| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz6.26OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of tz6.26 6367 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
| Ref | Expression |
|---|---|
| tz6.26OLD | ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wereu2 5681 | . . 3 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃!𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ¬ 𝑥𝑅𝑦) | |
| 2 | reurex 3383 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ¬ 𝑥𝑅𝑦 → ∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ¬ 𝑥𝑅𝑦) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ¬ 𝑥𝑅𝑦) |
| 4 | rabeq0 4387 | . . . 4 ⊢ ({𝑥 ∈ 𝐵 ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥𝑅𝑦) | |
| 5 | dfrab3 4318 | . . . . . 6 ⊢ {𝑥 ∈ 𝐵 ∣ 𝑥𝑅𝑦} = (𝐵 ∩ {𝑥 ∣ 𝑥𝑅𝑦}) | |
| 6 | vex 3483 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 7 | 6 | dfpred2 6330 | . . . . . 6 ⊢ Pred(𝑅, 𝐵, 𝑦) = (𝐵 ∩ {𝑥 ∣ 𝑥𝑅𝑦}) |
| 8 | 5, 7 | eqtr4i 2767 | . . . . 5 ⊢ {𝑥 ∈ 𝐵 ∣ 𝑥𝑅𝑦} = Pred(𝑅, 𝐵, 𝑦) |
| 9 | 8 | eqeq1i 2741 | . . . 4 ⊢ ({𝑥 ∈ 𝐵 ∣ 𝑥𝑅𝑦} = ∅ ↔ Pred(𝑅, 𝐵, 𝑦) = ∅) |
| 10 | 4, 9 | bitr3i 277 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ↔ Pred(𝑅, 𝐵, 𝑦) = ∅) |
| 11 | 10 | rexbii 3093 | . 2 ⊢ (∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ↔ ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) |
| 12 | 3, 11 | sylib 218 | 1 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 {cab 2713 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 ∃!wreu 3377 {crab 3435 ∩ cin 3949 ⊆ wss 3950 ∅c0 4332 class class class wbr 5142 Se wse 5634 We wwe 5635 Predcpred 6319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-cnv 5692 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |