MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabfi Structured version   Visualization version   GIF version

Theorem rabfi 9190
Description: A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.)
Assertion
Ref Expression
rabfi (𝐴 ∈ Fin → {𝑥𝐴𝜑} ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabfi
StepHypRef Expression
1 dfrab3 4278 . 2 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
2 infi 9189 . 2 (𝐴 ∈ Fin → (𝐴 ∩ {𝑥𝜑}) ∈ Fin)
31, 2eqeltrid 2832 1 (𝐴 ∈ Fin → {𝑥𝐴𝜑} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {cab 2707  {crab 3402  cin 3910  Fincfn 8895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-en 8896  df-fin 8899
This theorem is referenced by:  sygbasnfpfi  19426  finptfin  23438  lfinun  23445  numedglnl  29124  usgrfilem  29307  nbusgrfi  29354  cusgrsizeindslem  29432  cusgrsizeinds  29433  vtxdgfival  29450  vtxdgfisnn0  29456  vtxdginducedm1fi  29525  finsumvtxdg2ssteplem4  29529  vtxdgoddnumeven  29534  hashwwlksnext  29894  wwlksnonfi  29900  rusgrnumwwlks  29954  clwwlknclwwlkdifnum  29959  clwwlknonfin  30073  konigsberglem5  30235  fusgreghash2wsp  30317  numclwwlk3lem2  30363  reprfi  34600  phpreu  37591  poimirlem25  37632  poimirlem26  37633  poimirlem27  37634  poimirlem28  37635  poimirlem31  37638  poimirlem32  37639  sstotbnd3  37763  hoidmvlelem2  46587  clnbusgrfi  47836
  Copyright terms: Public domain W3C validator