238 . . . . 5 (𝐴 ∩ (𝑅 “ {𝑥})) = (𝐴 ∩ {𝑦𝑦𝑅𝑥})
62, 5eqtr4i 2771 . . . 4 {𝑦𝐴𝑦𝑅𝑥} = (𝐴 ∩ (𝑅 “ {𝑥}))
76eleq1i 2835 . . 3 ({𝑦𝐴𝑦𝑅𝑥} ∈ V ↔ (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
87ralbii 3099 . 2 (∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
91, 8bitri 275 1 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  {cab 2717  wral 3067  {crab 3443  Vcvv 3488  cin 3975  {csn 4648   class class class wbr 5166   Se wse 5650  ccnv 5699  cima 5703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-se 5653  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  dfse3  6368  isoselem  7377  fnse  8174
  Copyright terms: Public domain W3C validator