![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elid | Structured version Visualization version GIF version |
Description: Characterization of the elements of the identity relation. TODO: reorder theorems to move this theorem and dfrel3 6220 after elrid 6066. (Contributed by BJ, 28-Aug-2022.) |
Ref | Expression |
---|---|
elid | ⊢ (𝐴 ∈ I ↔ ∃𝑥 𝐴 = 〈𝑥, 𝑥〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5839 | . . . . 5 ⊢ Rel I | |
2 | dfrel3 6220 | . . . . 5 ⊢ (Rel I ↔ ( I ↾ V) = I ) | |
3 | 1, 2 | mpbi 230 | . . . 4 ⊢ ( I ↾ V) = I |
4 | 3 | eqcomi 2744 | . . 3 ⊢ I = ( I ↾ V) |
5 | 4 | eleq2i 2831 | . 2 ⊢ (𝐴 ∈ I ↔ 𝐴 ∈ ( I ↾ V)) |
6 | elrid 6066 | . 2 ⊢ (𝐴 ∈ ( I ↾ V) ↔ ∃𝑥 ∈ V 𝐴 = 〈𝑥, 𝑥〉) | |
7 | rexv 3507 | . 2 ⊢ (∃𝑥 ∈ V 𝐴 = 〈𝑥, 𝑥〉 ↔ ∃𝑥 𝐴 = 〈𝑥, 𝑥〉) | |
8 | 5, 6, 7 | 3bitri 297 | 1 ⊢ (𝐴 ∈ I ↔ ∃𝑥 𝐴 = 〈𝑥, 𝑥〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∃wrex 3068 Vcvv 3478 〈cop 4637 I cid 5582 ↾ cres 5691 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-res 5701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |