MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsocv Structured version   Visualization version   GIF version

Theorem clsocv 24101
Description: The orthogonal complement of the closure of a subset is the same as the orthogonal complement of the subset itself. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
clsocv.v 𝑉 = (Base‘𝑊)
clsocv.o 𝑂 = (ocv‘𝑊)
clsocv.j 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
clsocv ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) = (𝑂𝑆))

Proof of Theorem clsocv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphngp 24024 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
2 ngptps 23454 . . . . . . . 8 (𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp)
31, 2syl 17 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ TopSp)
43adantr 484 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑊 ∈ TopSp)
5 clsocv.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 clsocv.j . . . . . . 7 𝐽 = (TopOpen‘𝑊)
75, 6istps 21785 . . . . . 6 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑉))
84, 7sylib 221 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝐽 ∈ (TopOn‘𝑉))
9 topontop 21764 . . . . 5 (𝐽 ∈ (TopOn‘𝑉) → 𝐽 ∈ Top)
108, 9syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝐽 ∈ Top)
11 simpr 488 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑆𝑉)
12 toponuni 21765 . . . . . 6 (𝐽 ∈ (TopOn‘𝑉) → 𝑉 = 𝐽)
138, 12syl 17 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑉 = 𝐽)
1411, 13sseqtrd 3927 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑆 𝐽)
15 eqid 2736 . . . . 5 𝐽 = 𝐽
1615sscls 21907 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
1710, 14, 16syl2anc 587 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
18 clsocv.o . . . 4 𝑂 = (ocv‘𝑊)
1918ocv2ss 20589 . . 3 (𝑆 ⊆ ((cls‘𝐽)‘𝑆) → (𝑂‘((cls‘𝐽)‘𝑆)) ⊆ (𝑂𝑆))
2017, 19syl 17 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) ⊆ (𝑂𝑆))
2115clsss3 21910 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
2210, 14, 21syl2anc 587 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
2322, 13sseqtrrd 3928 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → ((cls‘𝐽)‘𝑆) ⊆ 𝑉)
2423adantr 484 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) ⊆ 𝑉)
255, 18ocvss 20586 . . . . 5 (𝑂𝑆) ⊆ 𝑉
2625a1i 11 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂𝑆) ⊆ 𝑉)
2726sselda 3887 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑥𝑉)
28 df-ss 3870 . . . . . . . . . 10 (((cls‘𝐽)‘𝑆) ⊆ 𝑉 ↔ (((cls‘𝐽)‘𝑆) ∩ 𝑉) = ((cls‘𝐽)‘𝑆))
2924, 28sylib 221 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (((cls‘𝐽)‘𝑆) ∩ 𝑉) = ((cls‘𝐽)‘𝑆))
3029ineq1d 4112 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((((cls‘𝐽)‘𝑆) ∩ 𝑉) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = (((cls‘𝐽)‘𝑆) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
31 dfrab3 4210 . . . . . . . . . 10 {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} = (𝑉 ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3231ineq2i 4110 . . . . . . . . 9 (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = (((cls‘𝐽)‘𝑆) ∩ (𝑉 ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
33 inass 4120 . . . . . . . . 9 ((((cls‘𝐽)‘𝑆) ∩ 𝑉) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = (((cls‘𝐽)‘𝑆) ∩ (𝑉 ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
3432, 33eqtr4i 2762 . . . . . . . 8 (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = ((((cls‘𝐽)‘𝑆) ∩ 𝑉) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
35 dfrab3 4210 . . . . . . . 8 {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} = (((cls‘𝐽)‘𝑆) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3630, 34, 353eqtr4g 2796 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3715clscld 21898 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
3810, 14, 37syl2anc 587 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
3938adantr 484 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
40 fvex 6708 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) ∈ V
41 eqid 2736 . . . . . . . . . . 11 (𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) = (𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦))
4241mptiniseg 6082 . . . . . . . . . 10 ((0g‘(Scalar‘𝑊)) ∈ V → ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) = {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
4340, 42ax-mp 5 . . . . . . . . 9 ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) = {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}
44 eqid 2736 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
45 eqid 2736 . . . . . . . . . . 11 (·𝑖𝑊) = (·𝑖𝑊)
46 simpll 767 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑊 ∈ ℂPreHil)
478adantr 484 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝐽 ∈ (TopOn‘𝑉))
4847, 47, 27cnmptc 22513 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (𝑦𝑉𝑥) ∈ (𝐽 Cn 𝐽))
4947cnmptid 22512 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (𝑦𝑉𝑦) ∈ (𝐽 Cn 𝐽))
506, 44, 45, 46, 47, 48, 49cnmpt1ip 24098 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
5144cnfldhaus 23636 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Haus
52 cphclm 24040 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
53 eqid 2736 . . . . . . . . . . . . . . 15 (Scalar‘𝑊) = (Scalar‘𝑊)
5453clm0 23923 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊)))
5552, 54syl 17 . . . . . . . . . . . . 13 (𝑊 ∈ ℂPreHil → 0 = (0g‘(Scalar‘𝑊)))
5655ad2antrr 726 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 0 = (0g‘(Scalar‘𝑊)))
57 0cn 10790 . . . . . . . . . . . 12 0 ∈ ℂ
5856, 57eqeltrrdi 2840 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (0g‘(Scalar‘𝑊)) ∈ ℂ)
59 unicntop 23637 . . . . . . . . . . . 12 ℂ = (TopOpen‘ℂfld)
6059sncld 22222 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Haus ∧ (0g‘(Scalar‘𝑊)) ∈ ℂ) → {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld)))
6151, 58, 60sylancr 590 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld)))
62 cnclima 22119 . . . . . . . . . 10 (((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ∧ {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld))) → ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6350, 61, 62syl2anc 587 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6443, 63eqeltrrid 2836 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
65 incld 21894 . . . . . . . 8 ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽)) → (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6639, 64, 65syl2anc 587 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6736, 66eqeltrrd 2832 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
6817adantr 484 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
69 eqid 2736 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
705, 45, 53, 69, 18ocvi 20585 . . . . . . . . 9 ((𝑥 ∈ (𝑂𝑆) ∧ 𝑦𝑆) → (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
7170ralrimiva 3095 . . . . . . . 8 (𝑥 ∈ (𝑂𝑆) → ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
7271adantl 485 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
73 ssrab 3972 . . . . . . 7 (𝑆 ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ↔ (𝑆 ⊆ ((cls‘𝐽)‘𝑆) ∧ ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
7468, 72, 73sylanbrc 586 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑆 ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
7515clsss2 21923 . . . . . 6 (({𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) → ((cls‘𝐽)‘𝑆) ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
7667, 74, 75syl2anc 587 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
77 ssrab2 3979 . . . . . 6 {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ⊆ ((cls‘𝐽)‘𝑆)
7877a1i 11 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ⊆ ((cls‘𝐽)‘𝑆))
7976, 78eqssd 3904 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) = {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
80 rabid2 3283 . . . 4 (((cls‘𝐽)‘𝑆) = {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ↔ ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
8179, 80sylib 221 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
825, 45, 53, 69, 18elocv 20584 . . 3 (𝑥 ∈ (𝑂‘((cls‘𝐽)‘𝑆)) ↔ (((cls‘𝐽)‘𝑆) ⊆ 𝑉𝑥𝑉 ∧ ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
8324, 27, 81, 82syl3anbrc 1345 . 2 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑥 ∈ (𝑂‘((cls‘𝐽)‘𝑆)))
8420, 83eqelssd 3908 1 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) = (𝑂𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  {cab 2714  wral 3051  {crab 3055  Vcvv 3398  cin 3852  wss 3853  {csn 4527   cuni 4805  cmpt 5120  ccnv 5535  cima 5539  cfv 6358  (class class class)co 7191  cc 10692  0cc0 10694  Basecbs 16666  Scalarcsca 16752  ·𝑖cip 16754  TopOpenctopn 16880  0gc0g 16898  fldccnfld 20317  ocvcocv 20576  Topctop 21744  TopOnctopon 21761  TopSpctps 21783  Clsdccld 21867  clsccl 21869   Cn ccn 22075  Hauscha 22159  NrmGrpcngp 23429  ℂModcclm 23913  ℂPreHilccph 24017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-xrs 16961  df-qtop 16966  df-imas 16967  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-submnd 18173  df-grp 18322  df-minusg 18323  df-sbg 18324  df-mulg 18443  df-subg 18494  df-ghm 18574  df-cntz 18665  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-cring 19519  df-oppr 19595  df-dvdsr 19613  df-unit 19614  df-invr 19644  df-dvr 19655  df-rnghom 19689  df-drng 19723  df-subrg 19752  df-staf 19835  df-srng 19836  df-lmod 19855  df-lmhm 20013  df-lvec 20094  df-sra 20163  df-rgmod 20164  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-cnfld 20318  df-phl 20542  df-ipf 20543  df-ocv 20579  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-cls 21872  df-cn 22078  df-cnp 22079  df-t1 22165  df-haus 22166  df-tx 22413  df-hmeo 22606  df-xms 23172  df-ms 23173  df-tms 23174  df-nm 23434  df-ngp 23435  df-tng 23436  df-nlm 23438  df-clm 23914  df-cph 24019  df-tcph 24020
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator