MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cocnvcnv2 Structured version   Visualization version   GIF version

Theorem cocnvcnv2 6247
Description: A composition is not affected by a double converse of its second argument. (Contributed by NM, 8-Oct-2007.)
Assertion
Ref Expression
cocnvcnv2 (𝐴𝐵) = (𝐴𝐵)

Proof of Theorem cocnvcnv2
StepHypRef Expression
1 cnvcnv2 6182 . . 3 𝐵 = (𝐵 ↾ V)
21coeq2i 5840 . 2 (𝐴𝐵) = (𝐴 ∘ (𝐵 ↾ V))
3 resco 6239 . 2 ((𝐴𝐵) ↾ V) = (𝐴 ∘ (𝐵 ↾ V))
4 relco 6095 . . 3 Rel (𝐴𝐵)
5 dfrel3 6187 . . 3 (Rel (𝐴𝐵) ↔ ((𝐴𝐵) ↾ V) = (𝐴𝐵))
64, 5mpbi 230 . 2 ((𝐴𝐵) ↾ V) = (𝐴𝐵)
72, 3, 63eqtr2i 2764 1 (𝐴𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  Vcvv 3459  ccnv 5653  cres 5656  ccom 5658  Rel wrel 5659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-res 5666
This theorem is referenced by:  dfdm2  6270  cofunex2g  7948  trclubgNEW  43642  cnvtrrel  43694  trrelsuperrel2dg  43695
  Copyright terms: Public domain W3C validator