MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.26OLD Structured version   Visualization version   GIF version

Theorem tz6.26OLD 6233
Description: Obsolete proof of tz6.26 6232 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
tz6.26OLD (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅

Proof of Theorem tz6.26OLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 wereu2 5576 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃!𝑦𝐵𝑥𝐵 ¬ 𝑥𝑅𝑦)
2 reurex 3353 . . 3 (∃!𝑦𝐵𝑥𝐵 ¬ 𝑥𝑅𝑦 → ∃𝑦𝐵𝑥𝐵 ¬ 𝑥𝑅𝑦)
31, 2syl 17 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵𝑥𝐵 ¬ 𝑥𝑅𝑦)
4 rabeq0 4316 . . . 4 ({𝑥𝐵𝑥𝑅𝑦} = ∅ ↔ ∀𝑥𝐵 ¬ 𝑥𝑅𝑦)
5 dfrab3 4241 . . . . . 6 {𝑥𝐵𝑥𝑅𝑦} = (𝐵 ∩ {𝑥𝑥𝑅𝑦})
6 vex 3427 . . . . . . 7 𝑦 ∈ V
76dfpred2 6198 . . . . . 6 Pred(𝑅, 𝐵, 𝑦) = (𝐵 ∩ {𝑥𝑥𝑅𝑦})
85, 7eqtr4i 2770 . . . . 5 {𝑥𝐵𝑥𝑅𝑦} = Pred(𝑅, 𝐵, 𝑦)
98eqeq1i 2744 . . . 4 ({𝑥𝐵𝑥𝑅𝑦} = ∅ ↔ Pred(𝑅, 𝐵, 𝑦) = ∅)
104, 9bitr3i 280 . . 3 (∀𝑥𝐵 ¬ 𝑥𝑅𝑦 ↔ Pred(𝑅, 𝐵, 𝑦) = ∅)
1110rexbii 3178 . 2 (∃𝑦𝐵𝑥𝐵 ¬ 𝑥𝑅𝑦 ↔ ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
123, 11sylib 221 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑦𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  {cab 2716  wne 2943  wral 3064  wrex 3065  ∃!wreu 3066  {crab 3068  cin 3883  wss 3884  c0 4254   class class class wbr 5070   Se wse 5532   We wwe 5533  Predcpred 6188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-po 5493  df-so 5494  df-fr 5534  df-se 5535  df-we 5536  df-xp 5585  df-cnv 5587  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator