Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ressmplbas2 | Structured version Visualization version GIF version |
Description: The base set of a restricted polynomial algebra consists of power series in the subring which are also polynomials (in the parent ring). (Contributed by Mario Carneiro, 3-Jul-2015.) |
Ref | Expression |
---|---|
ressmpl.s | ⊢ 𝑆 = (𝐼 mPoly 𝑅) |
ressmpl.h | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
ressmpl.u | ⊢ 𝑈 = (𝐼 mPoly 𝐻) |
ressmpl.b | ⊢ 𝐵 = (Base‘𝑈) |
ressmpl.1 | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
ressmpl.2 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
ressmplbas2.w | ⊢ 𝑊 = (𝐼 mPwSer 𝐻) |
ressmplbas2.c | ⊢ 𝐶 = (Base‘𝑊) |
ressmplbas2.k | ⊢ 𝐾 = (Base‘𝑆) |
Ref | Expression |
---|---|
ressmplbas2 | ⊢ (𝜑 → 𝐵 = (𝐶 ∩ 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressmpl.1 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
2 | ressmpl.2 | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
3 | eqid 2740 | . . . . . . . 8 ⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) | |
4 | ressmpl.h | . . . . . . . 8 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
5 | ressmplbas2.w | . . . . . . . 8 ⊢ 𝑊 = (𝐼 mPwSer 𝐻) | |
6 | ressmplbas2.c | . . . . . . . 8 ⊢ 𝐶 = (Base‘𝑊) | |
7 | 3, 4, 5, 6 | subrgpsr 21186 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑇 ∈ (SubRing‘𝑅)) → 𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅))) |
8 | 1, 2, 7 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅))) |
9 | eqid 2740 | . . . . . . 7 ⊢ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅)) | |
10 | 9 | subrgss 20023 | . . . . . 6 ⊢ (𝐶 ∈ (SubRing‘(𝐼 mPwSer 𝑅)) → 𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅))) |
11 | 8, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅))) |
12 | df-ss 3909 | . . . . 5 ⊢ (𝐶 ⊆ (Base‘(𝐼 mPwSer 𝑅)) ↔ (𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) = 𝐶) | |
13 | 11, 12 | sylib 217 | . . . 4 ⊢ (𝜑 → (𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) = 𝐶) |
14 | eqid 2740 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
15 | 4, 14 | subrg0 20029 | . . . . . . 7 ⊢ (𝑇 ∈ (SubRing‘𝑅) → (0g‘𝑅) = (0g‘𝐻)) |
16 | 2, 15 | syl 17 | . . . . . 6 ⊢ (𝜑 → (0g‘𝑅) = (0g‘𝐻)) |
17 | 16 | breq2d 5091 | . . . . 5 ⊢ (𝜑 → (𝑓 finSupp (0g‘𝑅) ↔ 𝑓 finSupp (0g‘𝐻))) |
18 | 17 | abbidv 2809 | . . . 4 ⊢ (𝜑 → {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)} = {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)}) |
19 | 13, 18 | ineq12d 4153 | . . 3 ⊢ (𝜑 → ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) = (𝐶 ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)})) |
20 | 19 | eqcomd 2746 | . 2 ⊢ (𝜑 → (𝐶 ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)}) = ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)})) |
21 | ressmpl.u | . . . 4 ⊢ 𝑈 = (𝐼 mPoly 𝐻) | |
22 | eqid 2740 | . . . 4 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
23 | ressmpl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑈) | |
24 | 21, 5, 6, 22, 23 | mplbas 21196 | . . 3 ⊢ 𝐵 = {𝑓 ∈ 𝐶 ∣ 𝑓 finSupp (0g‘𝐻)} |
25 | dfrab3 4249 | . . 3 ⊢ {𝑓 ∈ 𝐶 ∣ 𝑓 finSupp (0g‘𝐻)} = (𝐶 ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)}) | |
26 | 24, 25 | eqtri 2768 | . 2 ⊢ 𝐵 = (𝐶 ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝐻)}) |
27 | ressmpl.s | . . . . . 6 ⊢ 𝑆 = (𝐼 mPoly 𝑅) | |
28 | ressmplbas2.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
29 | 27, 3, 9, 14, 28 | mplbas 21196 | . . . . 5 ⊢ 𝐾 = {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g‘𝑅)} |
30 | dfrab3 4249 | . . . . 5 ⊢ {𝑓 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∣ 𝑓 finSupp (0g‘𝑅)} = ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) | |
31 | 29, 30 | eqtri 2768 | . . . 4 ⊢ 𝐾 = ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) |
32 | 31 | ineq2i 4149 | . . 3 ⊢ (𝐶 ∩ 𝐾) = (𝐶 ∩ ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)})) |
33 | inass 4159 | . . 3 ⊢ ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) = (𝐶 ∩ ((Base‘(𝐼 mPwSer 𝑅)) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)})) | |
34 | 32, 33 | eqtr4i 2771 | . 2 ⊢ (𝐶 ∩ 𝐾) = ((𝐶 ∩ (Base‘(𝐼 mPwSer 𝑅))) ∩ {𝑓 ∣ 𝑓 finSupp (0g‘𝑅)}) |
35 | 20, 26, 34 | 3eqtr4g 2805 | 1 ⊢ (𝜑 → 𝐵 = (𝐶 ∩ 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2110 {cab 2717 {crab 3070 ∩ cin 3891 ⊆ wss 3892 class class class wbr 5079 ‘cfv 6432 (class class class)co 7271 finSupp cfsupp 9106 Basecbs 16910 ↾s cress 16939 0gc0g 17148 SubRingcsubrg 20018 mPwSer cmps 21105 mPoly cmpl 21107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-se 5546 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-isom 6441 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-of 7527 df-ofr 7528 df-om 7707 df-1st 7824 df-2nd 7825 df-supp 7969 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-map 8600 df-pm 8601 df-ixp 8669 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-fsupp 9107 df-oi 9247 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-uz 12582 df-fz 13239 df-fzo 13382 df-seq 13720 df-hash 14043 df-struct 16846 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-mulr 16974 df-sca 16976 df-vsca 16977 df-tset 16979 df-0g 17150 df-gsum 17151 df-mre 17293 df-mrc 17294 df-acs 17296 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-mhm 18428 df-submnd 18429 df-grp 18578 df-minusg 18579 df-mulg 18699 df-subg 18750 df-ghm 18830 df-cntz 18921 df-cmn 19386 df-abl 19387 df-mgp 19719 df-ur 19736 df-ring 19783 df-subrg 20020 df-psr 21110 df-mpl 21112 |
This theorem is referenced by: ressmplbas 21227 subrgmpl 21231 ressply1bas2 21397 |
Copyright terms: Public domain | W3C validator |