MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabfi Structured version   Visualization version   GIF version

Theorem rabfi 9022
Description: A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.)
Assertion
Ref Expression
rabfi (𝐴 ∈ Fin → {𝑥𝐴𝜑} ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabfi
StepHypRef Expression
1 dfrab3 4249 . 2 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
2 infi 9021 . 2 (𝐴 ∈ Fin → (𝐴 ∩ {𝑥𝜑}) ∈ Fin)
31, 2eqeltrid 2845 1 (𝐴 ∈ Fin → {𝑥𝐴𝜑} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  {cab 2717  {crab 3070  cin 3891  Fincfn 8716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-om 7707  df-1o 8288  df-en 8717  df-fin 8720
This theorem is referenced by:  sygbasnfpfi  19118  finptfin  22667  lfinun  22674  numedglnl  27512  usgrfilem  27692  nbusgrfi  27739  cusgrsizeindslem  27816  cusgrsizeinds  27817  vtxdgfival  27834  vtxdgfisnn0  27840  vtxdginducedm1fi  27909  finsumvtxdg2ssteplem4  27913  vtxdgoddnumeven  27918  hashwwlksnext  28275  wwlksnonfi  28281  rusgrnumwwlks  28335  clwwlknclwwlkdifnum  28340  clwwlknonfin  28454  konigsberglem5  28616  fusgreghash2wsp  28698  numclwwlk3lem2  28744  reprfi  32592  phpreu  35757  poimirlem25  35798  poimirlem26  35799  poimirlem27  35800  poimirlem28  35801  poimirlem31  35804  poimirlem32  35805  sstotbnd3  35930  hoidmvlelem2  44105
  Copyright terms: Public domain W3C validator