MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsocv Structured version   Visualization version   GIF version

Theorem clsocv 25303
Description: The orthogonal complement of the closure of a subset is the same as the orthogonal complement of the subset itself. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
clsocv.v 𝑉 = (Base‘𝑊)
clsocv.o 𝑂 = (ocv‘𝑊)
clsocv.j 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
clsocv ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) = (𝑂𝑆))

Proof of Theorem clsocv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphngp 25226 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
2 ngptps 24636 . . . . . . . 8 (𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp)
31, 2syl 17 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ TopSp)
43adantr 480 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑊 ∈ TopSp)
5 clsocv.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 clsocv.j . . . . . . 7 𝐽 = (TopOpen‘𝑊)
75, 6istps 22961 . . . . . 6 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑉))
84, 7sylib 218 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝐽 ∈ (TopOn‘𝑉))
9 topontop 22940 . . . . 5 (𝐽 ∈ (TopOn‘𝑉) → 𝐽 ∈ Top)
108, 9syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝐽 ∈ Top)
11 simpr 484 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑆𝑉)
12 toponuni 22941 . . . . . 6 (𝐽 ∈ (TopOn‘𝑉) → 𝑉 = 𝐽)
138, 12syl 17 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑉 = 𝐽)
1411, 13sseqtrd 4049 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑆 𝐽)
15 eqid 2740 . . . . 5 𝐽 = 𝐽
1615sscls 23085 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
1710, 14, 16syl2anc 583 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
18 clsocv.o . . . 4 𝑂 = (ocv‘𝑊)
1918ocv2ss 21714 . . 3 (𝑆 ⊆ ((cls‘𝐽)‘𝑆) → (𝑂‘((cls‘𝐽)‘𝑆)) ⊆ (𝑂𝑆))
2017, 19syl 17 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) ⊆ (𝑂𝑆))
2115clsss3 23088 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
2210, 14, 21syl2anc 583 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
2322, 13sseqtrrd 4050 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → ((cls‘𝐽)‘𝑆) ⊆ 𝑉)
2423adantr 480 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) ⊆ 𝑉)
255, 18ocvss 21711 . . . . 5 (𝑂𝑆) ⊆ 𝑉
2625a1i 11 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂𝑆) ⊆ 𝑉)
2726sselda 4008 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑥𝑉)
28 dfss2 3994 . . . . . . . . . 10 (((cls‘𝐽)‘𝑆) ⊆ 𝑉 ↔ (((cls‘𝐽)‘𝑆) ∩ 𝑉) = ((cls‘𝐽)‘𝑆))
2924, 28sylib 218 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (((cls‘𝐽)‘𝑆) ∩ 𝑉) = ((cls‘𝐽)‘𝑆))
3029ineq1d 4240 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((((cls‘𝐽)‘𝑆) ∩ 𝑉) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = (((cls‘𝐽)‘𝑆) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
31 dfrab3 4338 . . . . . . . . . 10 {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} = (𝑉 ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3231ineq2i 4238 . . . . . . . . 9 (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = (((cls‘𝐽)‘𝑆) ∩ (𝑉 ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
33 inass 4249 . . . . . . . . 9 ((((cls‘𝐽)‘𝑆) ∩ 𝑉) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = (((cls‘𝐽)‘𝑆) ∩ (𝑉 ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
3432, 33eqtr4i 2771 . . . . . . . 8 (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = ((((cls‘𝐽)‘𝑆) ∩ 𝑉) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
35 dfrab3 4338 . . . . . . . 8 {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} = (((cls‘𝐽)‘𝑆) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3630, 34, 353eqtr4g 2805 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3715clscld 23076 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
3810, 14, 37syl2anc 583 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
3938adantr 480 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
40 fvex 6933 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) ∈ V
41 eqid 2740 . . . . . . . . . . 11 (𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) = (𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦))
4241mptiniseg 6270 . . . . . . . . . 10 ((0g‘(Scalar‘𝑊)) ∈ V → ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) = {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
4340, 42ax-mp 5 . . . . . . . . 9 ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) = {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}
44 eqid 2740 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
45 eqid 2740 . . . . . . . . . . 11 (·𝑖𝑊) = (·𝑖𝑊)
46 simpll 766 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑊 ∈ ℂPreHil)
478adantr 480 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝐽 ∈ (TopOn‘𝑉))
