MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmplbas2 Structured version   Visualization version   GIF version

Theorem ressmplbas2 20236
Description: The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015.)
Hypotheses
Ref Expression
ressmpl.s 𝑆 = (𝐼 mPoly 𝑅)
ressmpl.h 𝐻 = (𝑅s 𝑇)
ressmpl.u 𝑈 = (𝐼 mPoly 𝐻)
ressmpl.b 𝐵 = (Base‘𝑈)
ressmpl.1 (𝜑𝐼𝑉)
ressmpl.2 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressmplbas2.w 𝑊 = (𝐼 mPwSer 𝐻)
ressmplbas2.c 𝐶 = (Base‘𝑊)
ressmplbas2.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
ressmplbas2 (𝜑𝐵 = (𝐶𝐾))

Proof of Theorem ressmplbas2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ressmpl.1 . . . . . . 7 (𝜑𝐼𝑉)
2 ressmpl.2 . . . . . . 7 (𝜑𝑇 ∈ (SubRing‘𝑅))
3 eqid 2821 . . . . . . . 8 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
4 ressmpl.h . . . . . . . 8 𝐻 = (𝑅s 𝑇)
5 ressmplbas2.w . . . . . . . 8 𝑊 = (𝐼 mPwSer 𝐻)
6 ressmplbas2.c . . . . . . . 8 𝐶 = (Base‘𝑊)
73, 4, 5, 6subrgpsr 20199 . . . . . . 7 ((𝐼𝑉𝑇 ∈ (SubRing‘𝑅)) → 𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
81, 2, 7syl2anc 586 . . . . . 6 (𝜑𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅)))
9 eqid 2821 . . . . . . 7 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
109subrgss 19536 . . . . . 6 (𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → 𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
118, 10syl 17 . . . . 5 (𝜑𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅)))
12 df-ss 3952 . . . . 5 (𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅)) ↔ (𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) = 𝐶)
1311, 12sylib 220 . . . 4 (𝜑 → (𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) = 𝐶)
14 eqid 2821 . . . . . . . 8 (0g𝑅) = (0g𝑅)
154, 14subrg0 19542 . . . . . . 7 (𝑇 ∈ (SubRing‘𝑅) → (0g𝑅) = (0g𝐻))
162, 15syl 17 . . . . . 6 (𝜑 → (0g𝑅) = (0g𝐻))
1716breq2d 5078 . . . . 5 (𝜑 → (𝑓 finSupp (0g𝑅) ↔ 𝑓 finSupp (0g𝐻)))
1817abbidv 2885 . . . 4 (𝜑 → {𝑓𝑓 finSupp (0g𝑅)} = {𝑓𝑓 finSupp (0g𝐻)})
1913, 18ineq12d 4190 . . 3 (𝜑 → ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓𝑓 finSupp (0g𝑅)}) = (𝐶 ∩ {𝑓𝑓 finSupp (0g𝐻)}))
2019eqcomd 2827 . 2 (𝜑 → (𝐶 ∩ {𝑓𝑓 finSupp (0g𝐻)}) = ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓𝑓 finSupp (0g𝑅)}))
21 ressmpl.u . . . 4 𝑈 = (𝐼 mPoly 𝐻)
22 eqid 2821 . . . 4 (0g𝐻) = (0g𝐻)
23 ressmpl.b . . . 4 𝐵 = (Base‘𝑈)
2421, 5, 6, 22, 23mplbas 20209 . . 3 𝐵 = {𝑓𝐶𝑓 finSupp (0g𝐻)}
25 dfrab3 4278 . . 3 {𝑓𝐶𝑓 finSupp (0g𝐻)} = (𝐶 ∩ {𝑓𝑓 finSupp (0g𝐻)})
2624, 25eqtri 2844 . 2 𝐵 = (𝐶 ∩ {𝑓𝑓 finSupp (0g𝐻)})
27 ressmpl.s . . . . . 6 𝑆 = (𝐼 mPoly 𝑅)
28 ressmplbas2.k . . . . . 6 𝐾 = (Base‘𝑆)
2927, 3, 9, 14, 28mplbas 20209 . . . . 5 𝐾 = {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g𝑅)}
30 dfrab3 4278 . . . . 5 {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g𝑅)} = ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓𝑓 finSupp (0g𝑅)})
3129, 30eqtri 2844 . . . 4 𝐾 = ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓𝑓 finSupp (0g𝑅)})
3231ineq2i 4186 . . 3 (𝐶𝐾) = (𝐶 ∩ ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓𝑓 finSupp (0g𝑅)}))
33 inass 4196 . . 3 ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓𝑓 finSupp (0g𝑅)}) = (𝐶 ∩ ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓𝑓 finSupp (0g𝑅)}))
3432, 33eqtr4i 2847 . 2 (𝐶𝐾) = ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓𝑓 finSupp (0g𝑅)})
3520, 26, 343eqtr4g 2881 1 (𝜑𝐵 = (𝐶𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  {cab 2799  {crab 3142  cin 3935  wss 3936   class class class wbr 5066  cfv 6355  (class class class)co 7156   finSupp cfsupp 8833  Basecbs 16483  s cress 16484  0gc0g 16713  SubRingcsubrg 19531   mPwSer cmps 20131   mPoly cmpl 20133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-tset 16584  df-0g 16715  df-gsum 16716  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-subrg 19533  df-psr 20136  df-mpl 20138
This theorem is referenced by:  ressmplbas  20237  subrgmpl  20241  ressply1bas2  20396
  Copyright terms: Public domain W3C validator