| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabfi | Structured version Visualization version GIF version | ||
| Description: A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
| Ref | Expression |
|---|---|
| rabfi | ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrab3 4278 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
| 2 | infi 9189 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ∩ {𝑥 ∣ 𝜑}) ∈ Fin) | |
| 3 | 1, 2 | eqeltrid 2832 | 1 ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {cab 2707 {crab 3402 ∩ cin 3910 Fincfn 8895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-om 7823 df-1o 8411 df-en 8896 df-fin 8899 |
| This theorem is referenced by: sygbasnfpfi 19426 finptfin 23438 lfinun 23445 numedglnl 29124 usgrfilem 29307 nbusgrfi 29354 cusgrsizeindslem 29432 cusgrsizeinds 29433 vtxdgfival 29450 vtxdgfisnn0 29456 vtxdginducedm1fi 29525 finsumvtxdg2ssteplem4 29529 vtxdgoddnumeven 29534 hashwwlksnext 29894 wwlksnonfi 29900 rusgrnumwwlks 29954 clwwlknclwwlkdifnum 29959 clwwlknonfin 30073 konigsberglem5 30235 fusgreghash2wsp 30317 numclwwlk3lem2 30363 reprfi 34600 phpreu 37591 poimirlem25 37632 poimirlem26 37633 poimirlem27 37634 poimirlem28 37635 poimirlem31 37638 poimirlem32 37639 sstotbnd3 37763 hoidmvlelem2 46587 clnbusgrfi 47836 |
| Copyright terms: Public domain | W3C validator |