MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabfi Structured version   Visualization version   GIF version

Theorem rabfi 9331
Description: A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.)
Assertion
Ref Expression
rabfi (𝐴 ∈ Fin → {𝑥𝐴𝜑} ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabfi
StepHypRef Expression
1 dfrab3 4338 . 2 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
2 infi 9330 . 2 (𝐴 ∈ Fin → (𝐴 ∩ {𝑥𝜑}) ∈ Fin)
31, 2eqeltrid 2848 1 (𝐴 ∈ Fin → {𝑥𝐴𝜑} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  {cab 2717  {crab 3443  cin 3975  Fincfn 9003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-en 9004  df-fin 9007
This theorem is referenced by:  sygbasnfpfi  19554  finptfin  23547  lfinun  23554  numedglnl  29179  usgrfilem  29362  nbusgrfi  29409  cusgrsizeindslem  29487  cusgrsizeinds  29488  vtxdgfival  29505  vtxdgfisnn0  29511  vtxdginducedm1fi  29580  finsumvtxdg2ssteplem4  29584  vtxdgoddnumeven  29589  hashwwlksnext  29947  wwlksnonfi  29953  rusgrnumwwlks  30007  clwwlknclwwlkdifnum  30012  clwwlknonfin  30126  konigsberglem5  30288  fusgreghash2wsp  30370  numclwwlk3lem2  30416  reprfi  34593  phpreu  37564  poimirlem25  37605  poimirlem26  37606  poimirlem27  37607  poimirlem28  37608  poimirlem31  37611  poimirlem32  37612  sstotbnd3  37736  hoidmvlelem2  46517  clnbusgrfi  47715
  Copyright terms: Public domain W3C validator