| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabfi | Structured version Visualization version GIF version | ||
| Description: A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
| Ref | Expression |
|---|---|
| rabfi | ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrab3 4266 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
| 2 | infi 9154 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ∩ {𝑥 ∣ 𝜑}) ∈ Fin) | |
| 3 | 1, 2 | eqeltrid 2835 | 1 ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 {cab 2709 {crab 3395 ∩ cin 3896 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-en 8870 df-fin 8873 |
| This theorem is referenced by: sygbasnfpfi 19424 finptfin 23433 lfinun 23440 numedglnl 29122 usgrfilem 29305 nbusgrfi 29352 cusgrsizeindslem 29430 cusgrsizeinds 29431 vtxdgfival 29448 vtxdgfisnn0 29454 vtxdginducedm1fi 29523 finsumvtxdg2ssteplem4 29527 vtxdgoddnumeven 29532 hashwwlksnext 29892 wwlksnonfi 29898 rusgrnumwwlks 29955 clwwlknclwwlkdifnum 29960 clwwlknonfin 30074 konigsberglem5 30236 fusgreghash2wsp 30318 numclwwlk3lem2 30364 reprfi 34629 phpreu 37643 poimirlem25 37684 poimirlem26 37685 poimirlem27 37686 poimirlem28 37687 poimirlem31 37690 poimirlem32 37691 sstotbnd3 37815 hoidmvlelem2 46693 clnbusgrfi 47942 |
| Copyright terms: Public domain | W3C validator |