MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsocv Structured version   Visualization version   GIF version

Theorem clsocv 25285
Description: The orthogonal complement of the closure of a subset is the same as the orthogonal complement of the subset itself. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
clsocv.v 𝑉 = (Base‘𝑊)
clsocv.o 𝑂 = (ocv‘𝑊)
clsocv.j 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
clsocv ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) = (𝑂𝑆))

Proof of Theorem clsocv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphngp 25208 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
2 ngptps 24616 . . . . . . . 8 (𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp)
31, 2syl 17 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ TopSp)
43adantr 480 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑊 ∈ TopSp)
5 clsocv.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 clsocv.j . . . . . . 7 𝐽 = (TopOpen‘𝑊)
75, 6istps 22941 . . . . . 6 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑉))
84, 7sylib 218 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝐽 ∈ (TopOn‘𝑉))
9 topontop 22920 . . . . 5 (𝐽 ∈ (TopOn‘𝑉) → 𝐽 ∈ Top)
108, 9syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝐽 ∈ Top)
11 simpr 484 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑆𝑉)
12 toponuni 22921 . . . . . 6 (𝐽 ∈ (TopOn‘𝑉) → 𝑉 = 𝐽)
138, 12syl 17 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑉 = 𝐽)
1411, 13sseqtrd 4019 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑆 𝐽)
15 eqid 2736 . . . . 5 𝐽 = 𝐽
1615sscls 23065 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
1710, 14, 16syl2anc 584 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
18 clsocv.o . . . 4 𝑂 = (ocv‘𝑊)
1918ocv2ss 21692 . . 3 (𝑆 ⊆ ((cls‘𝐽)‘𝑆) → (𝑂‘((cls‘𝐽)‘𝑆)) ⊆ (𝑂𝑆))
2017, 19syl 17 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) ⊆ (𝑂𝑆))
2115clsss3 23068 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
2210, 14, 21syl2anc 584 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
2322, 13sseqtrrd 4020 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → ((cls‘𝐽)‘𝑆) ⊆ 𝑉)
2423adantr 480 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) ⊆ 𝑉)
255, 18ocvss 21689 . . . . 5 (𝑂𝑆) ⊆ 𝑉
2625a1i 11 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂𝑆) ⊆ 𝑉)
2726sselda 3982 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑥𝑉)
28 dfss2 3968 . . . . . . . . . 10 (((cls‘𝐽)‘𝑆) ⊆ 𝑉 ↔ (((cls‘𝐽)‘𝑆) ∩ 𝑉) = ((cls‘𝐽)‘𝑆))
2924, 28sylib 218 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (((cls‘𝐽)‘𝑆) ∩ 𝑉) = ((cls‘𝐽)‘𝑆))
3029ineq1d 4218 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((((cls‘𝐽)‘𝑆) ∩ 𝑉) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = (((cls‘𝐽)‘𝑆) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
31 dfrab3 4318 . . . . . . . . . 10 {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} = (𝑉 ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3231ineq2i 4216 . . . . . . . . 9 (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = (((cls‘𝐽)‘𝑆) ∩ (𝑉 ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
33 inass 4227 . . . . . . . . 9 ((((cls‘𝐽)‘𝑆) ∩ 𝑉) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = (((cls‘𝐽)‘𝑆) ∩ (𝑉 ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
3432, 33eqtr4i 2767 . . . . . . . 8 (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = ((((cls‘𝐽)‘𝑆) ∩ 𝑉) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
35 dfrab3 4318 . . . . . . . 8 {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} = (((cls‘𝐽)‘𝑆) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3630, 34, 353eqtr4g 2801 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3715clscld 23056 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
3810, 14, 37syl2anc 584 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
3938adantr 480 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
40 fvex 6918 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) ∈ V
41 eqid 2736 . . . . . . . . . . 11 (𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) = (𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦))
4241mptiniseg 6258 . . . . . . . . . 10 ((0g‘(Scalar‘𝑊)) ∈ V → ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) = {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
4340, 42ax-mp 5 . . . . . . . . 9 ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) = {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}
44 eqid 2736 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
45 eqid 2736 . . . . . . . . . . 11 (·𝑖𝑊) = (·𝑖𝑊)
46 simpll 766 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑊 ∈ ℂPreHil)
478adantr 480 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝐽 ∈ (TopOn‘𝑉))
4847, 47, 27cnmptc 23671 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (𝑦𝑉𝑥) ∈ (𝐽 Cn 𝐽))
