![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabfi | Structured version Visualization version GIF version |
Description: A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
Ref | Expression |
---|---|
rabfi | ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrab3 4338 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
2 | infi 9330 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ∩ {𝑥 ∣ 𝜑}) ∈ Fin) | |
3 | 1, 2 | eqeltrid 2848 | 1 ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 {cab 2717 {crab 3443 ∩ cin 3975 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1o 8522 df-en 9004 df-fin 9007 |
This theorem is referenced by: sygbasnfpfi 19554 finptfin 23547 lfinun 23554 numedglnl 29179 usgrfilem 29362 nbusgrfi 29409 cusgrsizeindslem 29487 cusgrsizeinds 29488 vtxdgfival 29505 vtxdgfisnn0 29511 vtxdginducedm1fi 29580 finsumvtxdg2ssteplem4 29584 vtxdgoddnumeven 29589 hashwwlksnext 29947 wwlksnonfi 29953 rusgrnumwwlks 30007 clwwlknclwwlkdifnum 30012 clwwlknonfin 30126 konigsberglem5 30288 fusgreghash2wsp 30370 numclwwlk3lem2 30416 reprfi 34593 phpreu 37564 poimirlem25 37605 poimirlem26 37606 poimirlem27 37607 poimirlem28 37608 poimirlem31 37611 poimirlem32 37612 sstotbnd3 37736 hoidmvlelem2 46517 clnbusgrfi 47715 |
Copyright terms: Public domain | W3C validator |