MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmplbas2 Structured version   Visualization version   GIF version

Theorem ressmplbas2 21228
Description: The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
ressmpl.s 𝑆 = (𝐼 mPoly 𝑅)
ressmpl.h 𝐻 = (𝑅s 𝑇)
ressmpl.u 𝑈 = (𝐼 mPoly 𝐻)
ressmpl.b 𝐵 = (Base‘𝑈)
ressmpl.1 (𝜑𝐼𝑉)
ressmpl.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressmplbas2.w 𝑊 = (𝐼 mPwSer 𝐻)
ressmplbas2.c 𝐶 = (Base‘𝑊)
ressmplbas2.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
ressmplbas2 (𝜑𝐵 = (𝐶𝐾))

Proof of Theorem ressmplbas2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ressmpl.1 . . . . . . 7 (𝜑𝐼𝑉)
2 ressmpl.2 . . . . . . 7 (𝜑𝑇 ∈ (SubRing‘𝑅))
3 eqid 2738 . . . . . . . 8 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
4 ressmpl.h . . . . . . . 8 𝐻 = (𝑅s 𝑇)
5 ressmplbas2.w . . . . . . . 8 𝑊 = (𝐼 mPwSer 𝐻)
6 ressmplbas2.c . . . . . . . 8 𝐶 = (Base‘𝑊)
73, 4, 5, 6subrgpsr 21188 . . . . . . 7 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
81, 2, 7syl2anc 584 . . . . . 6 (𝜑𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
9 eqid 2738 . . . . . . 7 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
109subrgss 20025 . . . . . 6 (𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → 𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
118, 10syl 17 . . . . 5 (𝜑𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
12 df-ss 3904 . . . . 5 (𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅)) ↔ (𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) = 𝐶)
1311, 12sylib 217 . . . 4 (𝜑 → (𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) = 𝐶)
14 eqid 2738 . . . . . . . 8 (0g𝑅) = (0g𝑅)
154, 14subrg0 20031 . . . . . . 7 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g𝐻))
162, 15syl 17 . . . . . 6 (𝜑 → (0g𝑅) = (0g𝐻))
1716breq2d 5086 . . . . 5 (𝜑 → (𝑓 finSupp (0g𝑅) ↔ 𝑓 finSupp (0g𝐻)))
1817abbidv 2807 . . . 4 (𝜑 → {𝑓𝑓 finSupp (0g𝑅)} = {𝑓𝑓 finSupp (0g𝐻)})
1913, 18ineq12d 4147 . . 3 (𝜑 → ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓𝑓 finSupp (0g𝑅)}) = (𝐶 ∩ {𝑓𝑓 finSupp (0g𝐻)}))
2019eqcomd 2744 . 2 (𝜑 → (𝐶 ∩ {𝑓𝑓 finSupp (0g𝐻)}) = ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓𝑓 finSupp (0g𝑅)}))
21 ressmpl.u . . . 4 𝑈 = (𝐼 mPoly 𝐻)
22 eqid 2738 . . . 4 (0g𝐻) = (0g𝐻)
23 ressmpl.b . . . 4 𝐵 = (Base‘𝑈)
2421, 5, 6, 22, 23mplbas 21198 . . 3 𝐵 = {𝑓𝐶𝑓 finSupp (0g𝐻)}
25 dfrab3 4243 . . 3 {𝑓𝐶𝑓 finSupp (0g𝐻)} = (𝐶 ∩ {𝑓𝑓 finSupp (0g𝐻)})
2624, 25eqtri 2766 . 2 𝐵 = (𝐶 ∩ {𝑓𝑓 finSupp (0g𝐻)})
27 ressmpl.s . . . . . 6 𝑆 = (𝐼 mPoly 𝑅)
28 ressmplbas2.k . . . . . 6 𝐾 = (Base‘𝑆)
2927, 3, 9, 14, 28mplbas 21198 . . . . 5 𝐾 = {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g𝑅)}
30 dfrab3 4243 . . . . 5 {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g𝑅)} = ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓𝑓 finSupp (0g𝑅)})
3129, 30eqtri 2766 . . . 4 𝐾 = ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓𝑓 finSupp (0g𝑅)})
3231ineq2i 4143 . . 3 (𝐶𝐾) = (𝐶 ∩ ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓𝑓 finSupp (0g𝑅)}))
33 inass 4153 . . 3 ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓𝑓 finSupp (0g𝑅)}) = (𝐶 ∩ ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓𝑓 finSupp (0g𝑅)}))
3432, 33eqtr4i 2769 . 2 (𝐶𝐾) = ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓𝑓 finSupp (0g𝑅)})
3520, 26, 343eqtr4g 2803 1 (𝜑𝐵 = (𝐶𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {cab 2715  {crab 3068  cin 3886  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275   finSupp cfsupp 9128  Basecbs 16912  s cress 16941  0gc0g 17150  SubRingcsubrg 20020   mPwSer cmps 21107   mPoly cmpl 21109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-tset 16981  df-0g 17152  df-gsum 17153  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-subrg 20022  df-psr 21112  df-mpl 21114
This theorem is referenced by:  ressmplbas  21229  subrgmpl  21233  ressply1bas2  21399
  Copyright terms: Public domain W3C validator