![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressmplbas2 | Structured version Visualization version GIF version |
Description: The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
ressmpl.s | ⊢ 𝑆 = (𝐼 mPoly 𝑅) |
ressmpl.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
ressmpl.u | ⊢ 𝑈 = (𝐼 mPoly 𝐻) |
ressmpl.b | ⊢ 𝐵 = (Base‘𝑈) |
ressmpl.1 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
ressmpl.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
ressmplbas2.w | ⊢ 𝑊 = (𝐼 mPwSer 𝐻) |
ressmplbas2.c | ⊢ 𝐶 = (Base‘𝑊) |
ressmplbas2.k | ⊢ 𝐾 = (Base‘𝑆) |
Ref | Expression |
---|---|
ressmplbas2 | ⊢ (𝜑 → 𝐵 = (𝐶 ∩ 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressmpl.1 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
2 | ressmpl.2 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
3 | eqid 2726 | . . . . . . . 8 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
4 | ressmpl.h | . . . . . . . 8 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
5 | ressmplbas2.w | . . . . . . . 8 ⊢ 𝑊 = (𝐼 mPwSer 𝐻) | |
6 | ressmplbas2.c | . . . . . . . 8 ⊢ 𝐶 = (Base‘𝑊) | |
7 | 3, 4, 5, 6 | subrgpsr 21983 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅))) |
8 | 1, 2, 7 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅))) |
9 | eqid 2726 | . . . . . . 7 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
10 | 9 | subrgss 20552 | . . . . . 6 ⊢ (𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → 𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅))) |
11 | 8, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅))) |
12 | dfss2 3964 | . . . . 5 ⊢ (𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅)) ↔ (𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) = 𝐶) | |
13 | 11, 12 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) = 𝐶) |
14 | eqid 2726 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
15 | 4, 14 | subrg0 20559 | . . . . . . 7 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) = (0g‘𝐻)) |
16 | 2, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝐻)) |
17 | 16 | breq2d 5157 | . . . . 5 ⊢ (𝜑 → (𝑓 finSupp (0g‘𝑅) ↔ 𝑓 finSupp (0g‘𝐻))) |
18 | 17 | abbidv 2795 | . . . 4 ⊢ (𝜑 → {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)} = {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)}) |
19 | 13, 18 | ineq12d 4211 | . . 3 ⊢ (𝜑 → ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) = (𝐶 ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)})) |
20 | 19 | eqcomd 2732 | . 2 ⊢ (𝜑 → (𝐶 ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)}) = ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)})) |
21 | ressmpl.u | . . . 4 ⊢ 𝑈 = (𝐼 mPoly 𝐻) | |
22 | eqid 2726 | . . . 4 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
23 | ressmpl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑈) | |
24 | 21, 5, 6, 22, 23 | mplbas 21995 | . . 3 ⊢ 𝐵 = {𝑓 ∈ 𝐶 ∣ 𝑓 finSupp (0g‘𝐻)} |
25 | dfrab3 4308 | . . 3 ⊢ {𝑓 ∈ 𝐶 ∣ 𝑓 finSupp (0g‘𝐻)} = (𝐶 ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)}) | |
26 | 24, 25 | eqtri 2754 | . 2 ⊢ 𝐵 = (𝐶 ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)}) |
27 | ressmpl.s | . . . . . 6 ⊢ 𝑆 = (𝐼 mPoly 𝑅) | |
28 | ressmplbas2.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
29 | 27, 3, 9, 14, 28 | mplbas 21995 | . . . . 5 ⊢ 𝐾 = {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g‘𝑅)} |
30 | dfrab3 4308 | . . . . 5 ⊢ {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g‘𝑅)} = ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) | |
31 | 29, 30 | eqtri 2754 | . . . 4 ⊢ 𝐾 = ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) |
32 | 31 | ineq2i 4207 | . . 3 ⊢ (𝐶 ∩ 𝐾) = (𝐶 ∩ ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)})) |
33 | inass 4218 | . . 3 ⊢ ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) = (𝐶 ∩ ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)})) | |
34 | 32, 33 | eqtr4i 2757 | . 2 ⊢ (𝐶 ∩ 𝐾) = ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) |
35 | 20, 26, 34 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → 𝐵 = (𝐶 ∩ 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {cab 2703 {crab 3419 ∩ cin 3945 ⊆ wss 3946 class class class wbr 5145 ‘cfv 6546 (class class class)co 7416 finSupp cfsupp 9398 Basecbs 17208 ↾s cress 17237 0gc0g 17449 SubRingcsubrg 20547 mPwSer cmps 21897 mPoly cmpl 21899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-iin 4996 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-isom 6555 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-of 7682 df-ofr 7683 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8726 df-map 8849 df-pm 8850 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9399 df-sup 9478 df-oi 9546 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-4 12323 df-5 12324 df-6 12325 df-7 12326 df-8 12327 df-9 12328 df-n0 12519 df-z 12605 df-dec 12724 df-uz 12869 df-fz 13533 df-fzo 13676 df-seq 14016 df-hash 14343 df-struct 17144 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-sca 17277 df-vsca 17278 df-ip 17279 df-tset 17280 df-ple 17281 df-ds 17283 df-hom 17285 df-cco 17286 df-0g 17451 df-gsum 17452 df-prds 17457 df-pws 17459 df-mre 17594 df-mrc 17595 df-acs 17597 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-mhm 18768 df-submnd 18769 df-grp 18926 df-minusg 18927 df-mulg 19058 df-subg 19113 df-ghm 19203 df-cntz 19307 df-cmn 19776 df-abl 19777 df-mgp 20114 df-rng 20132 df-ur 20161 df-ring 20214 df-subrng 20524 df-subrg 20549 df-psr 21902 df-mpl 21904 |
This theorem is referenced by: ressmplbas 22031 subrgmpl 22035 ressply1bas2 22213 |
Copyright terms: Public domain | W3C validator |