4947cnmptid 23670 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (𝑦𝑉𝑦) ∈ (𝐽 Cn 𝐽))
506, 44, 45, 46, 47, 48, 49cnmpt1ip 25282 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
5144cnfldhaus 24806 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Haus
52 cphclm 25224 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
53 eqid 2736 . . . . . . . . . . . . . . 15 (Scalar‘𝑊) = (Scalar‘𝑊)
5453clm0 25106 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊)))
5552, 54syl 17 . . . . . . . . . . . . 13 (𝑊 ∈ ℂPreHil → 0 = (0g‘(Scalar‘𝑊)))
5655ad2antrr 726 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 0 = (0g‘(Scalar‘𝑊)))
57 0cn 11254 . . . . . . . . . . . 12 0 ∈ ℂ
5856, 57eqeltrrdi 2849 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (0g‘(Scalar‘𝑊)) ∈ ℂ)
59 unicntop 24807 . . . . . . . . . . . 12 ℂ = (TopOpen‘ℂfld)
6059sncld 23380 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Haus ∧ (0g‘(Scalar‘𝑊)) ∈ ℂ) → {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld)))
6151, 58, 60sylancr 587 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld)))
62 cnclima 23277 . . . . . . . . . 10 (((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ∧ {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld))) → ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6350, 61, 62syl2anc 584 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6443, 63eqeltrrid 2845 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
65 incld 23052 . . . . . . . 8 ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽)) → (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6639, 64, 65syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6736, 66eqeltrrd 2841 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
6817adantr 480 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
69 eqid 2736 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
705, 45, 53, 69, 18ocvi 21688 . . . . . . . . 9 ((𝑥 ∈ (𝑂𝑆) ∧ 𝑦𝑆) → (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
7170ralrimiva 3145 . . . . . . . 8 (𝑥 ∈ (𝑂𝑆) → ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
7271adantl 481 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
73 ssrab 4072 . . . . . . 7 (𝑆 ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ↔ (𝑆 ⊆ ((cls‘𝐽)‘𝑆) ∧ ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
7468, 72, 73sylanbrc 583 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑆 ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
7515clsss2 23081 . . . . . 6 (({𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) → ((cls‘𝐽)‘𝑆) ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
7667, 74, 75syl2anc 584 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
77 ssrab2 4079 . . . . . 6 {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ⊆ ((cls‘𝐽)‘𝑆)
7877a1i 11 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ⊆ ((cls‘𝐽)‘𝑆))
7976, 78eqssd 4000 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) = {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
80 rabid2 3469 . . . 4 (((cls‘𝐽)‘𝑆) = {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ↔ ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
8179, 80sylib 218 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
825, 45, 53, 69, 18elocv 21687 . . 3 (𝑥 ∈ (𝑂‘((cls‘𝐽)‘𝑆)) ↔ (((cls‘𝐽)‘𝑆) ⊆ 𝑉𝑥𝑉 ∧ ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
8324, 27, 81, 82syl3anbrc 1343 . 2 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑥 ∈ (𝑂‘((cls‘𝐽)‘𝑆)))
8420, 83eqelssd 4004 1 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) = (𝑂𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2713  wral 3060  {crab 3435  Vcvv 3479  cin 3949  wss 3950  {csn 4625   cuni 4906  cmpt 5224  ccnv 5683  cima 5687  cfv 6560  (class class class)co 7432  cc 11154  0cc0 11156  Basecbs 17248  Scalarcsca 17301  ·𝑖cip 17303  TopOpenctopn 17467  0gc0g 17485  fldccnfld 21365  ocvcocv 21679  Topctop 22900  TopOnctopon 22917  TopSpctps 22939  Clsdccld 23025  clsccl 23027   Cn ccn 23233  Hauscha 23317  NrmGrpcngp 24591  ℂModcclm 25096  ℂPreHilccph 25201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cntz 19336  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-rhm 20473  df-subrng 20547  df-subrg 20571  df-drng 20732  df-staf 20841  df-srng 20842  df-lmod 20861  df-lmhm 21022  df-lvec 21103  df-sra 21173  df-rgmod 21174  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-cnfld 21366  df-phl 21645  df-ipf 21646  df-ocv 21682  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-cls 23030  df-cn 23236  df-cnp 23237  df-t1 23323  df-haus 23324  df-tx 23571  df-hmeo 23764  df-xms 24331  df-ms 24332  df-tms 24333  df-nm 24596  df-ngp 24597  df-tng 24598  df-nlm 24600  df-clm 25097  df-cph 25203  df-tcph 25204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator