| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elid | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of the identity relation. TODO: reorder theorems to move this theorem and dfrel3 6192 after elrid 6038. (Contributed by BJ, 28-Aug-2022.) |
| Ref | Expression |
|---|---|
| elid | ⊢ (𝐴 ∈ I ↔ ∃𝑥 𝐴 = 〈𝑥, 𝑥〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reli 5810 | . . . . 5 ⊢ Rel I | |
| 2 | dfrel3 6192 | . . . . 5 ⊢ (Rel I ↔ ( I ↾ V) = I ) | |
| 3 | 1, 2 | mpbi 230 | . . . 4 ⊢ ( I ↾ V) = I |
| 4 | 3 | eqcomi 2745 | . . 3 ⊢ I = ( I ↾ V) |
| 5 | 4 | eleq2i 2827 | . 2 ⊢ (𝐴 ∈ I ↔ 𝐴 ∈ ( I ↾ V)) |
| 6 | elrid 6038 | . 2 ⊢ (𝐴 ∈ ( I ↾ V) ↔ ∃𝑥 ∈ V 𝐴 = 〈𝑥, 𝑥〉) | |
| 7 | rexv 3493 | . 2 ⊢ (∃𝑥 ∈ V 𝐴 = 〈𝑥, 𝑥〉 ↔ ∃𝑥 𝐴 = 〈𝑥, 𝑥〉) | |
| 8 | 5, 6, 7 | 3bitri 297 | 1 ⊢ (𝐴 ∈ I ↔ ∃𝑥 𝐴 = 〈𝑥, 𝑥〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3061 Vcvv 3464 〈cop 4612 I cid 5552 ↾ cres 5661 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-res 5671 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |