| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cocnvcnv2 | Structured version Visualization version GIF version | ||
| Description: A composition is not affected by a double converse of its second argument. (Contributed by NM, 8-Oct-2007.) |
| Ref | Expression |
|---|---|
| cocnvcnv2 | ⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvcnv2 6140 | . . 3 ⊢ ◡◡𝐵 = (𝐵 ↾ V) | |
| 2 | 1 | coeq2i 5799 | . 2 ⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ (𝐵 ↾ V)) |
| 3 | resco 6197 | . 2 ⊢ ((𝐴 ∘ 𝐵) ↾ V) = (𝐴 ∘ (𝐵 ↾ V)) | |
| 4 | relco 6056 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
| 5 | dfrel3 6145 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) ↔ ((𝐴 ∘ 𝐵) ↾ V) = (𝐴 ∘ 𝐵)) | |
| 6 | 4, 5 | mpbi 230 | . 2 ⊢ ((𝐴 ∘ 𝐵) ↾ V) = (𝐴 ∘ 𝐵) |
| 7 | 2, 3, 6 | 3eqtr2i 2760 | 1 ⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ◡ccnv 5613 ↾ cres 5616 ∘ ccom 5618 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-res 5626 |
| This theorem is referenced by: dfdm2 6228 cofunex2g 7882 trclubgNEW 43710 cnvtrrel 43762 trrelsuperrel2dg 43763 |
| Copyright terms: Public domain | W3C validator |