![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cocnvcnv2 | Structured version Visualization version GIF version |
Description: A composition is not affected by a double converse of its second argument. (Contributed by NM, 8-Oct-2007.) |
Ref | Expression |
---|---|
cocnvcnv2 | ⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvcnv2 6224 | . . 3 ⊢ ◡◡𝐵 = (𝐵 ↾ V) | |
2 | 1 | coeq2i 5885 | . 2 ⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ (𝐵 ↾ V)) |
3 | resco 6281 | . 2 ⊢ ((𝐴 ∘ 𝐵) ↾ V) = (𝐴 ∘ (𝐵 ↾ V)) | |
4 | relco 6138 | . . 3 ⊢ Rel (𝐴 ∘ 𝐵) | |
5 | dfrel3 6229 | . . 3 ⊢ (Rel (𝐴 ∘ 𝐵) ↔ ((𝐴 ∘ 𝐵) ↾ V) = (𝐴 ∘ 𝐵)) | |
6 | 4, 5 | mpbi 230 | . 2 ⊢ ((𝐴 ∘ 𝐵) ↾ V) = (𝐴 ∘ 𝐵) |
7 | 2, 3, 6 | 3eqtr2i 2774 | 1 ⊢ (𝐴 ∘ ◡◡𝐵) = (𝐴 ∘ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 Vcvv 3488 ◡ccnv 5699 ↾ cres 5702 ∘ ccom 5704 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-res 5712 |
This theorem is referenced by: dfdm2 6312 cofunex2g 7990 trclubgNEW 43580 cnvtrrel 43632 trrelsuperrel2dg 43633 |
Copyright terms: Public domain | W3C validator |