| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elid | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of the identity relation. TODO: reorder theorems to move this theorem and dfrel3 6145 after elrid 5995. (Contributed by BJ, 28-Aug-2022.) |
| Ref | Expression |
|---|---|
| elid | ⊢ (𝐴 ∈ I ↔ ∃𝑥 𝐴 = 〈𝑥, 𝑥〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reli 5766 | . . . . 5 ⊢ Rel I | |
| 2 | dfrel3 6145 | . . . . 5 ⊢ (Rel I ↔ ( I ↾ V) = I ) | |
| 3 | 1, 2 | mpbi 230 | . . . 4 ⊢ ( I ↾ V) = I |
| 4 | 3 | eqcomi 2740 | . . 3 ⊢ I = ( I ↾ V) |
| 5 | 4 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ I ↔ 𝐴 ∈ ( I ↾ V)) |
| 6 | elrid 5995 | . 2 ⊢ (𝐴 ∈ ( I ↾ V) ↔ ∃𝑥 ∈ V 𝐴 = 〈𝑥, 𝑥〉) | |
| 7 | rexv 3464 | . 2 ⊢ (∃𝑥 ∈ V 𝐴 = 〈𝑥, 𝑥〉 ↔ ∃𝑥 𝐴 = 〈𝑥, 𝑥〉) | |
| 8 | 5, 6, 7 | 3bitri 297 | 1 ⊢ (𝐴 ∈ I ↔ ∃𝑥 𝐴 = 〈𝑥, 𝑥〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 〈cop 4582 I cid 5510 ↾ cres 5618 Rel wrel 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-res 5628 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |