![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz6.26OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of tz6.26 6348 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) |
Ref | Expression |
---|---|
tz6.26OLD | ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wereu2 5673 | . . 3 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃!𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ¬ 𝑥𝑅𝑦) | |
2 | reurex 3379 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ¬ 𝑥𝑅𝑦 → ∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ¬ 𝑥𝑅𝑦) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ¬ 𝑥𝑅𝑦) |
4 | rabeq0 4384 | . . . 4 ⊢ ({𝑥 ∈ 𝐵 ∣ 𝑥𝑅𝑦} = ∅ ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥𝑅𝑦) | |
5 | dfrab3 4309 | . . . . . 6 ⊢ {𝑥 ∈ 𝐵 ∣ 𝑥𝑅𝑦} = (𝐵 ∩ {𝑥 ∣ 𝑥𝑅𝑦}) | |
6 | vex 3477 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
7 | 6 | dfpred2 6310 | . . . . . 6 ⊢ Pred(𝑅, 𝐵, 𝑦) = (𝐵 ∩ {𝑥 ∣ 𝑥𝑅𝑦}) |
8 | 5, 7 | eqtr4i 2762 | . . . . 5 ⊢ {𝑥 ∈ 𝐵 ∣ 𝑥𝑅𝑦} = Pred(𝑅, 𝐵, 𝑦) |
9 | 8 | eqeq1i 2736 | . . . 4 ⊢ ({𝑥 ∈ 𝐵 ∣ 𝑥𝑅𝑦} = ∅ ↔ Pred(𝑅, 𝐵, 𝑦) = ∅) |
10 | 4, 9 | bitr3i 277 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ↔ Pred(𝑅, 𝐵, 𝑦) = ∅) |
11 | 10 | rexbii 3093 | . 2 ⊢ (∃𝑦 ∈ 𝐵 ∀𝑥 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ↔ ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) |
12 | 3, 11 | sylib 217 | 1 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑦 ∈ 𝐵 Pred(𝑅, 𝐵, 𝑦) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 {cab 2708 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 ∃!wreu 3373 {crab 3431 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 class class class wbr 5148 Se wse 5629 We wwe 5630 Predcpred 6299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |