Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressmplbas2 | Structured version Visualization version GIF version |
Description: The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
ressmpl.s | ⊢ 𝑆 = (𝐼 mPoly 𝑅) |
ressmpl.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
ressmpl.u | ⊢ 𝑈 = (𝐼 mPoly 𝐻) |
ressmpl.b | ⊢ 𝐵 = (Base‘𝑈) |
ressmpl.1 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
ressmpl.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
ressmplbas2.w | ⊢ 𝑊 = (𝐼 mPwSer 𝐻) |
ressmplbas2.c | ⊢ 𝐶 = (Base‘𝑊) |
ressmplbas2.k | ⊢ 𝐾 = (Base‘𝑆) |
Ref | Expression |
---|---|
ressmplbas2 | ⊢ (𝜑 → 𝐵 = (𝐶 ∩ 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressmpl.1 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
2 | ressmpl.2 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
3 | eqid 2738 | . . . . . . . 8 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
4 | ressmpl.h | . . . . . . . 8 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
5 | ressmplbas2.w | . . . . . . . 8 ⊢ 𝑊 = (𝐼 mPwSer 𝐻) | |
6 | ressmplbas2.c | . . . . . . . 8 ⊢ 𝐶 = (Base‘𝑊) | |
7 | 3, 4, 5, 6 | subrgpsr 21098 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅))) |
8 | 1, 2, 7 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅))) |
9 | eqid 2738 | . . . . . . 7 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
10 | 9 | subrgss 19940 | . . . . . 6 ⊢ (𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → 𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅))) |
11 | 8, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅))) |
12 | df-ss 3900 | . . . . 5 ⊢ (𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅)) ↔ (𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) = 𝐶) | |
13 | 11, 12 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) = 𝐶) |
14 | eqid 2738 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
15 | 4, 14 | subrg0 19946 | . . . . . . 7 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) = (0g‘𝐻)) |
16 | 2, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝐻)) |
17 | 16 | breq2d 5082 | . . . . 5 ⊢ (𝜑 → (𝑓 finSupp (0g‘𝑅) ↔ 𝑓 finSupp (0g‘𝐻))) |
18 | 17 | abbidv 2808 | . . . 4 ⊢ (𝜑 → {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)} = {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)}) |
19 | 13, 18 | ineq12d 4144 | . . 3 ⊢ (𝜑 → ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) = (𝐶 ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)})) |
20 | 19 | eqcomd 2744 | . 2 ⊢ (𝜑 → (𝐶 ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)}) = ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)})) |
21 | ressmpl.u | . . . 4 ⊢ 𝑈 = (𝐼 mPoly 𝐻) | |
22 | eqid 2738 | . . . 4 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
23 | ressmpl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑈) | |
24 | 21, 5, 6, 22, 23 | mplbas 21108 | . . 3 ⊢ 𝐵 = {𝑓 ∈ 𝐶 ∣ 𝑓 finSupp (0g‘𝐻)} |
25 | dfrab3 4240 | . . 3 ⊢ {𝑓 ∈ 𝐶 ∣ 𝑓 finSupp (0g‘𝐻)} = (𝐶 ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)}) | |
26 | 24, 25 | eqtri 2766 | . 2 ⊢ 𝐵 = (𝐶 ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)}) |
27 | ressmpl.s | . . . . . 6 ⊢ 𝑆 = (𝐼 mPoly 𝑅) | |
28 | ressmplbas2.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
29 | 27, 3, 9, 14, 28 | mplbas 21108 | . . . . 5 ⊢ 𝐾 = {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g‘𝑅)} |
30 | dfrab3 4240 | . . . . 5 ⊢ {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g‘𝑅)} = ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) | |
31 | 29, 30 | eqtri 2766 | . . . 4 ⊢ 𝐾 = ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) |
32 | 31 | ineq2i 4140 | . . 3 ⊢ (𝐶 ∩ 𝐾) = (𝐶 ∩ ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)})) |
33 | inass 4150 | . . 3 ⊢ ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) = (𝐶 ∩ ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)})) | |
34 | 32, 33 | eqtr4i 2769 | . 2 ⊢ (𝐶 ∩ 𝐾) = ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) |
35 | 20, 26, 34 | 3eqtr4g 2804 | 1 ⊢ (𝜑 → 𝐵 = (𝐶 ∩ 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {cab 2715 {crab 3067 ∩ cin 3882 ⊆ wss 3883 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 finSupp cfsupp 9058 Basecbs 16840 ↾s cress 16867 0gc0g 17067 SubRingcsubrg 19935 mPwSer cmps 21017 mPoly cmpl 21019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-tset 16907 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-psr 21022 df-mpl 21024 |
This theorem is referenced by: ressmplbas 21139 subrgmpl 21143 ressply1bas2 21309 |
Copyright terms: Public domain | W3C validator |