MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabfi Structured version   Visualization version   GIF version

Theorem rabfi 9275
Description: A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.)
Assertion
Ref Expression
rabfi (𝐴 ∈ Fin → {𝑥𝐴𝜑} ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabfi
StepHypRef Expression
1 dfrab3 4294 . 2 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
2 infi 9274 . 2 (𝐴 ∈ Fin → (𝐴 ∩ {𝑥𝜑}) ∈ Fin)
31, 2eqeltrid 2838 1 (𝐴 ∈ Fin → {𝑥𝐴𝜑} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  {cab 2713  {crab 3415  cin 3925  Fincfn 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-1o 8480  df-en 8960  df-fin 8963
This theorem is referenced by:  sygbasnfpfi  19493  finptfin  23456  lfinun  23463  numedglnl  29123  usgrfilem  29306  nbusgrfi  29353  cusgrsizeindslem  29431  cusgrsizeinds  29432  vtxdgfival  29449  vtxdgfisnn0  29455  vtxdginducedm1fi  29524  finsumvtxdg2ssteplem4  29528  vtxdgoddnumeven  29533  hashwwlksnext  29896  wwlksnonfi  29902  rusgrnumwwlks  29956  clwwlknclwwlkdifnum  29961  clwwlknonfin  30075  konigsberglem5  30237  fusgreghash2wsp  30319  numclwwlk3lem2  30365  reprfi  34648  phpreu  37628  poimirlem25  37669  poimirlem26  37670  poimirlem27  37671  poimirlem28  37672  poimirlem31  37675  poimirlem32  37676  sstotbnd3  37800  hoidmvlelem2  46625  clnbusgrfi  47856
  Copyright terms: Public domain W3C validator