![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elid | Structured version Visualization version GIF version |
Description: Characterization of the elements of the identity relation. TODO: reorder theorems to move this theorem and dfrel3 6197 after elrid 6045. (Contributed by BJ, 28-Aug-2022.) |
Ref | Expression |
---|---|
elid | ⊢ (𝐴 ∈ I ↔ ∃𝑥 𝐴 = ⟨𝑥, 𝑥⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5826 | . . . . 5 ⊢ Rel I | |
2 | dfrel3 6197 | . . . . 5 ⊢ (Rel I ↔ ( I ↾ V) = I ) | |
3 | 1, 2 | mpbi 229 | . . . 4 ⊢ ( I ↾ V) = I |
4 | 3 | eqcomi 2741 | . . 3 ⊢ I = ( I ↾ V) |
5 | 4 | eleq2i 2825 | . 2 ⊢ (𝐴 ∈ I ↔ 𝐴 ∈ ( I ↾ V)) |
6 | elrid 6045 | . 2 ⊢ (𝐴 ∈ ( I ↾ V) ↔ ∃𝑥 ∈ V 𝐴 = ⟨𝑥, 𝑥⟩) | |
7 | rexv 3499 | . 2 ⊢ (∃𝑥 ∈ V 𝐴 = ⟨𝑥, 𝑥⟩ ↔ ∃𝑥 𝐴 = ⟨𝑥, 𝑥⟩) | |
8 | 5, 6, 7 | 3bitri 296 | 1 ⊢ (𝐴 ∈ I ↔ ∃𝑥 𝐴 = ⟨𝑥, 𝑥⟩) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∃wrex 3070 Vcvv 3474 ⟨cop 4634 I cid 5573 ↾ cres 5678 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-res 5688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |