Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elid | Structured version Visualization version GIF version |
Description: Characterization of the elements of the identity relation. TODO: reorder theorems to move this theorem and dfrel3 6101 after elrid 5953. (Contributed by BJ, 28-Aug-2022.) |
Ref | Expression |
---|---|
elid | ⊢ (𝐴 ∈ I ↔ ∃𝑥 𝐴 = 〈𝑥, 𝑥〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5736 | . . . . 5 ⊢ Rel I | |
2 | dfrel3 6101 | . . . . 5 ⊢ (Rel I ↔ ( I ↾ V) = I ) | |
3 | 1, 2 | mpbi 229 | . . . 4 ⊢ ( I ↾ V) = I |
4 | 3 | eqcomi 2747 | . . 3 ⊢ I = ( I ↾ V) |
5 | 4 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ I ↔ 𝐴 ∈ ( I ↾ V)) |
6 | elrid 5953 | . 2 ⊢ (𝐴 ∈ ( I ↾ V) ↔ ∃𝑥 ∈ V 𝐴 = 〈𝑥, 𝑥〉) | |
7 | rexv 3457 | . 2 ⊢ (∃𝑥 ∈ V 𝐴 = 〈𝑥, 𝑥〉 ↔ ∃𝑥 𝐴 = 〈𝑥, 𝑥〉) | |
8 | 5, 6, 7 | 3bitri 297 | 1 ⊢ (𝐴 ∈ I ↔ ∃𝑥 𝐴 = 〈𝑥, 𝑥〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 〈cop 4567 I cid 5488 ↾ cres 5591 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-res 5601 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |