Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabfi | Structured version Visualization version GIF version |
Description: A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
Ref | Expression |
---|---|
rabfi | ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrab3 4243 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
2 | infi 9043 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ∩ {𝑥 ∣ 𝜑}) ∈ Fin) | |
3 | 1, 2 | eqeltrid 2843 | 1 ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 {cab 2715 {crab 3068 ∩ cin 3886 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-en 8734 df-fin 8737 |
This theorem is referenced by: sygbasnfpfi 19120 finptfin 22669 lfinun 22676 numedglnl 27514 usgrfilem 27694 nbusgrfi 27741 cusgrsizeindslem 27818 cusgrsizeinds 27819 vtxdgfival 27836 vtxdgfisnn0 27842 vtxdginducedm1fi 27911 finsumvtxdg2ssteplem4 27915 vtxdgoddnumeven 27920 hashwwlksnext 28279 wwlksnonfi 28285 rusgrnumwwlks 28339 clwwlknclwwlkdifnum 28344 clwwlknonfin 28458 konigsberglem5 28620 fusgreghash2wsp 28702 numclwwlk3lem2 28748 reprfi 32596 phpreu 35761 poimirlem25 35802 poimirlem26 35803 poimirlem27 35804 poimirlem28 35805 poimirlem31 35808 poimirlem32 35809 sstotbnd3 35934 hoidmvlelem2 44134 |
Copyright terms: Public domain | W3C validator |