MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmplbas2 Structured version   Visualization version   GIF version

Theorem ressmplbas2 20239
Description: The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
ressmpl.s 𝑆 = (𝐼 mPoly 𝑅)
ressmpl.h 𝐻 = (𝑅s 𝑇)
ressmpl.u 𝑈 = (𝐼 mPoly 𝐻)
ressmpl.b 𝐵 = (Base‘𝑈)
ressmpl.1 (𝜑𝐼𝑉)
ressmpl.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressmplbas2.w 𝑊 = (𝐼 mPwSer 𝐻)
ressmplbas2.c 𝐶 = (Base‘𝑊)
ressmplbas2.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
ressmplbas2 (𝜑𝐵 = (𝐶𝐾))

Proof of Theorem ressmplbas2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ressmpl.1 . . . . . . 7 (𝜑𝐼𝑉)
2 ressmpl.2 . . . . . . 7 (𝜑𝑇 ∈ (SubRing‘𝑅))
3 eqid 2824 . . . . . . . 8 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
4 ressmpl.h . . . . . . . 8 𝐻 = (𝑅s 𝑇)
5 ressmplbas2.w . . . . . . . 8 𝑊 = (𝐼 mPwSer 𝐻)
6 ressmplbas2.c . . . . . . . 8 𝐶 = (Base‘𝑊)
73, 4, 5, 6subrgpsr 20202 . . . . . . 7 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
81, 2, 7syl2anc 587 . . . . . 6 (𝜑𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
9 eqid 2824 . . . . . . 7 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
109subrgss 19539 . . . . . 6 (𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → 𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
118, 10syl 17 . . . . 5 (𝜑𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
12 df-ss 3937 . . . . 5 (𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅)) ↔ (𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) = 𝐶)
1311, 12sylib 221 . . . 4 (𝜑 → (𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) = 𝐶)
14 eqid 2824 . . . . . . . 8 (0g𝑅) = (0g𝑅)
154, 14subrg0 19545 . . . . . . 7 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g𝐻))
162, 15syl 17 . . . . . 6 (𝜑 → (0g𝑅) = (0g𝐻))
1716breq2d 5065 . . . . 5 (𝜑 → (𝑓 finSupp (0g𝑅) ↔ 𝑓 finSupp (0g𝐻)))
1817abbidv 2888 . . . 4 (𝜑 → {𝑓𝑓 finSupp (0g𝑅)} = {𝑓𝑓 finSupp (0g𝐻)})
1913, 18ineq12d 4176 . . 3 (𝜑 → ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓𝑓 finSupp (0g𝑅)}) = (𝐶 ∩ {𝑓𝑓 finSupp (0g𝐻)}))
2019eqcomd 2830 . 2 (𝜑 → (𝐶 ∩ {𝑓𝑓 finSupp (0g𝐻)}) = ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓𝑓 finSupp (0g𝑅)}))
21 ressmpl.u . . . 4 𝑈 = (𝐼 mPoly 𝐻)
22 eqid 2824 . . . 4 (0g𝐻) = (0g𝐻)
23 ressmpl.b . . . 4 𝐵 = (Base‘𝑈)
2421, 5, 6, 22, 23mplbas 20212 . . 3 𝐵 = {𝑓𝐶𝑓 finSupp (0g𝐻)}
25 dfrab3 4264 . . 3 {𝑓𝐶𝑓 finSupp (0g𝐻)} = (𝐶 ∩ {𝑓𝑓 finSupp (0g𝐻)})
2624, 25eqtri 2847 . 2 𝐵 = (𝐶 ∩ {𝑓𝑓 finSupp (0g𝐻)})
27 ressmpl.s . . . . . 6 𝑆 = (𝐼 mPoly 𝑅)
28 ressmplbas2.k . . . . . 6 𝐾 = (Base‘𝑆)
2927, 3, 9, 14, 28mplbas 20212 . . . . 5 𝐾 = {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g𝑅)}
30 dfrab3 4264 . . . . 5 {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g𝑅)} = ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓𝑓 finSupp (0g𝑅)})
3129, 30eqtri 2847 . . . 4 𝐾 = ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓𝑓 finSupp (0g𝑅)})
3231ineq2i 4172 . . 3 (𝐶𝐾) = (𝐶 ∩ ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓𝑓 finSupp (0g𝑅)}))
33 inass 4182 . . 3 ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓𝑓 finSupp (0g𝑅)}) = (𝐶 ∩ ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓𝑓 finSupp (0g𝑅)}))
3432, 33eqtr4i 2850 . 2 (𝐶𝐾) = ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓𝑓 finSupp (0g𝑅)})
3520, 26, 343eqtr4g 2884 1 (𝜑𝐵 = (𝐶𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  {cab 2802  {crab 3137  cin 3919  wss 3920   class class class wbr 5053  cfv 6344  (class class class)co 7150   finSupp cfsupp 8831  Basecbs 16486  s cress 16487  0gc0g 16716  SubRingcsubrg 19534   mPwSer cmps 20134   mPoly cmpl 20136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7404  df-ofr 7405  df-om 7576  df-1st 7685  df-2nd 7686  df-supp 7828  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-2o 8100  df-oadd 8103  df-er 8286  df-map 8405  df-pm 8406  df-ixp 8459  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-fsupp 8832  df-oi 8972  df-card 9366  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11700  df-3 11701  df-4 11702  df-5 11703  df-6 11704  df-7 11705  df-8 11706  df-9 11707  df-n0 11898  df-z 11982  df-uz 12244  df-fz 12898  df-fzo 13041  df-seq 13377  df-hash 13699  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-tset 16587  df-0g 16718  df-gsum 16719  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-grp 18109  df-minusg 18110  df-mulg 18228  df-subg 18279  df-ghm 18359  df-cntz 18450  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-subrg 19536  df-psr 20139  df-mpl 20141
This theorem is referenced by:  ressmplbas  20240  subrgmpl  20244  ressply1bas2  20399
  Copyright terms: Public domain W3C validator