MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elid Structured version   Visualization version   GIF version

Theorem elid 6091
Description: Characterization of the elements of the identity relation. TODO: reorder theorems to move this theorem and dfrel3 6090 after elrid 5942. (Contributed by BJ, 28-Aug-2022.)
Assertion
Ref Expression
elid (𝐴 ∈ I ↔ ∃𝑥 𝐴 = ⟨𝑥, 𝑥⟩)
Distinct variable group:   𝑥,𝐴

Proof of Theorem elid
StepHypRef Expression
1 reli 5725 . . . . 5 Rel I
2 dfrel3 6090 . . . . 5 (Rel I ↔ ( I ↾ V) = I )
31, 2mpbi 229 . . . 4 ( I ↾ V) = I
43eqcomi 2747 . . 3 I = ( I ↾ V)
54eleq2i 2830 . 2 (𝐴 ∈ I ↔ 𝐴 ∈ ( I ↾ V))
6 elrid 5942 . 2 (𝐴 ∈ ( I ↾ V) ↔ ∃𝑥 ∈ V 𝐴 = ⟨𝑥, 𝑥⟩)
7 rexv 3447 . 2 (∃𝑥 ∈ V 𝐴 = ⟨𝑥, 𝑥⟩ ↔ ∃𝑥 𝐴 = ⟨𝑥, 𝑥⟩)
85, 6, 73bitri 296 1 (𝐴 ∈ I ↔ ∃𝑥 𝐴 = ⟨𝑥, 𝑥⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wex 1783  wcel 2108  wrex 3064  Vcvv 3422  cop 4564   I cid 5479  cres 5582  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-res 5592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator