![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabfi | Structured version Visualization version GIF version |
Description: A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
Ref | Expression |
---|---|
rabfi | ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrab3 4128 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
2 | infi 8472 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ∩ {𝑥 ∣ 𝜑}) ∈ Fin) | |
3 | 1, 2 | syl5eqel 2863 | 1 ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 {cab 2763 {crab 3094 ∩ cin 3791 Fincfn 8241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-om 7344 df-er 8026 df-en 8242 df-fin 8245 |
This theorem is referenced by: sygbasnfpfi 18316 finptfin 21730 lfinun 21737 numedglnl 26493 usgrfilem 26674 nbusgrfi 26722 cusgrsizeindslem 26799 cusgrsizeinds 26800 vtxdgfival 26817 vtxdgfisnn0 26823 vtxdginducedm1fi 26892 finsumvtxdg2ssteplem4 26896 vtxdgoddnumeven 26901 hashwwlksnext 27293 hashwwlksnextOLD 27294 wwlksnonfi 27300 rusgrnumwwlks 27354 rusgrnumwwlksOLD 27355 clwwlknclwwlkdifnum 27360 clwwlknonfin 27496 konigsberglem5 27662 fusgreghash2wsp 27746 numclwwlk3lem2 27816 reprfi 31296 phpreu 34020 poimirlem25 34062 poimirlem26 34063 poimirlem27 34064 poimirlem28 34065 poimirlem31 34068 poimirlem32 34069 sstotbnd3 34201 hoidmvlelem2 41741 |
Copyright terms: Public domain | W3C validator |