4847, 47, 27cnmptc 23691 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (𝑦𝑉𝑥) ∈ (𝐽 Cn 𝐽))
4947cnmptid 23690 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (𝑦𝑉𝑦) ∈ (𝐽 Cn 𝐽))
506, 44, 45, 46, 47, 48, 49cnmpt1ip 25300 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
5144cnfldhaus 24826 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Haus
52 cphclm 25242 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
53 eqid 2740 . . . . . . . . . . . . . . 15 (Scalar‘𝑊) = (Scalar‘𝑊)
5453clm0 25124 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊)))
5552, 54syl 17 . . . . . . . . . . . . 13 (𝑊 ∈ ℂPreHil → 0 = (0g‘(Scalar‘𝑊)))
5655ad2antrr 725 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 0 = (0g‘(Scalar‘𝑊)))
57 0cn 11282 . . . . . . . . . . . 12 0 ∈ ℂ
5856, 57eqeltrrdi 2853 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (0g‘(Scalar‘𝑊)) ∈ ℂ)
59 unicntop 24827 . . . . . . . . . . . 12 ℂ = (TopOpen‘ℂfld)
6059sncld 23400 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Haus ∧ (0g‘(Scalar‘𝑊)) ∈ ℂ) → {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld)))
6151, 58, 60sylancr 586 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld)))
62 cnclima 23297 . . . . . . . . . 10 (((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ∧ {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld))) → ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6350, 61, 62syl2anc 583 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6443, 63eqeltrrid 2849 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
65 incld 23072 . . . . . . . 8 ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽)) → (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6639, 64, 65syl2anc 583 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6736, 66eqeltrrd 2845 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
6817adantr 480 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
69 eqid 2740 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
705, 45, 53, 69, 18ocvi 21710 . . . . . . . . 9 ((𝑥 ∈ (𝑂𝑆) ∧ 𝑦𝑆) → (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
7170ralrimiva 3152 . . . . . . . 8 (𝑥 ∈ (𝑂𝑆) → ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
7271adantl 481 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
73 ssrab 4096 . . . . . . 7 (𝑆 ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ↔ (𝑆 ⊆ ((cls‘𝐽)‘𝑆) ∧ ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
7468, 72, 73sylanbrc 582 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑆 ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
7515clsss2 23101 . . . . . 6 (({𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) → ((cls‘𝐽)‘𝑆) ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
7667, 74, 75syl2anc 583 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
77 ssrab2 4103 . . . . . 6 {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ⊆ ((cls‘𝐽)‘𝑆)
7877a1i 11 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ⊆ ((cls‘𝐽)‘𝑆))
7976, 78eqssd 4026 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) = {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
80 rabid2 3478 . . . 4 (((cls‘𝐽)‘𝑆) = {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ↔ ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
8179, 80sylib 218 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
825, 45, 53, 69, 18elocv 21709 . . 3 (𝑥 ∈ (𝑂‘((cls‘𝐽)‘𝑆)) ↔ (((cls‘𝐽)‘𝑆) ⊆ 𝑉𝑥𝑉 ∧ ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
8324, 27, 81, 82syl3anbrc 1343 . 2 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑥 ∈ (𝑂‘((cls‘𝐽)‘𝑆)))
8420, 83eqelssd 4030 1 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) = (𝑂𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  {crab 3443  Vcvv 3488  cin 3975  wss 3976  {csn 4648   cuni 4931  cmpt 5249  ccnv 5699  cima 5703  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  Basecbs 17258  Scalarcsca 17314  ·𝑖cip 17316  TopOpenctopn 17481  0gc0g 17499  fldccnfld 21387  ocvcocv 21701  Topctop 22920  TopOnctopon 22937  TopSpctps 22959  Clsdccld 23045  clsccl 23047   Cn ccn 23253  Hauscha 23337  NrmGrpcngp 24611  ℂModcclm 25114  ℂPreHilccph 25219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-rhm 20498  df-subrng 20572  df-subrg 20597  df-drng 20753  df-staf 20862  df-srng 20863  df-lmod 20882  df-lmhm 21044  df-lvec 21125  df-sra 21195  df-rgmod 21196  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-phl 21667  df-ipf 21668  df-ocv 21704  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-cls 23050  df-cn 23256  df-cnp 23257  df-t1 23343  df-haus 23344  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-nm 24616  df-ngp 24617  df-tng 24618  df-nlm 24620  df-clm 25115  df-cph 25221  df-tcph 25222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator