MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsocv Structured version   Visualization version   GIF version

Theorem clsocv 24651
Description: The orthogonal complement of the closure of a subset is the same as the orthogonal complement of the subset itself. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
clsocv.v 𝑉 = (Base‘𝑊)
clsocv.o 𝑂 = (ocv‘𝑊)
clsocv.j 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
clsocv ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) = (𝑂𝑆))

Proof of Theorem clsocv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphngp 24574 . . . . . . . 8 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp)
2 ngptps 23995 . . . . . . . 8 (𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp)
31, 2syl 17 . . . . . . 7 (𝑊 ∈ ℂPreHil → 𝑊 ∈ TopSp)
43adantr 481 . . . . . 6 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑊 ∈ TopSp)
5 clsocv.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 clsocv.j . . . . . . 7 𝐽 = (TopOpen‘𝑊)
75, 6istps 22320 . . . . . 6 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑉))
84, 7sylib 217 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝐽 ∈ (TopOn‘𝑉))
9 topontop 22299 . . . . 5 (𝐽 ∈ (TopOn‘𝑉) → 𝐽 ∈ Top)
108, 9syl 17 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝐽 ∈ Top)
11 simpr 485 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑆𝑉)
12 toponuni 22300 . . . . . 6 (𝐽 ∈ (TopOn‘𝑉) → 𝑉 = 𝐽)
138, 12syl 17 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑉 = 𝐽)
1411, 13sseqtrd 3987 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑆 𝐽)
15 eqid 2731 . . . . 5 𝐽 = 𝐽
1615sscls 22444 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
1710, 14, 16syl2anc 584 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
18 clsocv.o . . . 4 𝑂 = (ocv‘𝑊)
1918ocv2ss 21114 . . 3 (𝑆 ⊆ ((cls‘𝐽)‘𝑆) → (𝑂‘((cls‘𝐽)‘𝑆)) ⊆ (𝑂𝑆))
2017, 19syl 17 . 2 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) ⊆ (𝑂𝑆))
2115clsss3 22447 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
2210, 14, 21syl2anc 584 . . . . 5 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → ((cls‘𝐽)‘𝑆) ⊆ 𝐽)
2322, 13sseqtrrd 3988 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → ((cls‘𝐽)‘𝑆) ⊆ 𝑉)
2423adantr 481 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) ⊆ 𝑉)
255, 18ocvss 21111 . . . . 5 (𝑂𝑆) ⊆ 𝑉
2625a1i 11 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂𝑆) ⊆ 𝑉)
2726sselda 3947 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑥𝑉)
28 df-ss 3930 . . . . . . . . . 10 (((cls‘𝐽)‘𝑆) ⊆ 𝑉 ↔ (((cls‘𝐽)‘𝑆) ∩ 𝑉) = ((cls‘𝐽)‘𝑆))
2924, 28sylib 217 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (((cls‘𝐽)‘𝑆) ∩ 𝑉) = ((cls‘𝐽)‘𝑆))
3029ineq1d 4176 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((((cls‘𝐽)‘𝑆) ∩ 𝑉) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = (((cls‘𝐽)‘𝑆) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
31 dfrab3 4274 . . . . . . . . . 10 {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} = (𝑉 ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3231ineq2i 4174 . . . . . . . . 9 (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = (((cls‘𝐽)‘𝑆) ∩ (𝑉 ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
33 inass 4184 . . . . . . . . 9 ((((cls‘𝐽)‘𝑆) ∩ 𝑉) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = (((cls‘𝐽)‘𝑆) ∩ (𝑉 ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}))
3432, 33eqtr4i 2762 . . . . . . . 8 (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = ((((cls‘𝐽)‘𝑆) ∩ 𝑉) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
35 dfrab3 4274 . . . . . . . 8 {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} = (((cls‘𝐽)‘𝑆) ∩ {𝑦 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3630, 34, 353eqtr4g 2796 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) = {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
3715clscld 22435 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
3810, 14, 37syl2anc 584 . . . . . . . . 9 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
3938adantr 481 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
40 fvex 6860 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) ∈ V
41 eqid 2731 . . . . . . . . . . 11 (𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) = (𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦))
4241mptiniseg 6196 . . . . . . . . . 10 ((0g‘(Scalar‘𝑊)) ∈ V → ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) = {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
4340, 42ax-mp 5 . . . . . . . . 9 ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) = {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}
44 eqid 2731 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
45 eqid 2731 . . . . . . . . . . 11 (·𝑖𝑊) = (·𝑖𝑊)
46 simpll 765 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑊 ∈ ℂPreHil)
478adantr 481 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝐽 ∈ (TopOn‘𝑉))
4847, 47, 27cnmptc 23050 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (𝑦𝑉𝑥) ∈ (𝐽 Cn 𝐽))
4947cnmptid 23049 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (𝑦𝑉𝑦) ∈ (𝐽 Cn 𝐽))
506, 44, 45, 46, 47, 48, 49cnmpt1ip 24648 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld)))
5144cnfldhaus 24185 . . . . . . . . . . 11 (TopOpen‘ℂfld) ∈ Haus
52 cphclm 24590 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod)
53 eqid 2731 . . . . . . . . . . . . . . 15 (Scalar‘𝑊) = (Scalar‘𝑊)
5453clm0 24472 . . . . . . . . . . . . . 14 (𝑊 ∈ ℂMod → 0 = (0g‘(Scalar‘𝑊)))
5552, 54syl 17 . . . . . . . . . . . . 13 (𝑊 ∈ ℂPreHil → 0 = (0g‘(Scalar‘𝑊)))
5655ad2antrr 724 . . . . . . . . . . . 12 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 0 = (0g‘(Scalar‘𝑊)))
57 0cn 11156 . . . . . . . . . . . 12 0 ∈ ℂ
5856, 57eqeltrrdi 2841 . . . . . . . . . . 11 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (0g‘(Scalar‘𝑊)) ∈ ℂ)
59 unicntop 24186 . . . . . . . . . . . 12 ℂ = (TopOpen‘ℂfld)
6059sncld 22759 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Haus ∧ (0g‘(Scalar‘𝑊)) ∈ ℂ) → {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld)))
6151, 58, 60sylancr 587 . . . . . . . . . 10 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld)))
62 cnclima 22656 . . . . . . . . . 10 (((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) ∈ (𝐽 Cn (TopOpen‘ℂfld)) ∧ {(0g‘(Scalar‘𝑊))} ∈ (Clsd‘(TopOpen‘ℂfld))) → ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6350, 61, 62syl2anc 584 . . . . . . . . 9 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((𝑦𝑉 ↦ (𝑥(·𝑖𝑊)𝑦)) “ {(0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6443, 63eqeltrrid 2837 . . . . . . . 8 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
65 incld 22431 . . . . . . . 8 ((((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ∧ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽)) → (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6639, 64, 65syl2anc 584 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → (((cls‘𝐽)‘𝑆) ∩ {𝑦𝑉 ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) ∈ (Clsd‘𝐽))
6736, 66eqeltrrd 2833 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽))
6817adantr 481 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑆 ⊆ ((cls‘𝐽)‘𝑆))
69 eqid 2731 . . . . . . . . . 10 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
705, 45, 53, 69, 18ocvi 21110 . . . . . . . . 9 ((𝑥 ∈ (𝑂𝑆) ∧ 𝑦𝑆) → (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
7170ralrimiva 3139 . . . . . . . 8 (𝑥 ∈ (𝑂𝑆) → ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
7271adantl 482 . . . . . . 7 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
73 ssrab 4035 . . . . . . 7 (𝑆 ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ↔ (𝑆 ⊆ ((cls‘𝐽)‘𝑆) ∧ ∀𝑦𝑆 (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
7468, 72, 73sylanbrc 583 . . . . . 6 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑆 ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
7515clsss2 22460 . . . . . 6 (({𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ∈ (Clsd‘𝐽) ∧ 𝑆 ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))}) → ((cls‘𝐽)‘𝑆) ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
7667, 74, 75syl2anc 584 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) ⊆ {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
77 ssrab2 4042 . . . . . 6 {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ⊆ ((cls‘𝐽)‘𝑆)
7877a1i 11 . . . . 5 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ⊆ ((cls‘𝐽)‘𝑆))
7976, 78eqssd 3964 . . . 4 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ((cls‘𝐽)‘𝑆) = {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))})
80 rabid2 3437 . . . 4 (((cls‘𝐽)‘𝑆) = {𝑦 ∈ ((cls‘𝐽)‘𝑆) ∣ (𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))} ↔ ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
8179, 80sylib 217 . . 3 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊)))
825, 45, 53, 69, 18elocv 21109 . . 3 (𝑥 ∈ (𝑂‘((cls‘𝐽)‘𝑆)) ↔ (((cls‘𝐽)‘𝑆) ⊆ 𝑉𝑥𝑉 ∧ ∀𝑦 ∈ ((cls‘𝐽)‘𝑆)(𝑥(·𝑖𝑊)𝑦) = (0g‘(Scalar‘𝑊))))
8324, 27, 81, 82syl3anbrc 1343 . 2 (((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) ∧ 𝑥 ∈ (𝑂𝑆)) → 𝑥 ∈ (𝑂‘((cls‘𝐽)‘𝑆)))
8420, 83eqelssd 3968 1 ((𝑊 ∈ ℂPreHil ∧ 𝑆𝑉) → (𝑂‘((cls‘𝐽)‘𝑆)) = (𝑂𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {cab 2708  wral 3060  {crab 3405  Vcvv 3446  cin 3912  wss 3913  {csn 4591   cuni 4870  cmpt 5193  ccnv 5637  cima 5641  cfv 6501  (class class class)co 7362  cc 11058  0cc0 11060  Basecbs 17094  Scalarcsca 17150  ·𝑖cip 17152  TopOpenctopn 17317  0gc0g 17335  fldccnfld 20833  ocvcocv 21101  Topctop 22279  TopOnctopon 22296  TopSpctps 22318  Clsdccld 22404  clsccl 22406   Cn ccn 22612  Hauscha 22696  NrmGrpcngp 23970  ℂModcclm 24462  ℂPreHilccph 24567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138  ax-addf 11139  ax-mulf 11140
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-map 8774  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9356  df-sup 9387  df-inf 9388  df-oi 9455  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12423  df-z 12509  df-dec 12628  df-uz 12773  df-q 12883  df-rp 12925  df-xneg 13042  df-xadd 13043  df-xmul 13044  df-ico 13280  df-icc 13281  df-fz 13435  df-fzo 13578  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-struct 17030  df-sets 17047  df-slot 17065  df-ndx 17077  df-base 17095  df-ress 17124  df-plusg 17160  df-mulr 17161  df-starv 17162  df-sca 17163  df-vsca 17164  df-ip 17165  df-tset 17166  df-ple 17167  df-ds 17169  df-unif 17170  df-hom 17171  df-cco 17172  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18511  df-sgrp 18560  df-mnd 18571  df-mhm 18615  df-submnd 18616  df-grp 18765  df-minusg 18766  df-sbg 18767  df-mulg 18887  df-subg 18939  df-ghm 19020  df-cntz 19111  df-cmn 19578  df-abl 19579  df-mgp 19911  df-ur 19928  df-ring 19980  df-cring 19981  df-oppr 20063  df-dvdsr 20084  df-unit 20085  df-invr 20115  df-dvr 20126  df-rnghom 20162  df-drng 20227  df-subrg 20268  df-staf 20360  df-srng 20361  df-lmod 20380  df-lmhm 20540  df-lvec 20621  df-sra 20692  df-rgmod 20693  df-psmet 20825  df-xmet 20826  df-met 20827  df-bl 20828  df-mopn 20829  df-cnfld 20834  df-phl 21067  df-ipf 21068  df-ocv 21104  df-top 22280  df-topon 22297  df-topsp 22319  df-bases 22333  df-cld 22407  df-cls 22409  df-cn 22615  df-cnp 22616  df-t1 22702  df-haus 22703  df-tx 22950  df-hmeo 23143  df-xms 23710  df-ms 23711  df-tms 23712  df-nm 23975  df-ngp 23976  df-tng 23977  df-nlm 23979  df-clm 24463  df-cph 24569  df-tcph 24570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator